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Abstract—The heat transfer processis simulated in a nano-sized cone-shaped cathode. A model of heat transfer is constructed 
using the phase field system and theNottingham effect. We considerinfluence of the free boundary curvature and the Nottingham 
effect on the heat balance in the cathode.
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1. Introduction and Statement of the 
Problem
Our main goal is to simulate the heat transfer ina doped 

silicon nanocathode. Thecathode has the shape of a blunted 
cone and the following linear dimensions: 

height of the cathode 10 15� �

diameter of the cathode base 6� �
radius of the cathode vertex rounding 15� nm 

cathode vertex angle 20��
Such a shape of the cathode is specified by the engineering 
process, see Fig.1.Such cathodes are used in the electron 
microscope and in other electron devices.

An obstacle for a wide use of this cathode is the instability 
of electron emission. This instability is in fact caused by the 
small size of the cathode.The cathode is heated due tothe Joule 
effect. The current in the cathode is very large and the Joule 

heat can melt the cathode. 
Figure 1. REM image of the silicon 

nanocathode.

The effect of the cathode
melting is confirmed 
experimentally. Namely, the 
produced molten (liquid) layer 
does not contain a small 

region near the vertex of the cathode cone. At the same time, 
the cathode material remains solid near the base. So we can 
observe the following sequence of layers: solid, liquid, solid. It
is experimentally known that the liquid layer becomes solid 
after some (unknown) time.

We present an explanation of this fact in this paper. The 
motion of the free boundary (the interface between the phases) 
depends on the curvature of the free boundary and the 
Nottingham effect. Namely, the temperature dependence on the 
free boundary curvature is determined by the Gibbs-Thomson 
law [8, 9]. The Nottingham effect determines the temperature 
of the cathode vertex under the thermoemission of electrons [1]. 
More precisely, the Nottingham effect consists in the following. 
If the temperature of the cathode vertex is higher than the so-
called inverse temperature, then the vertex is cooled; if the 
temperature of the cathode vertex is lower than this inverse 
temperature, then the vertex is heated.

The mathematical model of the heat transferin the case of 
fieldemission is known (see [6]),

N = >( ) ( ) ,Tc T T T F
t

? �F
	 O O 

F
N div 0.j 	 N =P>N

Here T isthetemperature, ? isthedensity, c isthespecificheat, �
isthespecific heat capacity, F is the power density of the heat 
emission under the Joule and Thomson effects, and j is the 
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current density. The function F and the current density are 
determined by formulas  

21 ( , ) ( ) , ,
( )

F j r t g t j T
T"

	  O N 8 9( ) ( ) ,j T u T T" �	 � O  O N

where ( )T" isthe specific conductivity, ( )g t is the Thomson 
coefficient, u is the potential of the electric field inside of the 
cathode, and ( )T� is the thermoelectric coefficient. 

In our model we use the physical parameters:

0t 100c time scale (time of the experiment)

0r 510 m� space scale (size of the cathode)
l 51.64 10 J kg7 latent heat of melting
c 678J (kg K )7 Specific heat
" 0.725 N m surface tension
? 32330kg m Density
� 0.5m (c K)7 kinetic coefficient of growth

0T 1700K Melting temperature
k 5 29.43 10 m c�7 Thermal conductivity
� 149 W (m K)7 Specific heat capacity
e 191.602 10 C�� absolute charge of electron
D 0.7 emittance

SB" 8 2 45.6704 10 J (c m K )�7 7 7 Stefan-Boltzmann constant

Weconsidera simplifying modificationofthismodelwhich is 
adapted to the research of silicon small-size cathodes.Namely,
the Thomson effect can be neglected because of thep-n
conductivity of the silicon emitter. In this case, the 
contributions of the p- and n-carriers to the thermoEMF are 
mutually compensated.We assume that the current densityis 
constant in the cathode sections thatareorthogonal to the 
cathode axis. The value of current density was taken 
approximately from experimental data.

So we reduce system (1), (2) to the one heat equation

N 0 0
2
0

.
t tT k T F

t lr ?
F

� & 	
F

N =Q>N

Here r is the dimensionless coordinate and t is the 
dimensionless time. But this is not enough. It is necessary to 
add the condition at the blunted vertex of the cathode, which 
corresponds to the Nottingham effect. We also need to include 
the Gibbs-Thomson and Stefan conditionson the free boundary
(the interface between the phases). 

We assume that the Gibbs-Thomson condition is satisfied
on the free boundary ( )t$ (if this free boundary is already 
generated)

N = > 0
0 2( )

,
t

cTcT T K
l l

"
� ?$

� 	 � �v N (3) 

where v is the normal velocity of the free boundary and K is
the principle curvature of the free boundary.The normal n is 
the outward normal to the interface between the phases (from 
liquid to solid). Equation (3) determinesthe linear dependence 
of the temperature on the free boundary curvature and the 
velocity. If we assume that the free boundary ( )t$ is 
determines by the function ( )r r t	 , then we have 

= >0 0 ( )r t r tH	v and = >01 ( ) .K r r t	

Besides it is necessary to assume that the Stefan condition
is satisfied on the free boundary

N
( )

.
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$

F' ( 	 �+ ,F) *
v

n
N  (4) 

If we get 0

0

1
rc

l t�
� and  0

2
0

1 1
cT

rl
"

?
� in (3), then 

condition (3) becomes the usual widely known condition
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At the blunted vertex of the cathode ( 0r R	 ) we use the 
equation(see [7] 

N
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N =S>N

Here E is the energy of the emission electrons. In the right-
hand side of equation (6),the first term determines 
theNottingham effect and the second term determines the 
additional radiation condition. To derive the function E we 
use the approximating from [1].

On theother outer boundaries of theblunted-cone cathode, 
we use Neumann-type boundary conditions. 

Finally, we obtain problem (2), (4), (5) with condition (6), 
which models the thermo-field emission under our assumptions.
As was mentioned above, the liquid layer can be produced.
This fact means that the domain of our problem can change in 
time. This leads to serious obstacles for the numerical 
simulation. To avoid these obstacles, we use a regularization of 
problem (1), (4), (5). This regularization is the phase field 
model (see [2–4]) 
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Here 2 5.U 	 Inmodel(7), (8) 
thestateofthesystemisdeterminedbythe dimensionlessparameter

( , , , )r tC C � W	 (the so-called order function) in addition to the 
usualphysicalparameters (temperature, density, etc.). The 
function ( )g C isthederivativeofthepotential ( ).W C This 
potentialissymmetricwith respect tozeroandhastwominima at
the points 1.C 	 � In the simple case, we have 3( ) .g C C C	 �
The function ( , , , , )r t� � W  	 is a regularization of the 
temperature T in (2), and  is the regularization parameter. 

Namely, if we formally let 0 0 �  ,thenequation (7)
becomesthe heat equation (2) and equation (8) gives condition
(3) (or condition (5) as a particular case of (3)) and condition 
(4).In general, the limit transition as 0 � from the phase field 
system (7), (8) to problem (2), (4), (5) is nontrivial. This
question is discussed in [5,7].

System (7), (8) is supplemented with the boundary 
(Neumann-type) conditions. At the blunted vertex of the 
cathode ( 0r R	 ) we use equation(6) for the function .�

In our model,we take into account the fact that the 
coefficients ,k ,? ,� c depend on the temperature.To obtain the 
effects of melting and solidification,we also introduce the 
condition of generation of aseed of the liquid phase in the solid 
phase and vice versa.

2. Numerical solution and programming
Thespecialfeaturesofsystem (7), (8) are the following. First: 

thecoefficient at the time derivative in (8) is -110

0
10

rc
l t�

/ .

Thisfactmeansthatthe motion of the free boundary ( )t$
depends on the freeboundaryvelocity much lesser than on the 
free boundary curvature, see (5).Second: thecoefficient 
(thermalconductivity) 2

0 0kt r isverylarge ( 710/ ) in (7).This 
fact means that the temperature rapidly stabilizes in a small 
volume. 

Theaforesaidmeansthatit is necessary to solve system (5), (6) 
toconstruct the solution on a long time interval.Thisisa
veryserious problem. Thefactis thatequation (8) is nonlinear 
and its “innerinstability” generates nonlinear 
waves.Thisfactleadsto 
thegenerationoftheinterfacebetweenthephases (free 
boundary).However, the final form(5) of the parameter (3)
shows that equation (8) has a stationary solution at the given 
temperature.

Thisfactallowsone to solve system (7), (8) byusing an 
iterationalgorithm. We use the standard implicit difference 
scheme.For every time step k , we first solve the linearized 
equation (8). The sweepingisexecutedforgiven ( 1n ) 
times.Sowefindthestationarysolution 1kC  ofequation (8) at the 

given temperature .k� Next we derive the heat equation (7) 
with the function 1.kC  The sweepingisalso executedforgiven
( 2n ) times. Sowefindthestationarytemperature 1.k� 

Thecomputerprogramwasproducedtoderivesystem (7), (8)
Figure 2. Dynamycs of the deviation of the dimensionless temperature 

0 :T� � 0 0,t t	 	 2
1 0,2 10t t �	 	 7  (At this instant of time liquid phase is 

generated), 2
2 1,5 10 .t t �	 	 7 (At this instant of time the left free boundary 

1( )r r t	 changes moving direction), 2
3 4,5 10 .t t �	 	 7 (At this instant of time 

the free boundaries merge), 0.03. 	

numericallybythe abovealgorithm. Thisprogramallows one to 
varythevalues of the system parameters and the computational 
algorithm. Forexample, iftheStefancondition (4) and theGibbs-
Thomsoncondition
(3)donotcontainlargeorsmallparameters,thenwecanassume

1 2 1.n n	 	

3. Simulation Results 
In Figs. 2, 3, 4, we present the results of numerical 

simulation of the liquid layer generation and the motion of the 
free boundaries.

In Fig. 2,the deviation of the dimensionless temperature 
0T� � is shown. At the initial time moment, the dimensionless 

temperature is equal to a negative constant,see Fig. 2, 0 0.t 	
We also assume that the cathode is solid at the initialinstant of 
time 0.t 	 This means 0 1,tu 	 	 � see Fig. 3. The boundary 
conditions used here mean that the cathode vertex is cooled 
because of the Nottingham effect, while the lower base is 
cooled due to the Neumann-type conditions 

= > ,R
r R

T T T
r

�
	

F
	 � �

F
where RT is a room temperature.

Figure 3. Dynamics of the 
order function .u 0 0,t t	 	

2
1 0,2 10t t �	 	 7 (At this 

instant of time liquid phase is 
generated), 2

2 1,5 10 ,t t �	 	 7
2

3 4,5 10 .t t �	 	 7 (At this 
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instant of time the free boundaries merge), 0.03. 	

Because of the Joule heat, the temperature increases in the 
middle of the cathode, while the temperature decreases near the 
boundary points 0r R	 and .r R	 because of the Nottingham 
effect and the cooling of the cathode base. 

Figure 4. Trajectories of the free boundaries 1( )r r t	 and 2( ).r r t	
2

2 1,5 10 .t t �	 	 7 (The free boundary 1( )r r t	 changes moving direction), 
2

3 4,5 10 .t t �	 	 7 (The free boundaries 1( )r r t	 and 2( )r r t	 merge).

So the temperature profile has maximum inside of the 
domain,where the temperature is higherthan the melting 
temperature 0 ,T see Fig. 2, 1.t t	 In the heated domain of the 
cathode, the liquid layer is generated, see the profile of the 
order function in Fig. 3, 1.t t	 Because the heat outflow due to 
the Nottingham effect increases with increasing temperature, 
the heating is changed by the cooling as the temperature attains
some maximum value. In Fig. 4 the trajectories of the free 
boundaries are plotted, the lower curve corresponds to the left 
free boundary 1( )r r t	 and the upper curve corresponds to the 
right free boundary 2 ( ).r r t	 One can see that the melting 
region (distance between curves, see Fig.4) the melting region 

first begins to expand (the distance between the curves along 
the vertical increases) and then decreases to zero, 3.t t	
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