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ABSTRACT 

The aim of this work was to develop an in vitro model to study mechanical compression effects on cartilage. A pressure-controlled 
compression device was used in this study. Cartilage explants obtained from human knee were compressed at 1MPa/1Hz for 7 hours 
(30 min ON, 30 min OFF) under normoxia (5% CO2, 21% O2) or hypoxia (5% CO2, 5% O2). Cell viability was analyzed while nitric 
oxide (NO) and glycosaminoglycans (GAG) release was assayed in culture media. Mechanical stimulation increased NO production 
and GAG release by human cartilage explants under normoxia and hypoxia culture. In normoxia and hypoxia conditions, mechanical 
stimulation alters human OA cartilage metabolism. There is also, an increase in matrix degradation after compression, as shown by 
levels of GAG found in culture media. This study put in evidence the importance of mechanical compression in the progression of 
the osteoarthritis and present and in vitro model for mechanobiological and pharmacological studies. 
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1. Introduction 

Cartilage is an avascular tissue submitted in vivo to mechanical 
stimuli. These mechanical stimuli result from a complex com-
bination of tension, shearing and compression forces, the latter 
being the most important within the cartilage [1]. The compres-
sive forces exerted on the surface of the articular cartilages are 
variable according to the weight of the individual, his muscular 
tension and its physical-activity. Thus for example the average 
pressure being exerted on the hip is of 0.7 MPa but during 
physical exercises, it can reach 5 to 10 MPa. These mechanical 
forces affect the extracellular matrix as well as the chondrocyte 
metabolism [2-9]. During immobilization, the capacities of 
synthesis of chondrocytes as well as the thickness of the carti-
lage decrease. In the same way, in the zones subjected to 
maximal forces, the balance between the anabolism and the 
catabolism of the cartilage are disturbed.  

It is know that physiological loading of articular cartilage is 
necessary to maintain normal joint function. Articular chon-
drocytes transform mechanical signals into biochemical ones to 
maintain the integrity of their extracellular matrix [10-12]. 
Several studies investigated the effect of mechanical stimula-
tion on chondrocyte metabolism. In general, static compression 
decreases biosynthetic activity compared to unloaded tissue 
while dynamic compression has been found to stimulate, inhibit 
or have no effect on biosynthetic activity depending on the 
loading frequency and amplitude [13-15]. Other studies have 
shown that cyclic tensile strains of low magnitude (3–8% 
equibiaxial strain) and physiological levels of cyclic compres-
sive forces (15% compression) elicit an anabolic response [16, 
17], while strains of high magnitude (10–15% equibiaxial strain) 
initiate cartilage damage.  

Most of the studies investigated the effects of mechanical 

compression on osteoarthritis (OA) development and use 
healthy cartilage principally from animal origin. In this work 
we aimed to investigate the response of human cartilage from 
osteoarthritic patients to dynamic unconfined compression. The 
aim of this work was to develop an in vitro model to study me-
chanical compression effects on cartilage and to define experi-
mental protocols to be used in cartilage mechanobiology. This 
model could be used in pathophysiological or pharmacological 
studies of cartilage. 

2. Materials and Methods 

2.1. Cartilage Explants 

Articular cartilage was obtained from preserved areas of femo-
ral condyles of patients undergoing arthroplasty for OA at the 
Department of Orthopaedic Surgery, CHU Nancy, France. 
Samples from 10 patients (6 women and 4 men, 64  7 years) 
were used. Cartilage was separated from the subchondral bone 
using a scalpel. Cylindrical explants (5 mm in diameter) were 
harvested using a sterile biopsy punch (Stiffel, France) and 
immediately incubated in culture medium (DMEM-F12) sup-
plemented with 10% heat inactivated fetal bovine serum, 1% of 
antibiotics/antimycotic solution, and 2mM Glutamine at 37°C, 
5% CO2. Test and control explants were paired at harvest and 
originated from adjacent sites on the joint surface. All com-
pression experiments were performed after allowing explants to 
equilibrate in culture for 72 hours after harvest. 

2.2. Mechanical Stimulation 

A FX-4000CTM Flexcercell® Compression Plus TM System 
(Flexcell International, Hillsborough, NC) was used to apply 
dynamic compression. Explants were placed in one well of a 
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Biopress culture plates (Flexcell International) and mounted 
within the apparatus. The plates consist of a 6 well plates con-
taining a flexible silicone rubber membrane at the bottom. The 
explant is putted on the plastic disc, into the Foam Sample 
Holder and the piston of the Stationary Platen is moved until it 
become in contact with the explants. A calibrated air pressure 
was applied to the membrane to obtain a compressive stress (σ); 
determined from the applied force (F) and the initial crosssec-
tional area (A) of the explant using the equation σ = F/A (Fig-
ure 1). Two millilitres of culture medium were introduced into 
each well. Explants were subject to unconfined compression at 
compressive stress amplitude of 1 MPa at 1 Hz for 7 hours in 
an intermittent manner (30 min ON, 30 min OFF) in a humified 
incubator at 37°C, 5% CO2. Unloaded (control) explants were 
incubated under the same conditions. Tests were performed in 
order to calculate the pressure applied to the sample by using a 
force sensor (XFL 205 R, FGP Sensors & Instrumentation) 
instead the sample and to be sure that all culture wells on each 
of the 4 compression plates of the device were subject to the 
same strain (Figure 1). 

To analyze the effect of oxygen tension in NO production 
and GAG release, experiments were performed in a humidified 
incubator at 37°C, 5%CO2, 5%O2. Explants were left overnight 
in hypoxia before each experiment in order to let cells to adapt 
their metabolism. 

2.3. Viability Assay 

Cell viability was determined in cartilage explants using the 
fluorescent probes Propidium Iodure (PI) and SYTO16 (both 
from Molecular Probes). The membrane-permeable SYTO16 
labels live and dead cells to yield cytoplasmic and nuclei green 
fluorescence, whereas the membrane-impermeable propidium 
iodide labels nucleic acids of membrane-compromised cells 
with red fluorescence. After each experiment, the loaded and 
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Figure 1. Calibration of the compression device using a force sen-
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ded (control) explants were washed in DMEM W/O phe-
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2.5. Determination of NO 

y estimating the stable NO me-

response to compression. Fluorescence staining 

compression. The 
m

nol red for 5 min and then sectioned perpendicular to the ar-
ticular surface into 1-mm thick slices using parallel razor blades.
The tissue sections were incubated in the SYTO16+PI solution 
for 5 min in a dark environment and then washed twice (5 min 
each) in DMEM W/O phenol red to remove free dye from the 
tissue matrix. The chondrocytes within the cartilage matrix 
were then viewed using a fluorescence confocal microscope 
(LEICA) in sequential mode (excitation/emission: 488 nm/ 
520nm (1); 545/633 (2)) to simultaneously observe green and 
red fluorescence. Green cells are viable and yellow cells are 
dead. The percentage of dead cells was calculated by counting 
the total number of cells and the number of yellow cells in five 
random, non-contiguous fields. 

2.4. Measurement of GAG Release 

GAG levels in the culture medium were determined by
amount of polyanionic material reacting with DMMB (Poly-
sciences, USA). Explants supernatants were removed and 125 
μl were combined with 200 µl of DMMB solution. Samples 
were examined spectrophotometrically at 525 nm. For this as-
say, standards prepared with control media and chondroitin 
sulphate C (Sigma, France) were used. Results are reported as 
µg GAG per mg of wet weight of tissue. 

NO production was measured b
tabolite, nitrite, in conditioned medium using a spectropho-
tometric method based on the Griess reaction (Griess Reagent 
Kit for Nitrite Determination, Molecular Probes). Following 
culture of the cartilage explants for the times indicated, 150 µl 
of the culture supernatants or sodium nitrite standard dilutions 
were mixed with 20 µl Griess reagent (1% sulfanilamide, 0.1% 
naphthyl ethylenediamine dihydrochloride, and 5% H3PO4) 
and incubated for 30 min at room temperature. Nitrite concen-
trations were determined by measuring absorbance at 570 nm in 
a Microplate reader (BioRad, U.S.A.). Values are expressed as 
µM nitrite released per mg of wet weight of tissue. 

3. Results 

Cell viability in 
indicated that cell death was confined to the cut edge and to the 
superficial zone in uncompressed control samples. In mechani-
cally loaded explants, cell death was evident also in the inter-
mediate region of the explants. When compared the superficial 
zone in unloaded and compressed samples, the percentage of 
dead cells is higher (p < 0.05) in compressed explants (59%) 
than in unloaded ones (23%). Similarly, the percentage of dead 
cells in the deep zone is higher (p < 0.05) in compressed sam-
ples (39%) than in unloaded samples (20%). 

NO production and GAG release after 
echanical compression used in this in vitro study affects the 

NO production and GAG release from human cartilage explants. 
As shown in Figure 2, NO increases in culture medium of 
compressed explants after 7 hours of intermittent compression 
when compared to uncompressed explants. In parallel, condi-
tioned medium from compressed and uncompressed cartilage 
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explants was analyzed for sulphated GAG content after 7 hours. 
The results presented in Figure 3 showed that mechanical 
stimulation increase GAG release in culture medium of com-
pressed explants when compared to uncompressed ones. We 
next investigated the effect of oxygen tension in the level of 
NO production and GAG release in response to mechanical 
compression. Under static conditions, NO production increased 
under hypoxia when compared to normoxia conditions (in-
crease of 202  51 %, p0,05). Moreover, mechanical com-
pression significantly increased NO production (Figure 2) un-
der hypoxia. Furthermore, under static conditions GAG release 
under hypoxia did not change when compared to normoxia 
conditions. Mechanical compression significantly increased 
GAG release (Figure 3) under hypoxia although the increase is 
less important than under normoxia. 

4. Discussion 

ffect of unconfined compression on cartilage 

l conditions, large forces which are the 
re

In this study, the e
explants from human osteoarthritic knee was studies. Results 
showed that in this in vitro model, mechanical compression 
increased NO production and GAG release under normoxia and 
hypoxia conditions.  

Under physiologica
sult of normal joint movements are applied to articular carti-

lage. Mechanical load has been demonstrated in many in vivo 
and in vitro investigations to be an important factor affecting 
the health of articular cartilage and consequently the function of 
 

 

Figure 2. Production of Nitrite (M/mg wet weight) by articular 
cartilage explants compressed at 1 MPa,1 Hz for 7h (30 min on, 30 
min off) under normoxia conditions (21% O2) or under hypoxia 
conditions (5% O2). Data are presented as mean ± S.D. of 3 inde-
pendent experiments with n = 3/group/experiment, p <0.05 : w/o 
compression vs compression. 
 

 

Figure 3. GAG released (g/mg wet weight) in culture mediu  

pression). 
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