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ABSTRACT 

The Earth shows a constant display of an organized complexity system, and its intrinsic capacity for sporadic self-or- 
ganization constitutes its fundamental and profound mysterious property. A graphical method derived from the logistic 
phase space of precipitation is proposed to identify periods of abundance-scarcity of rain as well as El Niño presence in 
order to cope with climate change. The most striking result is that the majority of El Niño events on this graph are cha- 
otic, in which the sign of the dominant eigenvalues of precipitation gives trends of scarcity on negative signs and abun- 
dance on positive signs, with eleven years periods. 
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1. Introduction 

Simulation of dynamic systems yields conclusions that, 
among other things help us to make decisions and the 
outcomes may play another important role in the thinking 
process and for this purpose, motivation means to inter- 
pret and understand the nature of evolution, as well as the 
emerging weather, ecosystems, life and universe com- 
plexity, starting from the point of view of their funda- 
mental simplicity. This principle from dynamics system 
approach that nature loves simplicity is essential to mod- 
ern science in order to accept new theories, as much as it 
is necessary to understand that coevolution is the funda- 
mental movement of the whole universe. From here, we 
need to adopt a structural perspective that looks into 
fundamental patterns of climate and life expressions 
[1-4]. Thus, it is a one-way-search to speak about organ- 
isms, ecosystems and climate as a unitary structure, ac- 
cepting coevolution and seeing the planet as a whole and 
identifying the climate as a unifying global force, Sys- 
tems in nature seem disorderly or ruled by random events 
that seems unpredictable but there is actually hidden or- 
der in phase-space rather that in ordinary space and show 
universality in their approach to chaos like the logistic 
equation, giving some predictive power [5-10]. 

Given the close connection between climate and eco- 
systems, any change in this complexity system is likely 
to propagate with marked intensity throughout the system 
with great force, where, small changes in one place may 
cause chain reactions, nonlinear effects and even envi- 
ronmental disasters. The earth as a homeostatic system is  

a system that maintains its own state in an ever changing 
environment by way of internal adjustments. The behav- 
ior of the atmospheric system depends on internal and 
external constraints and its fundamental mechanisms are 
instability, feedbacks and homeostasis, whose principal 
manifestations are in their turn bifurcations toward a 
multiplicity of states [11-16]. Using time delay coordi- 
nates we can analyse data on one component of the mul- 
tidimensional system, without knowing how all the other 
components behave. A limited cycle in the state space in- 
dicates a periodic motion, that is why in systems that 
have a limit cycle as an attractor, long term predictability 
is guaranteed. Any random component of exogenous va- 
riables is called dynamic noise, which is an integral part 
of the system’s dynamics affecting how the state vari- 
ables change over time. The system itself along with ex- 
ternal perturbations contribute to the system’s unpredic- 
tability. 

Equations in a multidimensional system encapsules the 
endogenous structure of the system or also, its dynamics 
feedbacks regulating its behavior [17,18]. This means 
that there are exogenous variables acting on the system 
as well. But unlike endogenous variables, these are not 
part of the feedback structure of the system and may have 
regular, irregular or stochastic patterns of fluctuations, 
including internal factors of the system which cannot be 
predicted from state variables. 

The most important quantity associated with an ex- 
ogenous attractor is its dimensionality, which gives us 
the degree of complexity of the system, though also the 
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number of necessary variables in order to describe the 
system. What is more important is that it can be used to 
predict future actions of the system in a long term basis. 
Such ideas include a geometrical notion of the dimension 
of correlation as it is used for the mathematical analysis 
of attractors. Results in the analysis of daily metheoro- 
logical observations support the existence of those ex- 
ogenous attractors suggesting that these can be charac- 
terized through finite time series of the dynamic systems. 
Our intention has been to apply these methodologies in 
matters of short and long term interests, considering the 
current lack of knowledge about our climate as an ex- 
ogenous attractor. We believe such methods will allow us 
not only to develop an understanding of these complex 
systems, but also to be able to predict their behavior. 

2. Methodology 

The traditional approach is to solve the nonlineal equa- 
tions; 

  , 1, , .d d 1, ,xi t fi x xn i n       (1), 

(With n suitable normalized variables xi) twice with 
slightly different sets of initial conditions. Then the Eu- 
clidean norm distance    1 2x x   D t , can be eva- 
luated for a sequence of time steps. Beyond the time limit 
of predictability D (t) would oscillate. If D (t) stays below 
a value not greater than the difference between two ran- 
domly selected states of the system, we can expect predic-  

tability for longer time range or to evaluate the growth 
rates of error x in the system, which is governed by the 
set of linear differential Equations (1). 
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Coefficients Aij are the elements of the Jacobian matrix 
of f = (fl, ···, fn) defined by the partial derivative of (1). 
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Local stabilities of climate evolution are determined 
by the eigenvalues, Aij of the Jacobian Matrix which 
changes with time. The magnitude of the positive char- 
acteristic can be used as a measure of unpredictability. 

The characteristic exponents refer to the expansion or 
contration of different directions in the phase space, 
where the rate of the exponential growth of an infinitesi- 
mal vector  x t  in the n-dimensional phase space is 
given by the largest of the Lyapunov characteristic ex- 
ponents. Thus the growth rate of the phase space volume 
element is the growth rate of the Jacobian determinant 
and it is given by the sum of all n eigenvalues. 

We apply the graphic method, Figures 1 and 2 derived 
from designated properties of the logistic equation for the 
determination of the corresponding chaotic zone in the 
space phase in its maximal gradient and for that very rea- 
son in its maximun eigenvalue, in the Figures 3-7, Table 1.  

 

 

Figure 1. Adjustment of precipitation values to logistic equation in order to determine simulation and prognosis coefficients. 
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Figure 2. Graphic method in order to calculate phase space 
eigenvalues as well as the system’s behavioural patterns di- 
vided in an oscillatory, asymptotic, stable or unstable and 
chaotic area. 
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Figure 3. Global temperature anomalies space phases show- 
ing in a separate form its multiple attractors and later their 
integration. 

 

 

Figure 4. Tlaxcala and Veracruz regions. 
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Figure 5. Phase-space of a system with stable/unstable dynamics and corresponding capacity dimension values as well as 
Lyapunov exponents and autocorrelations, annual precipitation values and their maximum eigenvalues in which positive 
values correspond to excessive precipitation trends while those negative correspond to deficient trends. 
 
3. Results by the eigenvalues or characteristic exponents of the Ja- 

cobian matrix where the rate of the exponential growth of 
an infinitesimal vector in the n-dimensional phase space 
is given by the largest of the Lyapunov characteristic 
exponents. The growth rate of the phase space volume 
elements is the growth rate of the Jacobian determinant 
and is given by the sum of all the n eigenvalues. 

Sea surface temperatures exhibited a cooling trend in the 
Eastern Pacific during the 1980s on about 0.1˚C, fol- 
lowed by a similar warming through 1990, and following 
closely the 11-year sunspot cycle, where the prime source 
of global weather comes from the Tropics, in which the 
weather comes first and later comes El Niño. Apparently 
ENSO characteristics changed quite markedly over the 
course of ten years, even in the absence of obvious ex- 
ternal forcing. 

- Precipitation vectors in space phases in the States of 
Tlaxcala and Veracruz when invading the chaotic area 
acquire the maximum eigenvalue, which determines 
the predictive dynamics of the system, Figures 5-7. 

The accelerated warming that took place in the Central 
Tropical Pacific during the late twentieth century implies 
very different forcing and response, in all of the prob- 
abilities related to the rise in greenhouse gases. The local 
stabilities of weather or climate evolution are determined  

- We can observe that through the sign of this eigen- 
value we can determine tendencies but also future va- 
lues in the abundance of regional precipitations. The 
tendency to positive eigenvalues correspond to abun- 
dant rainfall, the tendency to negative eigenvalues to 
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the stablishment of drought situations 
- Precipitation vectors in the chaotic area in certain oc- 

casions tend to over-stimulate the system, withdraw- 
ing from the basic attractor though performing repul- 
sive turns that tend to become predictable with the 
dynamics of the logistic equation, in its way to chaos, 
Figures 5 and 6. 

- The calculus of precipitation tendencies determined 
by this methodology in the coastal State of Veracruz 
and the central State of Tlaxcala, Figure 4, have pro- 
ved to be correct in over 85% of he total values con- 
sidered, Figures 5-7. 

- Intervals in the forecast of rainfall tendencies start 
with the critical value of the eigenvalue vector that 

invades the “chaotic area” and ends up when a new 
invading vector is introduced in the same area, which 
will become the new dominant maximum eigenvalue 
in the dynamics and future tendencies of the system, 
Figures 5-7. 

- Climatological observation stations indicate a higher 
percentage of unstable tendencies in dry arid regions 
of both States, while stable tendencies in more pro- 
ductive regions or those with higher levels of precipi- 
tation. Such conditions had already been observed, in 
a comparative rainfall analysis carried out in various 
areas of the country. 

- The presence of El Niño is generally manifested with 
the appearance of a chaotic behaviour, which can be 
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Figure 6. Mean annual precipitation values observed at 6 regions of the Veracruz state and their corresponding prognostic 
values derived from the logistic equation, in which difference spaces point to those random effects of environmental external 
noise. 
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Figure 7. Mean distribution of isohyets (mm/year) for the state of Veracruz for period 1940-2000, and space/dynamic behav- 
ior of stable (S)/unstable (U) conditions and significant periodicities (in parenthesis). (NP) means non-significant periods. 
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Table 1. Global temperatura and tuna Biomass on the Pacific Ocean and El Niño year presence. 

Year Grade vector Behavior Grade vector Behavior El Niño? 

 Global Temperature  Tuna Biomas   

1952-1953 71.5650512 CHAOS NO DATA  *NO 

1956-1957 71.5650512 CHAOS NO DATA  *YES 

1957-1958 35.5376778 EO    

1960 45 EO    

1961 14.0362435 EO    

1962-1963 71.5650512 CHAOS NO DATA  YES 

1963-1964 83.6598083 CHAOS NO DATA  YES 

1964 14.5344551 EO    

1966 7.12501635 EO    

1968-1969 86.1859252 CHAOS −64.4141 CHAOS YES * 

1969 28.0724869 EO 49.3177 IO  

1971 43.025066 EO −48.1154 IA  

1972-1973 62.5924246 CHAOS 100.665 CHAOS YES * 

1974 10.491477 EO    

1975 54.4623222 IO −64.5018 CHAOS YES * 

1976 74.3577535 CHAOS    * 

1977 19.7988764 EO 56.5348 CHAOS NO 

1978 48.0127875 IO    

1980-1981 75.9637565 CHAOS −87.9372 CHAOS YES * 

1982 60.2551187 CHAOS 107.035 CHAOS YES * 

      

1985 75.9637565 CHAOS   NO 

      * 

      

1992 23.1985905 EO 60.3052 CHAOS YES 

  IO  −126.777735 IO 

1996 51.7098368 IO    

1998 55.1755108 IO    

2000 66.8014095 IO    

 
observed in the graphics presented by Figure 2 and 
Table 1. 

- In the stability analysis of ecosystems, we also ob- 
serve the manifestation of a coevolutive process that 
corresponds to situations of greater stability when 
dealing with regions of higher productivity, with 11 
years periods, while more instability in drier arid ar- 
eas and random periods. 

- This is detectable in those turns observed in phase 
spaces that have the greatest percentage of turns di- 

rected towards the right in situations of greater stabil- 
ity, and towards the left in unstable situations. 

- External factors such as orography (deterministic) 
along with freezing and northern winds phenomena 
(stochastic) can actually transform a stable region into 
an unstable one.  

- To apply nonlinear predictive schemata especially in 
dynamic system models will doubtlessly be a required 
step to follow in the future to be able to understand as 
well as to quantify the complexity in the state of wea- 
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ther conditions and climatic systems, including clima- 
tic changes. 
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