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ABSTRACT 

We study the connection between the central limit theorem and law of large numbers for exchangeable sequences, and 
provide a counterexample to the Gnedenko-Raikov theorem for such sequences. 
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The celebrated Gnedenko-Raikov theorem states that 
sums of independent, infinitesimal random variables are 
asymptotically normal if and only if the sum of squares, 
centered at truncated means, is relatively stable. The 
following variant for i.i.d. random variables has been 
recently proved in [1]: 

Theorem 1. Let  be i.i.d. random variables 
with mean zero, and  a sequence of positive 
reals increasing to . Then  
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A classical extension of independence is exchangeabi- 
lity, and in this context we shall prove that the Gne- 
denko-Raikov theorem fails. First, let us recall the basic 
facts. A sequence of random variables    on 
the probability space 

, 1nX n 
, ,F P  is said to be ex- 
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. Two trivial examples are i.i.d. random 
variables and totally determined random variables  

. Two nontrivial but simple examples are 

n  and   where the rn’s are , 1Y r n n

i.i.d. and independent of X  or Y , respectively. 

By de Finetti’s theorem, an infinite sequence of ex- 
changeable random variables is conditionally i.i.d. given 
either the tail  -field of  , 1nX n   or the  -field G 
of permutable events. Furthermore, there exists a regular 
conditional distribution P  for  n  given G 
such that for each 
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  , called mixands, of the probability 

space  , ,B P   are i.i.d. Namely, for each natural  

number n, any Borel function , and any 
Borel set  on , 

: nf  
B 

     1 1, , , , d .n nP f X X B P f B P  


     (1) 

The following central limit theorem for exchangeable 
sequences has been proved in [2]: 

Theorem 2. Let  , 1nX n   be a sequence of ex- 
changeable random variables. Then there exist constants 
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In the above theorem, the case where nb n  is 
slowly varying characterizes the situation when the 
classical central limit theorem holds for the mixands, 
whereas the case where nb n  is slowly varying cha- 
racterizes the situation when the law of large numbers 
holds for the mixands and those limits have a standard 
normal distribution. Recently, we “cleaned” the latest 
statement and proved in [3] the following variant of the 
law of large numbers for exchangeable sequences: 

Theorem 3. Let  be a sequence of ex- 
changeable random variables and   a se- 
quence of positive reals increasing to , that satisfy 
the following conditions: 
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Unless the sequence  is i.i.d., the converse 
in the above theorem is not true; more is needed, see [4]. 

 , 1nX n  




We are now ready to provide the counterexample men- 
tioned in the introduction. It will rely on both Theorems 
2 and 3, and some specific constants . More 
precisely, we have: 

{ , 1}nb n 

Theorem 4. Let  be a sequence of 
exchangeable random variables and   a se- 
quence of norming constants that satisfy the following 
condition: 
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where  , 1n n   is the sequence appearing in Theorem 
2. 
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2) If nb n  and 1
n n   are slowly varying for 

some 1 2 1  , then  
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and the Gnedenko-Raikov theorem fails in this case.  
Proof of Theorem 4. 1) Under the assumptions on the 

sequence  0,n nb n n   and according to [5], p. 680, 
we have that  
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Taking into account the following identity (with the 
notations in Theorem 2):  
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Now let 0   be given. By formula (1) and the 
triangle inequality we have  
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Now, let us prove 2). If nb n  is slowly varying, and 
using (4), Theorems 2 and 3 imply that  
   1 0,1n nX X b N    in distribution. If, in addi- 
tion, 1

n n   is slowly varying for some 1 2 1  , 
then the hypotheses on the sequence  0  in 
part 1) of Theorem 4 are satisfied cf. section 2 in [5], 
hence the Gnedenko-Raikov theorem fails in this case. □ 
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Using (2), we estimate the first term in the right hand 
side of (5) as follows: 
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We then break down the second term in the right hand 
side of (5) as follows: 
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Remark. It is worth noting that the Gnedenko-Raikov 
theorem is valid in the case where nb n  is slowly 
varying in Theorem 2, as well as in both self-normalized 
central limit theorem [6] and self-normalized law of large 
numbers [7] for exchangeable sequences. This is why the 
counterexample in Theorem 4 above was rather hard to 
get. 
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