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ABSTRACT 

This paper is concerned with anisotropic effects on seismic data and signal analysis for transversely isotropic rock me- 
dia with vertical anisotropy. It is understood that these effects are significant in many practical applications, e.g. earth- 
quake forecasting, materials exploration inside the Earth’s crust, as well as various practical works in oil industry. Un- 
der the framework of the most accepted anisotropic media model (i.e. VTI media, transverse isotropy with a vertical 
axis symmetry), with applications of a set of available anisotropic rock parameters for sandstone and shale, we have 
performed numerical calculations of the anisotropic effects. We show that for rocks with strong anisotropy, the induced 
relative depth error can be significantly large. Nevertheless, with an improved understanding of the seismic-signal 
propagation and proper data processing, the error can be reduced, which in turn may enhance the probability of fore- 
casting accurately the various wave propagations inside the Earth’s crust, e.g. correctly forecasting the incoming earth- 
quakes from the center of the Earth. 
 
Keywords: Anisotropy; Rock Media; Seismic Signal; Data and Analysis 

1. Introduction 

The properties of mechanical waves in different media 
have been investigated extensively and reported in lit- 
erature, for example, the quality detection of concrete 
structures, as reported by Larose etc. [1]. These studies 
were aimed primarily at achieving an improved under- 
standing of the physical properties and geometric struc- 
ture of the propagation media. In seismic explorations, 
time-depth relation from seismic reflection data was used 
for time-depth conversion, so as to understand the geo- 
logical structure of the Earth’s interior. This approach is 
useful in evaluating the porosity and permeability of rock 
layers and searching for oil reservoirs. 

Elastic anisotropy is arguably one of the most impor- 
tant phenomena in the Earth’s interior [2]. It has been 
reported that rock anisotropy can significantly influence 
the phase velocity and energy velocity, as well as the 
reflection and transmission coefficients of elastic waves 
[3,4]. As a result, it distorts the velocity analysis and the 
Amplitude Variation with an Offset (AVO) analysis, 
which is one of the few existing analyses capable of di- 
rect detection of hydrocarbons [5-8]. Discussions on the 
effect of rock anisotropy in seismic exploration were 
provided by several research groups [9-11]. It was re- 

ported by Banik et al. [12] that rock anisotropy could 
cause discrepancies between the well-log depth and the 
seismically determined depth. By employing available 
seismic reflection data, significant efforts in accurately 
imaging the geological structures beneath the seafloor 
were made [13,14]. Numerical calculations of anisotropic 
effect on reflection travel-time of seismic signals were 
performed and reported by Fomel and Biondi [15] and by 
Alkhalifah and Tsvankin [16]. 

Nowadays, it is well understood that rock anisotropy 
can significantly influence the phase and energy veloci-
ties of an elastic wave, as well as the reflection and 
transmission (R/T) coefficients [17]. Nevertheless, a quan- 
titative understanding of the anisotropic effects on the 
seismic signal and data analysis is still limited. For this 
reason, there has been a great interest in analyzing the 
effects of anisotropy in various media, so as to obtain an 
improved understanding of seismic reflection data, proc- 
ess and analyze the information, and determine, for ex- 
ample, when an earthquake may arrive from the Earth’s 
interior. 

In quantitative analysis of the anisotropy effects on 
seismic data and signal, the accuracy of a time-depth 
relation is critically important, because it is closely re-
lated to the velocity analysis of seismic signals, depth 
estimation of reflectors, and synthesis of seismograms. A *Corresponding author. 
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fundamental assumption in conventional velocity analy-
sis is to treat formation-media as isotropic. But, for a 
seismic wave propagating in elastic anisotropic media, 
the magnitude and direction of its phase velocity are dif-
ferent from those of its energy velocity. Therefore, due to 
its oversimplification, the conventional velocity analysis 
will be insufficient for processing, interpreting, and im-
aging the seismic reflection data. This is especially true 
for cases of strong anisotropy [9,11,18,19]. In this paper, 
we present a study of an accurate velocity analysis and 
report the effects of rock anisotropy on seismic data 
analysis in transversely isotropic media. 

2. Theoretical Background 

Most geological systems can be modeled as fine layering 
in which the dominant wavelength of a pulse is much 
larger than the thickness of the individual layers [17]. 
Therefore, sedimentary rocks such as shale are com-
monly treated as being transversely isotropic [2,20]. For 
an elastic wave in isotropic media, the wave-front is 
spherical; the phase velocity is perpendicular to its wave- 
front, the energy velocity and the density vector are in 
the same direction, and the direction and magnitude of 
the phase velocity are the same as those of the energy 
velocity, as shown in Figure 1. 

One class of elastic seismic waves is the so-called 
P-wave, which stands for primary wave. It is the fastest 
traveling wave compared to other elastic waves, e.g. 
S-waves and surface waves. P-waves can travel through 
various media, including the Earth’s crust, and they are 
recorded on seismograms when created by earthquakes. 
By detecting the non-destructive P-waves, it is possible 
to have warnings of earthquakes before they arrive, be-
cause P-waves travel more quickly than the destructive 
secondary waves (S-waves). Following P-waves, S-waves 
are the second type of wave to be recorded on an earth-
quake seismogram. In seismic applications, S-waves are 
polarized vertically and are called SV-waves, i.e. SV- 
waves propagating in a vertical plane. The SV-waves 
move vertically through the different layers of the Earth, 
which each exhibit different properties, and thus serve as 
anisotropic media. 
 

 

Figure 1. The relationship between phase velocity and en-
ergy velocity in xz-plane within an isotropic media. 

A transversely isotropic elastic medium with a vertical 
axis of symmetry (Figure 2) is called a VTI medium 
model. Despite its limitation, the VTI model offers the 
simplest way to account for both heterogeneity and ani-
sotropy in subsurface formations with a generic stiffness 
matrix [17] 
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cFor the various elements of the stiffness-matrix, jk  
is a modulus with respect to stress and strain in the me-
dium. Due to the transversely isotropic nature of the VTI 
media, our discussions may be focused purely on a 
two-dimensional seismic reflection wave propagating in 
xz-plane (see Figure 3). For the transversely isotropic 
rocks, the elastic moduli and anisotropic parameters are 
given by   2
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 66 2 1c44  ,    , where,   and  

 are 
the anisotropic parameters, while   and   are the 
vertical phase velocities of P-waves and SV-waves re-
spectively. These velocities bear no relation to anisot-
ropic parameters and are identical to the phase velocities 
 

 

Figure 2. Transversely isotropic elastic VTI medium with a 
vertical axis of symmetry. 
 

 

Figure 3. The relationship between phase velocity and en-
ergy velocity in xz-plane within an anisotropic media. Note 
that in the anisotropic media, phase angle and energy angle 
are not equal. 
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of P-wave and SV-wave in isotropic rock media. 

Copyright © 2

A plane wave  j jn x v t exp ijk ku U   

elsewhere as well. For example, let’s consider the case of 
a P-wave impinging a plane reflector, creating converted 
P-wave and SV-wave. This particular case involves many 
practical applications in oil industries, where P-waves 
constitute the overwhelming majority of seismic data. 
The seismic wavelet does not create the frequency dis-
persion during its propagation, so the phase velocities are 
constants for all frequency components of a given wave-
let. It should be noted that for an elastic anisotropic me-
dium, the wave-front is no longer symmetric. Both the 
phase velocity direction and its magnitude are generally 
different from those of the energy velocity (see Figure 3). 
In seismic exploration, the actual seismic wave propa- 
gates in the ray direction with energy velocity magnitude. 


2 0U  

ikG
U

 solves  

the Christoffel equation ik k , where 
is the Christoffel matrix, v  is the phase velocity, 

k  is the polarization, 

 ikG v

  is the media mass density, 
and j  is the unit of slowness. Based on the Christoffel 
equation, the phase velocities of P-waves and SV-waves 
in an infinite elastic VTI medium are obtained as [3] 

n
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where, 2 2
1 2sin cosi iQ A A 2
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{p, sv}, i  is the phase angle as shown in Figure 3, 
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For a homogenous P-wave or SV-wave propagating in 
the ax-plane, the phase velocity can be written as . 

The normalized displacement vectors of P- and SV- 
waves can be written as [14] 
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where i  and i  are the polarization coefficients. The 
sign of these coefficients are dependent on the anisot-
ropic parameters and the corresponding phase angle. 

The information presented has numerous applications  
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where, ki  is the unit vector of the wave-front normal. 
The power density flux can be written as 
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where, i i it j   V u u
T

 is the unit particle displace-
ment velocity

 
and

 j  represents the stress tensors. The 
x- and z-components of power density flux can be writ-
ten as 
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The relationships between the energy angle and phase angle are obtained as 
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Invoking the relationship between energy and phase velocities,  e v , energy velocity can be expressed 
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as [21] 
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Inserting Equation (19) into Equation (10) yields the 
normalized displacement vectors 
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3. Results and Discussions 

We have performed numerical calculations for rock for-
mations with anisotropy and selected some typical rock 
samples with available anisotropic parameters listed in 
Table 1, as reported by Thomsen et al. [22,23]. Specifi-
cally, the three samples are: 1) M-sandstone with very 
small anisotropic parameters; 2) C-sandstone with a 
weak to moderate anisotropy; and 3) M-shale with mod-
erate to strong anisotropy. 

When a P-wave propagates in the ax-plane with a 
plane reflector with phase velocity p , energy velocity 

ep , and the travel-time p , we set the horizontal dis-
tance from the source to the receiver (i.e. offset) to be 2l. 
The actual time-depth relation of reflector between two 
homogenous rock layers can be written as 

  2
22pt l   
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ep p ph v   .        (16) 

For a weak anisotropic case, using phase velocity in 
place of energy velocity yields a time-depth relation for 
the reflector 
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Furthermore, when neglecting the effect of the anisot- 
 
Table 1. Rock anisotropic parameters for Mesaverade 
sandstone, Mesaverade calcareous sandstone, and Mesa- 
verade shale. In the following table  and β  are in unit 
of (m/s) and ρ  is in unit of (g/cm3). 

Sample α  β  ε δ *  γ  ρ  

M-sandstone 4633 3231 –0.026 –0.004 0.035 2.710

C-sandstone 5460 3219 0.000 –0.345 –0.007 2.690

M-shale 3377 1490 0.200 –0.282 0.510 2.420

ropy by using vertical phase velocity   to replace the 
energy velocity, the time-depth relation yields 

2 2
2

4
p

i

t
h l


.             (18)  

h h h

Using Equations (16)-(18), we have calculated the ac-
tual reflector depth (h) and the induced depth errors, 

p p   , as a function of the reflection travel-time, 

pt
h h h  

, as well as the obtained reflector depth as a function 
of the offset midpoint (l). Using i i , we have 
calculated the errors in the time-depth relation and de-
fined the absolute percentage errors as 

100% , .k kh h h
k i p

h h

 
         (19) 

The results of calculations for the selected samples are 
given in Tables 2 and 3. 

Now, let’s consider the propagation and reflection of a 
wave, as shown in Figure 4, with an observation position 
R. A wave leaves a source S, propagates to a point O, 
and then is reflected back to the surface position R. The 
energy incident angle i  on the reflection point O is 
different from the phase incident angle i . The energy 
angle is determined by the offset and the reflector depth, 
while the phase angle is dependent on the energy angle 
and the rock anisotropy. Because both energy and phase 
velocities are functions of phase angle and the rock ani-
sotropy, the travel-time of a reflected signal varies with 
respect to several factors, including the reflector depth, 
anisotropic properties, and phase and energy angles for a 
given offset. 

In seismic exploration, the data for the reflected 
seismic signal can be obtained in different moving pat-
terns of a measurement line. Here, we assume that the 
 
Table 2. Induced relative depth errors as a function of wave 
traveling time pt  with a fixed offset  2000 ml  in ne-

glecting anisotropy. 

 Sample pt ms  
p

h h  
i

h h  

M-sandstone 508.83 0.2% 9.1% 

C-sandstone 1203.02 2.0% 18.1% 

M-shale 609.02 14.0% 52.5% 

 
Table 3. Induced relative depth errors as a function of offset 
 l  in neglecting anisotropy. 

 Sample l m  
p

h h  
i

h h  

M-sandstone 2000.0 0.1% 2.2% 

C-sandstone 945.1 2.5% 20.5% 

M-shale 2000.0 3.1% 4.1% 

Copyright © 2013 SciRes.                                                                                 JMP 



Y. ZHAO  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

15

, , ,R R R
measurement line consists of one source S and N receiv-
ers 1 2 N , where all receivers are located in a 
direct line on the surface. Suppose that the measurement 
line rotates around the source S at a fixed-angle interval 
and the measurement line acquires seismic data with 
each rotation. Figure 5 demonstrates the rotation of the 
measurement line from  to OA . 

l

OA
In the case that the measurement line is parallel to the 

x-axis, the measurement in acquiring seismic data can be 
made in the y-direction with each increment . Figure 6 
shows a step-by-step measurement from AB  to AB

h
 h

h

ih

 
with various reflections and the approximation in ignor-
ing anisotropy. Figures 7 and 8 show that, the depth er-
ror i  and the relationship of depth-offset midpoint 

i  are independent of the y. For the same reason, if 
the measurement line is parallel to y-axis and moves 
forward in the x-axis direction, then the depth estimation 
error i and the relation of depth versus offset midpoint 
can obtained by rotating 90˚ in space from Figures 7 and 
8. 

Figures 9 and 10 show that, when ignoring anisotropy, 
the estimated depth error and the relationship of 

depth-offset midpoint are symmetric in shapes with re-
spect to the vertical axis. It reveals that by ignoring the 
effect of rock anisotropy on phase and energy velocities 
(or neglecting the difference between the energy velocity 
and the phase velocity), the estimated depth and the ob-
tained relation of depth-offset midpoint are dependent on 
the arrangement of the measurement line. Therefore, ig-
noring anisotropy can distort the velocity analysis of ac-
quired seismic signals and lead to an increased level of 
error for the inversed reflector depth. 

For all three rock samples studied in this paper, entries 
in Tables 2 and 3 show that, regardless whether it is 
strong or weak, neglecting the rock anisotropy will lead 
to errors in the time-depth relation. For weak anisotropic 
M-sandstone, the relative errors are comparably small 
with p  being about 0.2% and h h i  being 
about 9.1%. However, for strong anisotropic rock, such 
as M-shale, these errors are very significant, with 

h h

p  being about 14% and h h i  being about 
52.5%. For the case of moderate or strong anisotropy, the 
induced depth error may reach up to several hundred 
meters. Consequently, the velocity analysis of seismic 

h h

 

 

Figure 4. The propagation path of seismic reflection signal in anisotropic medium in ax-plane. 
 

 

Figure 5. A measurement line rotates from  to OA OA  at the same angle interval each time with respect to the vertical 
axis. 
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Figure 6. The depth error measurement and reflector depth hi in neglecting the anisotropy, with measurement at the interval 
of  in y-axis direction. Δl
 

 

Figure 7. In neglecting the anisotropy, the relation of measurement error  versus both Δ ih pt  and coordinate y. 

 

 

Figure 8. In neglecting the anisotropy, the relation of reflector depth hi versus both the measurement length l and coordinate 
y. 

Copyright © 2013 SciRes.                                                                                 JMP 
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Figure 9. The depth error due to neglecting the anisotropy rotating with respect to vertical axis. θ is the rotation angle of the 
measurement line. 
 

 

Figure 10. Reflector depth for the pattern of measurement line rotating with respect to vertical axis. 
 
data will be significantly distorted. flector depth; 

2) The anisotropic parameter  determines the symme-
tries of the effect of anisotropy on phase and energy ve-
locities for both P-waves and SV-waves: (a) for

4. Final Words 
0  , the 

effect of rock anisotropy on wave velocities (both phase 
and energy velocities) are symmetric at a phase angle 

i

From Section 3, the results of calculations, we draw the 
following conclusions: 

1) In any practical seismic data and signal analysis, the 
effects of rock anisotropy cannot be neglected. Other-
wise, the calculated time-depth may yield significant 
errors, e.g. for rock samples with strong anisotropy, the 
relative depth error i can be more than 50%. 
Clearly, this would lead to a strong distortion on the ve-
locity analysis of the measured seismic waves on reflec-
tion, resulting in substantial errors in the estimated re-  

45 , and (b) for rocks with weak anisotropy, substi-
tuting energy velocity by phase velocity leads to a rea-
sonably good approximation; 

3) With the results of calculations presented in this 
paper and the understanding of the seismic-signal propa-
gation and proper data processing from 1)-2), we note 
that the error of analysis can be reduced by proper corre-
sponding corrections. This in turn would enhance the 

h h

3 Sc
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ability of forecasting accurately the various wave propa-
gations inside the earth’s crust, e.g. correctly forecast the 
incoming earthquakes from the center of the Earth. 

Finally, it is worth mentioning that the analysis pre-
sented in this paper in time-depth relation is suitable not 
only for elliptical anisotropic media but also for generic 
(non-elliptical) anisotropic media. We are currently ap-
plying the theory present in this paper to such a generic 
anisotropic medium. We believe that the current study 
will shed light on an improved understanding of seismic 
reflection data analysis and processing in order to accu-
rately forecast incoming earthquakes from the Earth’s 
interior. 
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