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ABSTRACT 

A lot of investigations have been done in order to understand the mechanisms of the transport of particulate suspension 
flow through porous medium. In general, Deep Bed Filtration studies have been conducted to analyse the mechanism 
involved in the processes of capturing and retaining particles occurs throughout the entire depth of the filter and not just 
on the filter surface. In this study, the deep bed filtration mechanism and the several mechanisms for the capture of sus- 
pended particles are explained then the size exclusion mechanism has been focused (particle capture from the suspen- 
sion by the rock by the size exclusion). The effects of particle flux reduction and pore space inaccessibility due to selec- 
tive flow of different size particles will be included in the model for deep bed filtration. The equations for particle and 
pore size distributions have been derived. The model proposed is a generalization of stochastic Sharma-Yortsos equa- 
tions. Analytical solution for low concentration is obtained for any particle and pore size distributions. As we will see, 
the averaged macro scale solutions significantly differ from the classical deep bed filtration model. 
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1. Introduction 

The following model predicts that the particle breakthrough 
happens after injection of one pore volume. Nevertheless, 
several cases where the break through time significantly 
differs from one pore volume injected, have been report- 
ed in the literature for particulate and polymer suspen- 
sions [1]. 

That model does not distinguish between different me- 
chanisms of formation damage so it can not be used for 
diagnostic purposes. Several attempts to correlate the for- 
mation damage with sizes of particles and pores were 
unsuccessful [2] (A model for average concentrations is 
not general enough or may be size exclusion mechanisms 
never dominate). 

Sharma and Yortsos [3] derived basic population ba- 
lance equations for the transport of particulate suspen- 
sions in porous media. It is assumed that an overall pore 
space is accessible for particles and the particle popula- 
tion moves with the averaged flow velocity of the carrier 
water. In the case of a porous medium with the uniform 
pores size distribution, this assumption results in inde- 
pendent deep bed filtration of different particle size popu- 
lations. Nevertheless, as we will see, if we consider size 
exclusion mechanism, either smaller particles than the 
pore or larger particles, do not perform deep bed filtra- 
tion. 

The pore size exclusion assumes that the particles can 
only enter larger pores, so, only a fraction of porosity 
will be accessible for particles, i.e. the water flux carry- 
ing particles of a fixed size is just a fraction of the overall 
water flux via porous media. 

Here, analytical solution will shows for a small pore 
size variation medium, only the intermediate size parti- 
cles perform deep bed filtration. In this case, the popula- 
tion velocity is particle size-dependent. The averaged equa- 
tions for deep bed filtration of intermediates size parti- 
cles differ from the classical deep bed filtration. 

2. Deep Bed Filtration 

The deep bed filtration system consists of equations for 
the particle mass balance, for the particle capture kinetics 
and of Darcy’s law [4,5] 
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where     is the dimensionless filtration coefficient, 
 ,c X T  is the suspended particle concentration,  ,X T  
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is the deposited particle concentration, and the formation 
damage function   ,k   shows the permeability declines 
due to particle deposition. 

If we assume the suspension as an incompressible fluid, 
the velocity U is independent of X and we can solve the 
third Equation (1) (dynamical model) independently.  

In the case of constant filtration coefficient, the parti- 

cle penetration depth equals 
1


, but here, as we focused  

on the size exclusion capture, the phenomenological mo- 
del (1) does not account for particle size distributions 
(the larger the particles, the smaller are the pores, and the 
higher is the capture rate). 

Particles do not move with the carrier water velocity, 
although we have continuity Equation (1). In one dimen- 
sional deep bed filtration, suspended concentration shock 
that moves with carrier water velocity, the suspended and 
captured concentrations are equal to zero ahead of this 
shock [4]. 

3. Advective Velocity 

In order to discuss particle transport and determine the 
average velocity of particle suspension, the velocity dis- 
tribution at the scale of the each pore must be considered. 
By approximating each pore as a capillary tube (a rough 
analogy), the velocity distribution for the fluid will be 
parabolic with a no slip condition at the walls.  

A particle will not be able to travel the same pathways 
as the carrier water, because the particle center of mass 
will be excluded from the immediate region of the wall. 
They will also be excluded from pores smaller than the 
particle.  

The result of this exclusion based upon size is that the 
particles will take on an average velocity which is greater 
than that of the carrier water [6]. 

The particle flowing through a capillary tube and sub- 
sequent size exclusion is shown in Figure 1. 

4. Derive the Equations 

In size exclusion mechanism, some particles are captured 
by the rock from the suspension, i.e. if the large particle 
arrives at a small pore, p s , it is captured and plugs 
the pore; and a small particle p s  passes the pore 
without being captured (both large and small particles, do 
not perform deep bed filtration). 

r r
r r

The geometric model structure of the pore space is as 
follows: the porous space is a bundle of parallel capillary; 
the flux through each pore is proportional to the fourth 
power of its radius; complete mixing takes place at 
length scale, i.e. there is a nonzero probability for a par- 
ticle moving through any point x to get into any pore at 
the point x l .  

 

Figure 1. Graphic representation of the size exclusion prin- 
ciple for a particle flowing through a capillary tube. 
 

The complete mixing of different size particles occurs 
in the chambers. The capture occurs at the thin pore inlet, 
where large particles arrive. So an inlet cross-section of 
each parallel capillary section acts as a sieve. 

A particle with the radius sr  passes through the pore 
with radius p  only if the particle radius is smaller than 
the pore radius, p s

r
r r . Therefore, small pores are inac- 

cessible pore volume. We introduce the accessibility fac- 
tor   for particles with radius sr  as a fraction of pore 
volume with capillary radii larger than sr : 
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Let us define the flux  , , d ds s pJ r x t r r  of particles 
with specific radius sr  via pores with a specific radius 

p  and also the total flux r  , , ds sJ r x t r  of particles 
with radii in the interval  , ds s sr r r : 
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The flux of particles with radius sr  via pores with 
smaller radius  p sr r  equal zero. Therefore, the wa- 
ter flux carrying sr -particles is lower than the overall 
water flux in the porous medium. 

   
 
 

4

4

0

, , d
, , d , , d

, , d

s
p p pr

s s s

p p

H r x t r r
sJ r x t r UC r x t r

H r x t r r







 (4) 

Introducing the fraction of the total flux that carries 
particles with radius sr : 
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So following formula is the flux of particles with radii  
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 , , ,s pr r x t

 , ,pH r x t  

Figure 2. Schema of the large particle entrapment by small 
pores.  
 
varying from sr  to ds sr r : 

     , , d , , , , ds s s s sJ r x t r U r x t C r x t r      (6) 

Formula for the flux reduction and accessibility factors 
((2) and (5)) can be derived for regular pore networks 
using effective medium or percolation theories [7]. 

4.1. Fraction of Particles Trapped and Retained 
According to Sharma and Yortsos (1987) 

To derive local rates for particle removal due to mecha- 
nical entrapment, they focused on a representative volume 
of the porous medium with a statistically large number of 
pores. They assume fluid flows through the medium at a 
constant superficial velocity q, firstly. Then, they denote 
by n the average number of pore throats a fluid particle 
encounters in the volume element before emerging from it. 
If  is the time taken for the fluid to traverse the volume 
element, then: 

t

p

q t
n

l


                  (a.1) 

where: n = number of steps;   = porpsity; q = fluid 
superficial velocity, L·T−1; lp = effective pore length, L. 

Pore length  pl  is constant. As the fluid carries sus- 
pended particles, a certain fraction of the latter is trapped 
by the pore throats at each of the n steps. If the fraction of 
particles of size in the interval  ds s sr r r r    trapped 
at each step is  s  ,P r  the mass balance on particles of 
this size at the conclusion of the  step reads as follows, ith
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where: ρ = concentration, no. L−3; f = size distribution, 
L−1;  sP r

They proceed 
 = fraction of particles retained per step. 

by assuming that the above probability of 

trapping is constant at each particle step. At the end of n  
steps the fraction of particles trapped by the sequence of 
n  steps, tP , assumed independent, is given by 
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In the case of low concentrated suspensions, the pore 
space fraction occupied by retained particles is negligibly 
small if compared with the overall pore space. Therefore, 
the porosity is assumed to be constant. The population 
balance equation is derived as the following form: 
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The number of particles with size in the interval 
 , ds s sr r  captured in pores with radius in the interval r

, dp p pr r r    per unit of time is called the particle-cap- 
 rate is proportionality coefficient is called 

the filtration coefficient 
ture rate. This

 ,s pr r : 

 , 0 :s p pr r   s           (8) 

Finally, for incompressible aqueous sus
cl

r r

pension and in a 
osed system for three unknowns  , ,sC r x t ,  , ,sr x t  

and  , ,pH r x t  we will have: 
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Introduction of dimensionless variables 
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The boundary condition at the core inlet correspond to 
th

H

e injection of water with a given particle size distribu- 
tion    0 ,sC r T . The injected sr -particle flux is equal to 

   0C he inlet core/reservoir cross-section acts 
he injected 

,sr T U . T
as a sieve. T sr -particles are carried into the 
porous medium by a fraction of water flux via accessible 
pores-    0 ,sr T U  (Figure 2). The injected sr -par- 
ticles carried by r flux via inaccessible pores  

   01 ,sr T U
wate

    are deposited at the outer surface of 
the inlet and form the external filter cake from the very 
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beginning of injection. For particles larger than any pore, 
there are no accessible pores and the flux reduction factor 
is zero. So, all these particles are retained at the inlet 
cross-section, contributing to external filter cake growth. 
On the other hand, for particles smaller than the smallest 
pore, they will enter the porous medium without being 
captured. (deep bed filtration will not perform in both 
condition).The particles retained at the outer surface of the 
inlet large particles do not restrict access of newly arriving 
particles to the core inlet before the transition time [7] 
Finally,  

    0, ,h X T h X X T             (12) 

Equation (12) shows that one particle can
po

4.2. Filtration in a Single Pore Size Medium 

ingle 

ution (Dirac’s 
de

 plug only one 
re and vice versa. 

Distribution of suspended particles and pores in a s
pore size medium are illustrated bellow.  

Figure 3(a) shows the pore size distrib
lta function) at 0T   and the particle size distribu- 

tion in the injected nsion at 0X  . If we consider 
the propagation of small particles

suspe
 with s pr r . For this 

case, formulae (2) and (5) show that 1   ; i.e. all 
pores are accessible for small particles re is no 
flux reduction.  

Therefore, sma

, and the

ll particles are transported with the ve- 
lo

ge particles 

city of carrier water without being captured (no pores 
will be plugged by small particles).  

Now consider the propagation of lar s pr r . 
ws thaIn this case, from Equations (2) and (5) it follo t 

0   . Therefore, none of the pores is accessible for 
icles, and there is no large particle flux. So, all 

large particles are deposited in the inlet cross-section (they 
never arrive at the core out-let). It was also observed in a 
laboratory study [8] where size exclusion was the domi- 
nant capture mechanism. 

It is important to highli

large part

ght that, depending on the size, 
th

5. Highlighted Assumptions 

uspension is incom- 

were no deposited particles and plugged pores at 
th  

e particles in uniform pore size medium either pass or 
are trapped. Therefore, the deep bed filtration, where 
there exists an average penetration length for each size 
particle, does not happen in the case of particulate flow 
in a single size porous media. The penetration length is 
zero for large particles, and is infinite for small particles. 

It was assumed that the aqueous s
pressible so the velocity U in Equation (1) is independent 
of X and we can solve the third Equation (1) indepen- 
dently (dynamical model separates from the kinematics 
model). 

There 
e beginning of deep bed filtration. There are no sus- 
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Figure 3. (a) initial and bo ary concentration distribu- 

ended particles ahead of the injected water front. 
f low 
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6. Conclusions 

ptured during flow through pore sys- 

 are smaller then 
th

 analytical solution for flow in a single pore size 

und
tions for pores and suspended particles; (b) particle distri- 
bution for any X and T; pore distribution at the inlet cross 
section for T > 0. 
 
p

The porosity is assumed constant in the case o
ncentrated suspensions. 
We assumed that the p
rface of the inlet large particles do not restrict access of 

newly arriving particles to the core inlet before the tran- 
sition time [9]. The external cake does not form a solid 
matrix before the transition time and cannot capture the 
particles from the injected suspension. 

Particles are not ca
tem, but there is a sequence of particle capturing sieves 
perpendicular to the flow direction. 

Absence of particles in the pores that
e particles, results in reduction of the particle carrying 

water flux if compared with the overall water flux. So, 
only a fraction of the pore space is accessible for parti- 
cles. 

The

pr  medium shows that capture free advection of small 
rticles pa  s pr r  takes place, and large particles 

 s pr r  netrate into the porous medium (there 
p bed filtration in a uniform pore size medium). 

Large particles never arrive at the core outlet. It was

do not pe
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