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ABSTRACT 
Chaotic synchronization is the key technology of secure communication. In this paper,  an impulsive control method 
for chaotic synchronization of two coupled Lorenz chaotic system was proposed. The global asymptotic synchroniza-
tion of two Lorenz systems was realized by using the linear error feedback of the state variables of the drive system and 
the response system as impulsive control signal. Based on stability theory of impulsive differential equation, conditions 
were obtained to guarantee the global asymptotic synchronization of two Lorenz systems. The theory analysis and 
computer simulation results validated its effectiveness. 
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1. Introduction 
As the key technology of secure communication, chaotic 
synchronization has been widely development since Pe-
cora and Carroll [1] proposed the principle of chaos syn-
chronization and realized it in the circuit in 1990. Several 
synchronization methods have been proposed so far, such 
as drive-response synchronization, coupling synchronization, 
feedback-perturb synchronization, self-adapt synchroniza-
tion, impulse synchronization, and so on [2-4]. Impulse 
synchronization has been widely appreciated by researcher 
and made some good progress [5-8]. However, many of 
the impulsive control methods for synchronization are 
subject to certain restrictions. Paper [9] studied impulsive 
synchronization for Rössler chaotic system, and paper 
[10] researched impulsive control for synchronization of 
a class of chaotic system. In their papers the drive signal 
is generated by the impulsive signal and continuous signal 
of the system variables, so the controller is very compli-
cated. In this paper, we use an impulsive control method, 
and design the controller for Lorenz chaotic system. De-
signed controller is simple and easy to be realized. 

2. Problem Formulation 
In this section, we study the impulsive control of Lorenz 
chaotic system [11] described by the following differential 
equation: 

1 1 2

2 1 2 1 3

3 3 1 2

x x x
x x x x x
x x x x

σ σ
ρ
β

= − +
 = − −
 = − +







           (1) 

where σ , ρ , β  are system’s positive real number 
parameters. We choose the parameters 10σ = , 28ρ = , 

8 3β = , the initial condition is given by 
1 2 3( (0), (0), (0)) (0,0,1)T Tx x x = . The uncontrolled tra-

jectories are shown in Figure 1, which is the notable 
Lorenz attractor. 

System (1) can be rewritten into the following form: 

( )x Ax g x= +               (2) 

where 1 2 3( , , )Tx x x x=  is state variable, 
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Figure 1. Lorenz attractor. *Corresponding author. 
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Regarding (2) as a drive system, the response system 
can be described as: 

( )y Ay g y= +              (3) 

where 1 2 3( , , )Ty y y y=  is state variable of response 
system. Using linear feedback of synchronization error as 
impulsive signal, we can obtain the following impulsive 
response system: 
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where 3 3 ( 1, 2, )kB R k×∈ =   are constant matrices describing 
the linear nature of the driving impulses, ( )k ky y t t+ −∆ − , 

( ) ( )k ky t y t−  . 
From system (2) and system (4), the error dynamics is 

given as following: 
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here 1 1 2 2 3 3( , , )Te y x y x y x y x= − = − − −  is synchroni-
zation error, 
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3. Synchronization of Lorenz Chaotic 
System 
Theorem: Denote kβ , Aλ  and Mλ  be the largest 

eigenvalue of ( ) ( )T
k kI B I B+ +  ( 1, 2, )k =  , TA A+ ,   

( , ) ( , )TM y x M y x+  respectively, if there exists a constant 
1α >  such that ln( ) ( ) 0k A M kαβ λ λ τ+ + ≤ , 1, 2,k =  , 

then system (4) and (2) are global Asymptotic synchro-
nization. Here 1k k kt tτ −= −  is pulse interval. 

Proof: Choose the Lyapunov function ( ) TV e e e= , 
then for 1( , ], ( 1, 2, )k kt t t k−∈ =   we have 
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So 
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On the other hand, when , ( 1, 2, )kt t k= =  , we get 
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According to the inequality (6) and (7), we can get 
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Considering 0( ( ))V e t and 1exp[( )( )]
2A M kt tλ λ+ −   

are both bounded, so lim ( ) 0
t

V e
→∞

= . Then the trivial solu-
tion of system (5) is global asymptotically stable. That is, 
system (4) and (2) are global asymptotic synchronization. 

Now, according matrix theory, we have 
|| ( , ) ( , ) ||T

M M y x M y xλ ≤ + , where ⋅  denotes any 
kinds of norms of a matrix.  We can obtain the follow-
ing corollary: 

Corollary: if there exists a constant 1α >  such that 

ln( ) ( || ( , ) ( , ) ||) 0,
1, 2,

T
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then system (4) and (2) are global asymptotic synchroni-
zation. 

4. Numerical Simulation 
In this section, we present some numerical simulations to 
demonstrate our results. We choose the parameters of 
Lorenz system (1) as 10σ = , 28ρ = , 8 3β = , then 
we can calculate that 28.05Aλ = . By observing the Lo-
renz attractor (Figure 1), we can get state variable’s val-
ue ranges: 120 20x− ≤ ≤ , 20 50x≤ ≤ , 320 20x− ≤ ≤ ,  
and work out 140Mλ ≤ . Take the equal impulsive in-
tervals and the equal impulsive feedback gain matrix, 
that is, set kτ τ= ， ( , , )kB B diag µ µ µ= = , 1, 2,k =  , 
then 2( 1)kβ µ= + . According to the corollary in the 
previous section, if 20 [ln ln( 1) ] /168.05τ α µ< ≤ − + + , 
then system (4) and (2) are global asymptotically synchro-
nization. Let 0.5µ = − , 1.1α = , then 0 0.0077τ< ≤ . 
Figure 2 shows the simulation results in which initial  

 

 
Figure 2. Synchronization error of Lorenz chaotic system. 
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value of drive system (2) is (2,0.1,0.1)T  while initial value 
of response system (4) is (0.1,5,0.5) ,T  and 0.5,µ = −  

0.007τ = . We can see that synchronization error con-
verges to zero quickly. 
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