

Cyclic codes of length 2^k over Z₈

Arpana Garg, Sucheta Dutt*
Department of Applied Sciences
PEC University of Technology, Sector - 12
Chandigarh. India
arpana22_2005@yahoo.com
suchetapec@yahoo.co.in

Abstract - We study the structure of cyclic codes of length 2^k over Z_8 for any natural number k. It is known that cyclic codes of length 2^k over Z_8 are ideals of the ring $R = Z_8[x]/\langle x^{2^k} - 1 \rangle$. In this paper we prove that the ring $R = Z_8[x]/\langle x^{2^k} - 1 \rangle$ is a local ring with unique maximal ideal $M = \langle 2, x - 1 \rangle$, thereby implying that R is not a principal ideal ring. We also prove that cyclic codes of length 2^k over Z_8 are generated as ideals by at most three elements.

Keywords – Codes; Cyclic Codes; Ideal; Principal Ideal Ring.

1. Introduction

Let R be a commutative finite ring with identity. A *linear* code C over R of length n is defined as a R-submodule of R^n . An element of C is called a codeword. A cyclic code C over R of length n is a linear code such that any cyclic shift of a codeword is also a codeword i.e. whenever $(c_1, c_2, c_3, ..., c_n)$ is in C then so is $(c_m c_1, c_2, ..., c_{n-1})$. Cyclic codes of order n are ideals of the ring R^n .

Let Z_8 denote the ring of integers modulo 8. Cyclic codes over ring Z_{p^m} of length n such that. (n,p)=1 are studied by A.R. Calderbank, N.J.A. Sloane in [2] and P. Kanwar, S.R. Lopez-Permouth in [3]. Most of the work has been done on the generators of cyclic code of length n over Z_4 where $2 \mid n$. In [1], Abualrub and Oehmke, gave the structure of cyclic codes over Z_4 of length 2^k , in [5] Blackford classified all cyclic codes over Z_4 of length 2^n where n is odd and in [6] Steven T. Dougherty & San Ling gave the generator polynomial of cyclic codes over Z_4 for arbitrary even length. The structure of cyclic codes over Z_4 of length p^e is given by Shi Minjia, Zhu Shixin in [7].

*(corresponding author: phone: 172-275-3268; fax: 172-274-5175) Cyclic codes of any length n over fields are principal ideals. Therefore cyclic codes over Z_2 of length n are principal ideals. Moreover, cyclic codes over Z_2 of length n are generated by polynomials of the type $(x+1)^t$ where t | n and these generators are divisors of x^n-1 . But the situation is different in case of cyclic codes over rings. In

this paper we prove that the ring $R = Z_8[x]/\langle x^2^k - 1 \rangle$ is a local ring with unique maximal ideal $M = \langle 2, x - 1 \rangle$. Thereby implying that R is not a principal ideal ring (there exist cyclic codes which cannot be generated by one element). Even the generators of a cyclic code need not divide $x^n - 1$ over Z_8 . We also prove that cyclic codes of length 2^k over Z_8 are generated as ideals by at most three elements.

Throughout this paper we assume that $n = 2^k$ so that $R = \mathbb{Z}_{\mathbb{R}}[x]/\langle x^n - 1 \rangle$.

2. Preliminaries

Any codeword from a cyclic code of length n can be represented by polynomials modulo $x^n - 1$. Any codeword $c = (c_0, c_1, c_2, ..., c_{n-1})$ can be represented by polynomial $c(x) = c_0 + c_1 x + ... + c_{n-1} x^{n-1}$ in the ring R.

Definition 2.1: Define a map $Φ: R \to Z_2[x]/ < x^n - I >$ s.t. Φ maps 0,2,4,6 to 0; 1,3,5,7 to 1; and *x* to *x*.

It is easy to prove that Φ is an epimorphism of rings.

Note that Z_2 and Z_8 are rings under different binary operations, but addition and multiplication of elements in Z_2 can be obtained from the addition and multiplication of elements of Z_8 reducing them by modulo 2. Any element $a \in Z_8$ can be written as a = b + 2c + 4d s.t. $b,c,d \in Z_2$. Therefore any polynomial $f(x) \in Z_8[x]$ can be represented as $f(x) = f_1(x) + 2f_2(x) + 2^2 f_3(x)$, where $f_i(x) \in Z_2[x]$ for every i.

The image of any polynomial $f(x) \in R$, under the homomorphism Φ is $f_1(x)$.

Definition 2.2[8]: The content of the polynomial $f(x) = a_0 + a_1 x + ... + a_m x^m$ where the a_i 's belong to Z_8 , is the greatest common divisor of $a_0, a_1, ..., a_m$.

Theorem 2.3[8]: The Correspondence Theorem. If $\varphi: A \to A'$ is a surjective ring homomorphism having kernel η , then $I' \to \varphi^{-1}(I')$ is a 1-1 correspondence between the totality of ideals I' of A' and the totality of those ideals of A which contain η .

Theorem 2.4[8]: The General Isomorphism Theorem. If $\varphi: A \to A'$ is a surjective ring homomorphism with kernel η , and if the ideals I, I' respectively correspond to each other as in theorem 2.3. (i.e. $I = \varphi^{-1}(I')$ or equivalently, if $I \supset \eta$ and $I' = \varphi(I)$, then there is a unique ring homomorphism

 $\overline{\phi}: A/I \to A'/I'$ such that $\overline{\phi}(a+I) = \phi(a)+I'$ for all a in A. Moreover, $\overline{\phi}$ is an isomorphism of A/I with A'/I'.

Lemma 2.5 [1]: If R is a local ring with the unique maximal ideal M and $M = (a) = (a_1, a_2, ..., a_n)$, then $M = \langle a_i \rangle$ for some i.

3. Generators of Cyclic Codes Over Z8.

Consider the ring $R = \mathbb{Z}_8[x] / < x^n - 1 >$. Let C be an ideal (cyclic code) in R. Now, we prove that the ring R is a local ring but not a principal ideal ring

Lemma 3.1: R is a local ring with the unique maximal ideal M=<2,x-1>.

Proof: The ring $R_1 = \mathbb{Z}_2[x]/\langle x^n - 1 \rangle$ is a local ring with unique maximal ideal $I = \langle (x-1) \rangle$. Now, Φ is a ring homomorphism which is onto. Therefore by theorem 2.3.,

$$M = \Phi^{-1}(I) = \Phi^{-1}(\langle x - 1 \rangle) = \langle 2, x - 1 \rangle$$

is ideal of R containing kernel of Φ . By theorem 2.4, there exists a unique ring isomorphism $\eta: R/\Phi^{-1}(I) \to R_1/I$. As I is maximal ideal of R_I therefore R_I/I is a field and η is a isomorphism therefore $R/\Phi^{-1}(I)$ is also a field. This implies that $M = \Phi^{-1}(I)$ is a maximal ideal of R.

Therefore, R is a local ring with unique maximal ideal M.

Lemma 3.2: R is not a principal ideal ring.

Proof: Suppose R is a principal ideal ring. Let us consider the maximal ideal M=<2,x-1> of R. By the

lemma 2.5., M = <2, x-1> = < x-1> or M = <2, x-1> = <2>. But neither $2 \in < x-1>$ nor $(x-1) \in <2>$. Therefore, R is not a principal ideal ring.

Now, we prove that cyclic codes of length 2^k over Z_8 are generated as ideals by at most three elements. We have the following:

Lemma 3.3: Let C be a cyclic code of length 2^k over Z_8 . If minimal degree polynomial g(x) in C is monic, then $C = \langle g(x) \rangle$ where $g(x) = g_1(x) + 2 g_2(x) + 4 g_3(x)$ such that $g_1(x) \neq 0$ and $g_i(x) \in Z_2[x]$ for i = 1, 2, 3.

Proof: Suppose C is a cyclic code of length $n=2^k$ over Z_8 . Let $g(x)=g_1(x)+2$ $g_2(x)+4$ $g_3(x)$ such that $g_i(x) \in Z_2[x]$ for i=1, 2, 3; be a polynomial of minimal degree in C whose leading coefficient is a unit. Let c(x) be a codeword in C, then By division algorithm $\exists \ q(x)$ and r(x) over Z_8 such that

c(x) = g(x)q(x) + r(x)

where r(x) = 0 or deg(r(x)) < deg(g(x))

This implies $r(x) = c(x) - g(x)q(x) \in C$

if $r(x) \neq 0$ then deg $r(x) < \deg g(x)$

which is a contradiction to the choice of degree of g(x)

Therefore r(x) = 0 i.e. every polynomial c(x) in C is a multiple of g(x). i.e. $C = \langle g(x) \rangle$.

Lemma 3.4: Let C be a cyclic code of length 2^k over Z_8 If C contains no monic polynomial and leading coefficient of minimal degree polynomial g(x) in C is 2 or 6, then $C = \langle g(x) \rangle = \langle 2q_1(x) \rangle$ where $q_1(x) \in Z_4[x]/\langle x^n - 1 \rangle$.

Proof: If leading coefficient of minimal degree polynomial g(x) is 2 or 6 then we claim that content of g(x) is 2

Suppose this is not so. Let $g(x) = c_0 + c_1 x + ... + c_s x^s$ and there exist some t such that $c_t \neq 0 \pmod{2}$, then 4g(x) is a non zero polynomial of degree less than degree of g(x) and belongs to C, which contradicts the minimality of g(x).

Hence $c_i \equiv 0 \pmod{2}$ for all *i* and content of g(x) is 2.

So $g(x) = 2q_1(x)$ where $q_1(x) \in \mathbb{Z}_4[x]/\langle x^n - 1 \rangle$. Let C be a code which contains no monic polynomial. Then all polynomials in C are with leading coefficient non unit. We claim that all the elements in C are multiples of $2q_1(x)$

where $q_1(x) \in \mathbb{Z}_4[x] / < x^n - 1 > .$

Suppose this is not so. Then there exists a polynomial u(x) of minimal degree t_i in C which is not a multiple of $g(x) = 2q_1(x)$

Therefore, there exists $r_2(x) \neq 0 \in \mathbb{Z}_8[x]/\langle x^n - 1 \rangle$

Such that $u(x) = 2q_1(x) v x^{t_1-s} + r_2(x)$

where $deg r_2(x) < deg u(x)$ and v=1 or 2 or 3

Copyright © 2012 SciRes.

Now, C is an ideal

Therefore $r_2(x) = u(x) - 2q_1(x)vx^{t_1-s} \in C$

if $\deg r_2(x) < \deg u(x) \& r_2(x) \in C$ then $2q_1(x)|r_2(x)$

 $\Rightarrow 2q_1(x) \mid u(x)$

which is a contradiction.

Hence $r_2(x) = 0$

 \Rightarrow 2q₁(x) | u(x). i.e. u(x) $\in \langle g(x) \rangle = \langle 2q_1(x) \rangle$

i.e., every codeword of C is generated by $g(x) = 2q_1(x)$. i.e.

$$C = \langle g(x) \rangle = \langle 2q_1(x) \rangle$$

Lemma 3.5: Let C be a cyclic code of length 2^k over Z_8 containing monic polynomials and leading coefficient of minimal degree polynomial $g(x) = 2q_1(x)$ in C is 2 or 6, then C = < f(x), $2q_1(x) >$ where f(x) be a monic polynomial of minimal degree t among all monic polynomials in C. Moreover, $q_1(x) \mid f(x)$ and any code $C = < f(x), 2q_1(x) >$ is strictly contained in the code generated by $q_1(x)$.

Proof: Suppose C is a code which contains a monic polynomial $f(x)=f_1(x)+2f_2(x)+2^2f_3(x)$, of minimal degree t among all monic polynomials in C. Let S be the set of polynomials of C of degree less than t. Then leading coefficient of all polynomials in S is a non unit or zero divisor.

Let $c(x) \in C$, by division algorithm \exists unique polynomials = $q_3(x)$, $r_4(x)$ s.t.

 $c(x)=f(x)q_3(x)+r_4(x) \text{ where } r_4(x)=0 \text{ or } \deg r_4(x) \leq \deg f(x) \quad (1)$ As C is an ideal

 $\Rightarrow r_4(x) \in C$

Now if deg $r_4(x) < deg f(x)$

 $\Rightarrow r_{\Delta}(x) \in S$

then leading coefficient of $r_4(x)$ must be a zero divisor.

Let $g(x)=2q_1(x)$ be minimal degree polynomial in S with leading coefficient 2 or 6. It follows as in Lemma 3.4, $r_4(x)$ is multiple of $2q_1(x)$ and

$$\exists w_1(x) \in Z_8[x]/< x^n-1> s.t.r_4(x)=2q_1(x)w_1(x)$$

substituting in equation (1), we get

$$c(x) = f(x)q_3(x) + 2q_1(x)w_1(x)$$

which implies $C = \langle f(x), 2q_1(x) \rangle$

As f(x) is monic, therefore 2f(x) is polynomials with leading coefficient 2. Therefore $2q_1(x) \mid 2f(x)$

$$\Rightarrow q_1(x) | f(x)$$
.

Lemma 3.6: Let C be a cyclic code of length 2^k over Z_8 which contains polynomials with leading coefficient 4 only. Let g(x) be minimal degree polynomial in C, then $C = \langle g(x) \rangle$

$$= < 4q_2(x) > \text{ where } q_2(x) \in \mathbb{Z}_2[x]/< x^n - 1 > .$$

Proof: We claim first that content of g(x), the minimal degree polynomial in C, is 4.

If this is not so, then 2g(x) is a non zero polynomial of degree less than degree of g(x) belong to C, which is a contradiction to the choice of deg g(x).

 \Rightarrow content of g(x) = 4

$$\Rightarrow g(x) = 4q_2(x)$$
 where $q_2(x) \in \mathbb{Z}_2[x]/\langle x^n - 1 \rangle$

Now, we claim that all polynomials in C are multiples of $4q_2(x)$, where $q_2(x) \in Z_2[x]/\langle x^n-1\rangle$. Suppose this is not so, then \exists a polynomial in C which is not a multiple of $g(x)=4q_2(x)$. Let $u_i(x)$ be a polynomial of minimal degree t_2 in C which is not divisible by $4q_2(x)$,

then
$$\exists r_3(x) (\neq 0) \in Z_8[x] / < x^n - 1 >$$

 $s.t.u_1(x) = 4q_2(x)x^{t_2-s} + r_3(x)$ where $deg(r_3(x)) < deg u_1(x)$ C is an ideal

$$r_3(x) = u_1(x) - 4q_2(x)x^{t_2-s} \in C$$

Now if $r_3(x)$ is not equal to 0, then

 $deg r_3(x) \le deg \ u_1(x)$, $r_3(x) \in C$ implies $4q_2(x) \mid r_3(x)$

 $\Rightarrow 4q_2(x) \mid u_1(x)$, which is a contradiction.

Therefore $r_3(x) = 0$ and $u_1(x)$ is a multiple of $4q_2(x)$.

Hence every polynomial in C is multiple of $4q_2(x)$.

Thus
$$C = \langle g(x) \rangle = \langle 4q_2(x) \rangle$$
, where $q_2(x)$ belongs to $Z_2[x]/\langle x^n - 1 \rangle$.

Lemma 3.7 Let C be a cyclic code of length 2^k over Z_8 not containing monic polynomials and let the leading coefficient of minimal degree polynomial $g(x) = 4q_2(x)$ in C be 4, then $C = \langle 2q_1(x), 4q_2(x) \rangle$, where $2q_1(x)$ is a polynomial with leading coefficient 2 or 6 of minimal degree 's' among all polynomials with leading coefficient 2 or 6 in C. Moreover, $q_2(x) \mid q_1(x)$ and therefore $C = \langle 2q_1(x), 4q_2(x) \rangle$ is strictly contained in the code generated by $q_2(x)$.

Proof: Let g(x) be minimal degree polynomial in C with leading coefficient 4, then from Lemma 3.6 it is clear that content of g(x) is 4. That is $g(x) = 4q_2(x)$. Let v(x) be a polynomial with leading coefficient 2 or 6 of minimal degree 's' among all polynomials with leading coefficient 2 or 6 in C. It is easy to prove that content of v(x) is 2. That is $v(x) = 2q_1(x)$. Here $2q_1(x)$ is not unique.

Let S be set of all polynomials with degree less than 's'. Therefore S contains polynomial with leading coefficient 4 only. Let $c(x) \in C$ therefore leading coefficient of c(x) is 2,4 or 6. If $\deg(c(x)) \ge \deg(2q_1(x))$ then by lemma 3.4. $2q_1(x)$ divides c(x). Therefore content of c(x) is 2. If $\deg(c(x)) < \deg(2q_1(x))$, then $c(x) \in S$ and by lemma 3.6. $4q_2(x) \mid c(x)$. Therefore content of c(x) is alteast 2. i.e. c(x) = 2u(x). Now divide u(x) by $q_1(x)$. As $q_1(x)$ is monic polynomial therefore there exist Q(x) and R(x) such that

$$u(x) = q_1(x)Q(x) + R(x)$$
 where $R(x) = 0$ or $deg(R(x)) < deg(q_1(x))$ $c(x) = 2u(x) = 2q_1(x)Q(x) + 2R(x)$ (2) if $deg(R(x)) < deg(q_1(x))$ then $deg(2R(x)) < deg(2q_1(x))$ this implies $2R(x) \in S$ therefore by lemma $3.6.4q_2(x) \mid 2R(x)$ therefore there exist $w'(x)$ such that $2R(x) = 4q_2(x)w'(x)$ substitute the value in equation (2), we get
$$c(x) = 2q_1(x)Q(x) + 4q_2(x)w'(x)$$
 this implies $2R(x) \in S$ This implies $c(x) \in (2q_1(x), 4q_2(x)) \in S$ That if $C = (2q_1(x), 4q_2(x)) \in S$

Lemma 3.8: Let C be a cyclic code of length 2^k over \mathbb{Z}_8 such that the leading coefficient of minimal degree polynomial $g(x) = 4q_2(x)$ in C is 4. Further, let the minimal degree polynomial among all polynomials in C with leading coefficient not equal to 4 be monic, say f(x) of degree 't'. Then $C = \langle f(x), 4q_2(x) \rangle$. Moreover, $q_2(x) | f(x)$ and therefore $C = \langle f(x), 4q_2(x) \rangle$ is strictly contained in the code generated by $q_2(x)$.

Proof: Suppose C is a code which contains a monic polynomial $f(x)=f_1(x)+2f_2(x)+2^2f_3(x)$, of minimal degree t among all polynomials with leading coefficient unit or 2 or 6. Here f(x) is not unique. Let S be the set of polynomials of C of degree less than t. Then leading coefficient of all polynomials in S is 4.

Let $c(x) \in C$, by division algorithm \exists unique polynomials $q_3(x), r_4(x)$ s.t.

$$c(x) = f(x)q_3(x) + r_4(x)$$
where $r_4(x) = 0$ or $deg r_4(x) < deg f(x)$
As C is an ideal

 $\Rightarrow r_{\Delta}(x) \in C$

Now if $deg r_4(x) < deg f(x)$

 $\Rightarrow r_4(x) \in S$

Let $g(x) = 4q_2(x)$ be the minimal degree polynomial in S with leading coefficient 4. It follows, as in Lemma 3.6 that $r_4(x)$ is multiple of $4q_2(x)$ and

$$\exists w_2(x) \in Z_8(x) / < x^n - 1 > s.t.r_4(x) = 4q_2(x)w_2(x)$$

substituting in equation (3), we get $c(x) = f(x)q_3(x) + 4q_2(x)w_2(x)$
which implies $C = < f(x), 4q_2(x) >$

Lemma 3.9: Let C be a cyclic code of length 2^k over \mathbb{Z}_8 such that leading coefficient of minimal degree polynomial $g(x) = 4q_2(x)$ in C is 4. Further, let the minimal degree polynomial among all polynomials in C with leading coefficient not equal to 4 be $2q_1(x)$ of degree 's' and f(x) be a monic polynomial of minimal degree t among all monic polynomials in C. Then $C = \langle f(x), 2q_1(x), 4q_2(x) \rangle$. Moreover, and therefore $q_2(x) | q_1(x) | f(x)$ $C = \langle f(x), 2q_1(x), 4q_2(x) \rangle$ is strictly contained in the code generated by $q_2(x)$.

Proof: Suppose C is a code which contains a monic polynomial $f(x)=f_1(x)+2f_2(x)+2^2f_3(x)$, of minimal degree t among all monic polynomials in C. Here f(x) need not be unique. Let S be the set of polynomials of C of degree less than t. Then leading coefficient of all polynomials in S is either 2,4 or 6.

Let $c(x) \in C$, by division algorithm \exists unique polynomials q(x) and r(x) such that c(x) = f(x)q(x) + r(x)where either r(x) = 0 or deg(r(x)) < deg(f(x))If $\deg(r(x)) < \deg(f(x))$ then $r(x) \in S$, by Lemma 3.7. $r(x) \in \langle 2q_1(x), 4q_2(x) \rangle$ therefore there exist u(x) and v(x) such that $r(x) = 2q_1(x)u(x) + 4q_2(x)v(x)$ where $2q_1(x)$ be a polynomial with leading coefficient 2 or 6 of minimal degree 's' among all polynomials with leading coefficient 2 or 6 in C. Substitute the value of r(x) in (4), we get $c(x) = f(x)q(x) + 2q_1(x)u(x) + 4q_2(x)v(x)$. That is $C = \langle f(x), 2q_1(x), 4q_2(x) \rangle$.

Theorem 3.10: Cyclic codes in R of length 2^k are generated as ideals by at most three elements.

Proof: The theorem follows from Lemmas 3.3 to 3.9.

Note: This result has also been generalised by us for cyclic codes of length 2^k over Z_{2^m} for all m.

REFRENCES

- [1] T. Abualrub and R. Oehmke, "Cyclic codes of length 2^e over Z₄" Discrete Applied Mathematics 128 (2003) 3 – 9.
- [2] A.R. Calderbank, N.J.A. Sloane, Modular and p-adic cyclic codes, Designs Codes Cryptogr. 6 (1995) 21–35. Kanwar, S.R. Lopez-Permouth, Cyclic codes over the integers modulo p, Finite Fields Appl. 3 (4) (1997) 334–1352.
- [4] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Ninth impression, North-Holland, Amsterdam, 1977.
- [5] T. Blackford, Cyclic codes over Z₄ of oddly even length, Discrete Applied Mathematics, Vol. 128 (2003) pp. 27–46.
- [6] Steven T. Dougherty, San Ling, Cyclic Codes Over Z4 of Even Length, Designs, Codes and Cryptography, vol 39, pp 127–153, 2006
- [7] Shi Minjia, Zhu Shixin. Cyclic Codes Over The Ring \mathbb{Z}_{p^2} Of Length p^e. Journal Of Electronics (China), vol 25, no 5,(2008), 636-640.
- [8] I.S.Luthar, I.B.S.Passi. Algebra volume 2 Rings, Narosa Publishing House, first edition, 2002.

107 Copyright © 2012 SciRes.