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ABSTRACT 

The dynamic nature and inaccessibility of wetland ecosystems restricts in situ data collection and promote the use of 
various remote sensing platforms. This is because of their ability to record large areas in comparatively short time peri- 
ods and map physically unreachable areas. Sensors in the optical and microwave range of the electromagnetic spectrum 
play a critical role in wetlands detection and delineation, as they complement each other in data collection. This study 
examined the potential of optical and microwave remote sensing in detecting the diversity of small wetlands (<500 ha) 
in the semi-arid and sub humid parts of Laikipia and Pangani plains and the humid parts of Mt. Kenya and Usambara 
highlands in Kenya and Tanzania, respectively. An intensive field survey was conducted to supplement the remotely 
sensed data. Decision tree, supervised and unsupervised classification techniques, facilitated the detection of floodplains 
and inland valley wetlands within the study sites. The results reveal that although optical and microwave data work ef- 
fectively in the detection of wetlands the latter would be more effective in larger wetlands than those in the scope of this 
study. 
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1. Introduction 

Over the past few decades remote sensing has facilitated 
the study of wetlands and other environmental resources 
due to advancement in earth observation technology and 
data availability [1,2]. Satellite data have increasingly 
been used for mapping wetlands since they are in digital 
format and relatively easy to integrate into a geographic 
information system (GIS) [3]. Satellite remote sensing 
can be especially appropriate for wetland inventories and 
monitoring in developing countries, where funds are lim- 
ited and little information is available on wetland areas 
[3,4].  

Optical remote sensing with different types of optical 
data like aerial photographs and satellite images has been 
widely used in wetland studies especially for the detec- 
tion and mapping of wetlands [1,3]. Optical sensors such 
as Landsat or SPOT have proved to be suitable for 
identifying and monitoring wetland types, hydrologic re- 
gimes and landscape changes [4-6].  

Since satellite data cover large areas, they are less cos- 
tly and less time consuming when used for land classi- 
fication for large geographical areas than aerial photo- 

graphs [7,8]. Therefore wetlands and their surroundings 
can be easily mapped. However, the spatial resolution of 
satellite systems is often too coarse to derive land cover 
information of small wetlands. In addition, fewer types 
of wetlands can be discriminated by the use of these data 
compared to high resolution aerial photography. It is dif- 
ficult to separate different wetland types from one ano- 
ther because of the similarity of their spectral signatures 
[9]. The spectral similarity between wetlands and other 
classes such as agricultural croplands and upland forests 
limits the accuracy in mapping with satellite imagery. In 
order to separate wetlands from uplands, it is usually ad- 
vantageous to use satellite images from dates when the 
wetlands are at their highest water levels [3]. 

Many wetlands, however, are only flooded at certain 
times during the year. Thus given a satellite’s fixed orbit 
and return interval, it is difficult to capture the optimal 
water conditions for wetland detection. In addition, lack 
of cloud free data often prevents the use of optical sate- 
llite data. Thus aerial photography is generally prefer- 
red for detailed mapping of wetlands, especially if many 
different types of vegetation must be mapped. Syner- 
gistic use of both satellite and aerial photography is, *Corresponding author. 
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however, recommended for enhanced classification re- 
sults [5]. 

By virtue of day and night observation and cloud pe- 
netration capability, the active microwave data from Syn- 
thetic Aperture Radar (SAR) offers high potential not 
only for mapping and monitoring the extent of land sub- 
mergence but also in identifying the wetland vegetation 
[10]. In addition, SAR data have been found to be ex- 
tremely useful in delineating flood water boundaries be- 
neath vegetation canopies [11,12]. Another characteris- 
tic feature of microwave energy is the capability of pene- 
trating clouds, smoke, light rain and haze, which implies 
that operations are almost irrespective of weather condi- 
tions [11-13].  

In East Africa, little has been done in studying small 
wetlands using remote sensing. This is attributed to una- 
vailability of resources in terms of data sets and finance, 
and lack of attention from researchers due to the size of 
wetlands despite their importance in the ecosystem and 
peoples livelihood [14,15]. This paper presents results of 
a study which was conducted in the Usambara highlands 
and Pangani lowlands as well as Mount Kenya highlands 
and Laikipia floodplain in Tanzania and Kenya respec- 
tively in order to: 1) detect different kinds of small wet- 
lands (<500 ha) in the area with multi sensor data; 2) 
assess the potential and effectiveness of the sensors in 
detection of the wetlands. We hypothesized that small 
wetlands can be detected using multi-spatial and multi- 
spectral resolution data sets. 

2. Site Description 

2.1. Location 

This study was conducted in the humid zones of the Mt. 
Kenya and the Usambara highlands, semi-arid Laikipia 
plain in Kenya and sub-humid parts of Pangani lowlands 
in Tanzania (Figure 1). The study area in Kenya lies bet- 
 

 

Figure 1. Location of the study sites in Tanzania and Kenya. 

ween longitude 36˚12'17''E and 37˚9'55''E and latitudes 
0˚7'28''S to 0˚33'5''S, rising from 1570 to 1835 m above 
sea level. In Tanzania, the study sites extend from 
38˚13'17''E to 38˚35'49''E and 4˚37'38''S to 5˚6'56''S, at 
an altitude of between 280 and 1890 m above sea level. 
In the Kenyan sites, rainfall ranges between 400 and 
1500 mm per annum while the rainfall in Tanzanian sites 
varies between 500 and 1200 mm. All study sites have 
bimodal rainfall pattern with long rains between March 
and June, and short rains between October and December, 
though there is very high variability in the sub-humid and 
semi arid parts. 

2.2. Soils 

Soils in the study area vary a lot depending on the parent 
material. While the flood plains are dominated by uncon- 
solidated sediment material, forming alluvial Luvisols 
and Fluvisols in the plains and Vertisols in the fringe 
areas, the highlands like Mt. Kenya are of volcanic origin, 
forming Andosols and Nitisols. The parent material of 
the Usambara Mountains is gneiss, which results in the 
formation of Ferralsols. Both, in Mt. Kenya region and in 
the Usambara highlands, the soils in the valley bottom 
lands are classified as Gleysols. 

2.3. Land Use and Land Cover 

Agriculture is the main economic activity in the study 
sites; field crops and horticulture are mainly produced 
(Figure 2). Horticulture is prevalent in the highland areas 
and is intensively done with year round crop rotation. 
Grazing is prevalent in the floodplains and is extensively 
done; in the highlands zero grazing is practiced. In the 
open water parts of the wetlands small scale fishing is 
practiced. Scattered settlements are found in the fringes 
of the wetlands. Coffee and other food crops are pro- 
duced on the slopes of the highlands. Both exotic and 
natural forests exist on the upland slopes. Within the 
wetlands Cyperaceae (Cyperus papyrus), Typhaceae 
 

 

Figure 2. Wetland cultivation in Usambara highlands. 
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(Typha capensis), Commelinaceae (Commelina beng- 
halensis), Asteraceae (Pentodon pentandrus, Ageratum 
conyzoides) and other various shrub vegetation are the 
most common. The macrophytes are normally harvested 
for thatching, fodder and handicrafts. 

2.4. Wetlands in the Scope of This Study 

The diverse nature and character of wetlands has made it 
difficult for scientists to come up with single unifying 
definition of wetlands. The Ramsar Convention (2006) 
embraced this diversity in grouping together a wide vari- 
ety of landscape units whose ecosystems share the funda- 
mental wetland characteristic of being strongly influ- 
menced by water. Because this definition is too broad, 
scientists have tended to define wetlands according to 
their needs. In this study the focus is on small wetlands, 
i.e., “land units of less than 500 ha that are character-
ized by permanent or seasonal flooding or by soil moisture 
availability higher than that of the surrounding uplands” 
[15].  

3. Data Sets and Methodology  

3.1. Data Sets 

Different types of data have been used to accomplish the 
study; Landsat ETM+ 30 m, the Shuttle Radar Topog- 
raphic Mission (SRTM) 90 m, aerial photographs, ALOS 
PALSAR and ENVISAT ASAR were the primary data 
sources used in this study (Table 1). Historical (1961) 
and current aerial photographs (2008/9) of various reso- 
lutions as indicated in Table 1 were acquired to capture 
different wetland types and size. We intended to use the 
latest available LANDSAT images but 2003 images were 
selected due to anomalies in the current LANDSAT 7 
images, which are produced with gaps in scan lines. Sin- 
ce some of the wetlands were very small they couldn’t be 
located in some of the images because of the gaps. ALOS 
PALSAR and ENVISAT ASAR were the main micro- 
wave data used. The images were obtained from Euro- 
pean Space Agency. Most of the images were acquired 
between January and February, which is the peak dry 
season. During this time the differrence between upland 
and lowland wetlands is at the maximum. Ancillary data 
such as climate data, topographical maps and soil maps 
were also collected and used. 

Ground-truth data on spatial location, land cover, ag- 
ricultural land use and topographic characteristics were 
collected from field survey, which was conducted in the 
dry season (January & February). Data were collected in 
terms of points using Personal Digital Assistant (PDA) 
GPS. In total 120 points were collected in the four sites. 
The points were used partly as training data for supe- 
rvised classification and also for accuracy assessment. 

Table 1. Data types and sources. 

Type of data 
Date of 

acquisition 
Resolution 

(m) 
Source 

Aerial 
photographs 

Jan. 1961 
Feb. 1975 

Aug. 08/Feb. 
09 

20 
30 

0.25 

Surveys 
Kenya & 
Tanzania

Aerial 
survey 

Topographical maps 1975 1:50,000 
Surveys 
Kenya & 
Tanzania

LANDSAT ETM+ 
Mt. Kenya highlands 

(169/060) 
Laikipia (169/060) 

Usambara (167/063) 

12-01-2003 
04-02-2003 
06-02-2003 

30 USGS1 

SRTM 
Laikipia 44_12 

Mt. Kenya highlands 
44_13 

Usambara & 
Pangani 44_14 

 90 CGIR2 

PALSAR 
Jan., Feb. & 
Mar. 2008 

 ESA3 

ASAR Sept. 2006 30 ESA 
1United States Geological Survey; 2Consultative Group on International 
Agricultural Research; 3European Space Agency. 

3.2. Image Processing 

Historical aerial photographs were scanned at 750 dots 
per inch (DPI) and mosaics were made using Photoshop 
CS2 software. Topographical maps and LANDSAT im- 
ages were used for geo-referencing the photographs in 
ERDAS imagine 9.3. Only the floodplain sites photo- 
graphs were geo-referenced with root mean square error 
(RMS) of 0.5 m. For the highlands geo-correction wasn’t 
performed because the spatial resolution of the available 
SRTM-DEM was too course (90). The current aerial pho- 
tographs were in digital format and had been rectified 
thus they didn’t require pre-processing. The geometrical 
quality of the Landsat images was tested by superim- 
posing topographical maps and aerial photograph images 
with a root mean square error between 0.45 and 0.88. 
The SAR data were geo-coded and a digital elevation 
model (DEM) was used to simulate the topographic pha- 
se and transformation of data in radar geometry (slant to 
ground range map) to map coordinates. 

3.3. Data Analysis  

Different automated and semi-automated techniques [16] 
were used in the analysis of the data sets. Automated te- 
chniques included derivation of threshold values of the 
DEM slopes, calculation of Normalized Difference Vege- 
tation Index (NDVI) and classification of optical data. 
Semi automated techniques involved image enhancement 
and on screen digitization of the enhanced images and 
aerial photographs. Image enhancement was applied to 
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Landsat ETM+ using band combinations of ETM+ band 
4, 3 and 5; 7, 4 and 2, and 3, 2 and 1. According to [16] 
and [3] those band combinations displayed in false col- 
our composite (Red, Green and Blue) enhance wetlands 
depiction. Black and white and true colour aerial photo- 
graphs, were visually interpreted for identification and 
location of the wetlands. Texture, pattern, colour, associ- 
ation and shape were the most important elements for 
wetlands identification. On screen digitization was also 
done to delineate the boundary of the wetlands.  

Unsupervised Image clustering was conducted using 
Iterative Self Organizing Data Analysis (ISODATA) in 
ERDAS 9.3 as a first step in detection of the wetlands. 
Entire images were treated as one cluster; no signatures 
were used in the beginning. A number of natural clusters 
were generated after 80 iterations in a self organizing 
way. The ISODATA technique requires a large number 
of clusters and since only subset images were used and 
the basic aim was to separate wetlands from other land 
uses, only 12 clusters were produced. The convergence 
value was specified as 0.99 for all the data so that the 
utility would stop processing as soon as 99% was 
reached. The resultant clusters were assigned into one of 
the 12 classes (Figure 3), and reference images, maps 
and historical aerial photographs were used for prelimi- 
nary cluster labeling. Supervised classification was car- 
ried out in ERDAS imagine. Sixty points collected in the 
field were used as training data and the rest (60 points) 
were used for accuracy assessment. Minimum distance to 
mean technique was used in the classification. At first,  
 

 

Figure 3. Unsupervised classification of the Laikipia plain 
using Landsat ETM+ image of 04-02-2003. 

twelve classes were separated from other land uses/cover. 
Two distinct classes, wetlands and non wetlands were 
generated. 

For the dual polarized ALOS-PALSAR and ENVI- 
SAT-ASAR scenes, mean-value images were created by 
summing-up the two polarization channels (hh and hv) 
and calculating the mean digital value from the backsc- 
atter values in dB (Table 2). Furthermore, a transforma- 
tion to band ratios was performed resulting in L-band 

hh hv
0 0/ 0 0

hh hv/ and C-band   
0 0/

 ratio images. As indi- 
cated by [17] L-band hv vv  ratio images are good 
indicators in the context of soil moisture estimation using 
imaging radars since surface roughness highly influences 
the feasibility of soil moisture detection. Image segmen- 
tation was performed by Definiens Developer 7. Five 
segmentation levels were performed in hierarchical 
manner using different scale parameters. Within the 
 
Table 2. Overview of backscatter values σ0 (in dB) of dif- 
ferent land cover classes. 

Data type Land cover
Min 
dB 

Max 
dB 

Mean 
dB 

Water −35.09 −22.88 −30.98 

Settlement −32.24 −12.032 −20.12 

vegetation −32.81 −10.1 −19.9 

Forest −29.60 −4.53 −16.18 

PALSAR 
2008-05-02 
hv-polarized

Wetland −36.84 −14.77 −24.14 

Water −27.43 −10.80 −22.58 

Settlement −22.26 10.61 −7.80 

vegetation −23.10 12.40 −9.89 

Forest −21.75 7.52 −7.84 

PALSAR 
2008-05-02 
hh-polarized

Wetland −26.37 −0.57 −12.20 

Water −24.53 −12.38 −21.89 

Settlement −23.95 11.38 −10.44 

vegetation −22.44 14.12 −11.61 

Forest −21.44 8.24 −7.69 

PALSAR 
2008-03-17 
hh-polarized

Wetland −23.27 −4.40 −13.75 

Water −24.99 −13.61 −20.93 

Settlement −22.27 11.79 −10.36 

vegetation −26.11 5.38 −12.29 

Forest −26.80 7.30 −7.82 

PALSAR 
2008-01-31 
hh-polarized

Wetland −23.72 −2.46 −13.83 

Water −22.90 −11.42 −17.87 

Settlement −19.95 9.35 −11.33 

vegetation −22.40 7.354 −10.30 

Forest −20.88 1.54 −9.89 

ASAR 
2006-09-21 
hv-polarized

Wetland −16.83 −8.69 −12.45 

Water −14.25 −5.67 −11.47 

Settlement −16.62 16.47 −5.47 

vegetation −18.90 10.69 −5.01 

Forest −19.29 6.31 −5.27 

ASAR 
2006-09-21 
hv-polarized

Wetland −10.61 −4.80 −7.98 
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segmentation process pixels are merged to image objects 
and pixel values are replaced by the mean value of the 
particular object [18]. 

Backscatter statistics of pixel and segment based im- 
ages were examined by extracting different land cover 
types in optical data, in particular from Landsat scenes 
and topographical maps. Samples were selected carefully 
and were evenly distributed to capture the diversity of 
land uses and wetlands. The sample data were then saved 
as shape files in ArcMap then exported to ENVI as ‘Reg- 
ion Of Interest’ (ROI) to calculate statistics of each ‘land 
cover class’ that were later exported to Excel and Sigma 
plot 10.0 for visualization. 

The extracted statistics were used in creating thresh- 
olds for decision tree classification for wetlands delinea- 
tion. The classification was done using top down ap- 
proach. The digital elevation model was applied sepa- 
rating the scene in two classes: potential wetland and non 
wetland (Figure 4). The resulting potential wetland class 
featured slopes lower than 6˚ and non wetland class 
slopes above 6˚. The underlying assumption was that 
wetlands generally occurred in level terrain. This is also 
supported by [18] who applied a slope threshold in their 
rule-based method for mapping wetlands in Canada. All 
areas where the slope exceeds 6˚ were thus excluded at 
the root node.  

The segmented Cmean-band was applied with a 
co-domain ranging from −15.4 to −8.9 dB (Figure 4). 
Values out of the range set up the second non-wetland 
class. After that the Chh-band (co-domain −14 to −6.8) 
and the Chv-band (co-domain −17.5 to −11) were applied. 
Backscatter values from areas that met either one of these 
conditions were considered to be potential wetland areas. 
Once more, the non-wetland classes were combined into 
one class resulting in a binary wetland/non-wetland clas- 
sification of the C-band data. 
 

 

Figure 4. Design of the decision-tree classification based on 
C-band data (C-2). 

3.4. Accuracy Assessment 

The accuracy percentage of the classified Landsat images 
was determined by overlaying a total of 60 points over 
the delineated wetlands. The calculation was done using 
ERDAS imagine where the points were imported and 
their classes identified before the accuracy report was 
produced. For the microwave data, accuracy assessment 
was done using regions of interest (ROI) of different 
wetland classes derived from field work as well as in 
ENVI. The ROIs of various land covers were combined 
in one non wetland ROI with several polygons repre- 
sentatively distributed over the image. 

4. Results and Discussion 

4.1. Detected Wetlands 

Two main wetlands types were identified by applying 
both automated and semi automated techniques. These 
were floodplains in semi-arid Laikipia plain and sub- 
humid parts of Pangani lowlands and inland valleys in 
the humid zones of the Mt. Kenya and the Usambara 
highlands. In Landsat ETM+ images, floodplains were 
much easier to detect and delineate because they were 
larger in size than inland valleys, which were long, nar- 
row and fragmented. Laikipia plain for example, was 
much easier to delineate because of its location in a semi 
arid area where it was surrounded by drier uplands, 
which reduced signature confusion with the riparian area- 
s. In the Pangani plain some sites were very distinct, sin- 
ce they were wetter and covered with natural wetland 
vegetation like papyrus and reeds. Other sites were drier 
and covered with patches of short scattered grass and 
herbs, hence difficult to distinguish from bare surface. 
Inland valleys were first delineated with Landsat images 
but not much detail could be seen thus they were later 
adjusted by high resolution aerial photographs.  

Both historical and current aerial photographs were 
very practical in marking the boundaries of both inland 
valleys and flood plains. Since the resolution of the curr- 
ent images was very high, the boundaries were clearly 
visualized and demarcated by digitization. Land use and 
land cover patterns of the wetlands were easily identified 
as they looked clearer in the photographs (Figure 5) than 
it was in the other data sets like Landsat images. Never- 
theless, ground truthing was still necessary for verifica- 
tion of land use/cover patterns particularly in parts of 
wetlands that were accessible. 

NDVI thresholds were very effective in wetlands de- 
tection. The values between 0.27 - 0.71 clearly separated 
the Laikipia plain wetlands from other land cover and 
uses (Figure 6). For the Pangani plain, NDVI threshold 
of between 0.25 and 0.6 were responsible for delineation 
of wetlands. NDVI was. However, not very effective for  
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Figure 5. Subsections of aerial photographs of Mt. Kenya 
highland inland valley. 
 

 

Figure 6. Wetland detection using NDVI threshold method 
for a section of Usambara highlands. 
 
the detection of inland valleys in the highland sites pro- 
bably because the images were from the dry season and 
most of the inland valleys had been cultivated. It is also 
possible that most of the crops were already harvested 
and the fields were bare and dry thus resembling the up- 
lands or that the valleys were covered with herbaceous 
weeds, which were also in the uplands. Some of the in- 
land valleys, which were covered by natural wetland ve- 
getation like Cyperus and Typha spp. had slightly higher 
NDVI values. NDVI is very useful in the differenttiation 
of wetland vegetation and also for ditinguishing wetland 
boundaries from the surroundings [19,22]. In addition, 
even though in some cases the accuracies might be lower 
due to spectral confusion between the wetland and up- 
land vegetation or sometimes crops cultivated, spectral 
data coming from red and near infrared region of the 
spectrum clearly distinguish between wetlands and non 
wetlands. In general, however, this index was not very 
effective for highland sites as the threshold values ranged 

between 0.04 - 0.32, which is close to bare soil. 
Wetlands with barren lands and/or sparse vegetation 

have lower NDVI as a result of soil moisture that is rela- 
tively higher than in the surrounding uplands [16]. When 
wetlands have natural vegetation or crops the NDVI will 
vary depending on vegetation density and vigor. NDVI is 
very useful in the differentiation of wetland vegetation 
and also for distinguishing wetland boundaries from the 
surroundings [22]. In addition, even though in some ca- 
ses the accuracies might be lower due to spectral confu- 
sion between the wetland and upland vegetation or some- 
times crops cultivated, spectral data coming from red and 
near infrared region of the spectrum clearly distinguish 
between wetlands and non wetlands.  

With SAR data, wetlands were detected by the use of 
the backscatter signals of different land uses and the re- 
sults of decision tree classification (Table 2 and Figure 
7). In all the six scenes, the backscatter values of water 
and wetlands were clearly separable from other land uses. 
This is because areas with high soil moisture content 
have inherently lower backscatter values. In the dual po- 
larised (hh) PALSAR scene acquired on 2nd May 2008, 
the water values ranged between −27.4 and −10.8 dB. 
Wetland values ranged between −26 and −0.6 dB and 
when plotted they produced a bi-modal distribution, which 
can be explained by moisture variation within a given 
wetland. 

Within the wetlands there were parts, which were very 
wet (permanently flooded) and others, which were drier 
(seasonally flooded). [20,23] had similar observations of 
the Lhh backscatter of flood plains in West Africa and 
concluded that one peak was for wetter and another for  
 

 

Figure 7. Illustration of the C-2 classification result of the 
Pangani plain. 
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drier parts of the flood plains. In Lhv of the same date the 
values for wetlands ranged between −38.8 to 14.8 dB. In 
the January scene backscatter values for water and for the 
wetlands were lower and there was an overlap in back- 
scattered values with other land uses. January is a drier 
month and wetlands are possibly similar to other vege- 
tated and non overgrown areas. The long rains begin in 
March thus the values also slightly change but it is grad- 
ual since the soils are not completely saturated. 

The backscatter values for C-band were lower than 
those of L band. For example the mean from water sur- 
faces is −17.9 dB for Chv and −11.5 dB for Chh and the 
mean from wetland areas is −12.5 dB for Chv and −8 dB 
for Chh. This scene was acquired towards the end of the 
dry season but the capability of C-band in detecting in- 
undation is limited i.e., it cannot penetrate the vegetation 
cover if it is too dense. [21,24] note that C-band SAR is 
primarily useful in sensing the characteristics of rela- 
tively sparse and short layers of vegetation and it is very 
useful in distinguishing herbaceous wetlands from clear- 
ing. Generally L-band SAR is seen to perform better in 
detection and differentiation of wetland types as also 
noted by [21-26] than C-band due to its ability to pene- 
trate much into the vegetation canopy. Nevertheless, 
L-band data results were too generalized, i.e., a larger 
than expected wetland area was delineated.  

4.2. Accuracy of the Results 

The percentages of accuracy obtained from the classifi- 
cation of the images are presented in Table 3. In general 
producer accuracies are lower than user accuracies in 
microwave data for the non wetland class (43.10 - 
49.04%). This indicates that there was some confusion in 
the classification, i.e., some ground truth points were 
misclassified (Non wetlands) with other land use classes 
(Wetlands). User accuracies are higher. That is to say the 
percentages of correctly classified wetlands within their 
given classes were higher. Overall classification accuracy 
was lower in microwave data than in optical data. 
LANDSAT image classification produced higher accura- 
cies in Laikipia site for wetland class (97.35%) and non 
wetland class (86.36%). Overall classification using both 
supervised and NDVI classification was high (96% & 
91.49% respectively) in Laikipia site. As already men- 
tioned, this site, particularly Rumuruti test site, is located 
in the semi arid area and the surroundings are mostly 
bare. Thus the few wetlands existing in the area are iden- 
tifiable without much spectral confusion. For the Pangani 
plain site the overall accuracies for NDVI and supervised 
classification are 82.26 and 80.85%, respectively. User 
accuracy is very low (50%) as compared to producer 
accuracy. This is caused by its location close to the 
Usambara highlands. The confusions are even higher  

Table 3. Accuracies of classification of wetlands in percent-
age. 

NDVI threshold 
Minimum distance to 

mean 

 Wetland 
Non 

wetland 
Wetland 

Non 
wetland 

Pangani plain 

Producer 81.63 80 94.85 80.7 

User 98.53 83.75 50 81.48 

Overall 82.26 80.85 

Laikipia plain 

Producer 89 98 97.35 67.86 

User 98 100 92.44 86.36 

Overall 96 91.49 

Decision tree 

Pangani plain   

L-band L-1 L-2 

Producer 63.77 47.31 80.29 46.77 

User 88.73 79.74 88.35 88.61 

Overall 53.88 59.47 

C-band C-1 C-2 

Producer 45.4 45.04 73.48 43.16 

User 78.57 67.3 78.86 82.41 

Overall 45.2 55.59 

 
with other land uses. This is a common problem with 
small wetlands classification using LANDSAT images as 
observed by [3,19,22]. C-band 1 and C-band2 classifica- 
tion produced overall classification of 45.2 and 55.59 
respectively. The number of correctly classified wetland 
pixels was almost equal in C1 & C2 (78.57% and 
78.86% respectively). The number of correctly classified 
wetland ground truth points was higher than in non wet- 
lands. Similarly in L band 1 and 2 wetlands were classi- 
fied better than non wetlands. The user accuracy being 
88.73% & 88.35%, respectively, the overall accuracy 
was also higher by almost 9% in L band 1% and 4% in L 
band 2. 

4.3. Effectiveness of Data Sets Used in Wetland  
Detection and Delineation 

The data sets used demonstrated varied abilities in detec- 
tion and delineation of wetlands due to their spatial and 
temporal resolutions as well sensor capabilities. In this 
study aerial photographs were very effective in both 
identification and discrimination of the wetland bounda- 
ries through visual observation and onscreen digitization. 
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This is attributed to their higher resolution of 0.25 m. 
The detailed information obtained was very useful in the 
classification process and differentiation of the land uses. 
The importance of aerial photographs in detection and 
delineation of small wetlands is also emphasized in the 
literature [3,19-21,24-26]. In addition to their usefulness 
in detailed mapping of the wetlands, they are indeed ef- 
fective in boundary delineation. However, as observed by 
different authors like [21,26] aerial photographs are only 
suitable for a limited geographical area because they are 
relatively expensive. For this study, the aerial photo- 
graphs covered only the areas of interest to minimise cost, 
thus their spatial coverage was relatively small as com- 
pared to Landsat images. In addition it is rarely possible 
to obtain time series aerial photographs of a given area, 
which are potentially necessary for wetlands detection. In 
the study sites in both countries, the only available aerial 
data were from early 1960s and 1970s; no current infor- 
mation was found in the archives. This necessitated an 
aerial survey to be undertaken to provide current infor- 
mation. Many of the wetlands that were found in the his- 
torical photographs couldn’t be located in the current 
data sets. Generally aerial photographs enhanced de- 
lineation of inland valley wetlands because most of them 
were small and narrow and could only be covered by 3 or 
4 pixels of the Landsat images. 

Landsat images worked best in the floodplains basi- 
cally because the floodplains were extensive in size as 
compared to inland valleys. In addition to spatial cover- 
age the temporal resolution of the images assisted in vali- 
dation of the results because it was possible to download 
anniversary images from previous years and compare 
them with the results found at the background as they 
didn’t form important part of this study. With the NDVI 
images, the delineation was not clear as some parts of the 
sites were classified as non wetland although they were 
parts of the wetlands. This error of omission occurred 
because some of the wetlands were drier and sparsely 
vegetated or some parts were covered by open water. 
Wetlands with barren lands and/or sparse vegetation have 
lower NDVI as a result of soil moisture that is relatively 
higher than in the surrounding uplands [16]. When wet- 
lands have natural vegetation or crops the NDVI will 
vary depending on vegetation density and vigour. The 
fact that optical data are much influenced by weather 
condition particularly clouds in tropical areas limited the 
use of Landsat images for only the dry season; wet sea- 
son images were covered by clouds up to 80%. 

L-band data from both dry and wet season could not 
precisely distinguish the small wetlands of interest to this 
study. The delineation was too general as it included the 
whole flood plain. Within the flood plain, however, there 
were variations; some areas didn’t qualify to be consid- 
ered wetlands under the scope of the current study. The 

generalization could be a result of the slope threshold 
used for separation of wetlands from non wetland areas. 
As already noted slope thresholds do not work effect- 
tively on plains. In addition to that, the SRTM (90 m) 
resolution was too course and this could have contributed 
to the poor-detection of the small wetlands. [27] In their 
study of remote sensing and wetland ecology in South 
Africa, used both Landsat and ENVISAT ASAR images. 
They found out that the Landsat images were efficient in 
delineation of both small and large wetlands but ASAR 
data detected only larger wetlands. They assumed that 
probably the small wetlands were lost during the pre- 
processing stage of the Radar images. It is, however, also 
important to note that the strengths of SAR as an appro- 
priate tool for wetlands detection reside in the sensitivity 
of radar backscatter to the dielectric properties (soil and 
vegetation moisture content) and geometric (surface rough- 
ness) attributes of imaged surface; the higher the mois- 
ture content, the higher the dielectric constant and the 
stronger the signal and vice versa [12]. Thus the size of 
wetlands changes rapidly with occurrence of increased 
moisture content in the soil [13,25]. This could also ex- 
plain why flood plains were easily detected because 
some parts were very wet and covered with natural wet- 
land vegetation like papyrus and reeds compared to in- 
land valleys. 

5. Conclusion 

This study has revealed the potentials of using multi- 
sensor data in wetlands inventory. The use of multi-spatial 
and multi-spectral resolution data for detection and de- 
lineation of small wetlands has proved to be of special 
significance. Optical data are capable of depicting small- 
ler wetlands, which cannot be delineated by SAR data. 
On the other hand SAR data operates regardless of wea- 
ther and are able to detect larger wetlands than the ones 
focused in this study. With SAR data, however, a slight 
change in soil moisture content may reduce or increase 
the wetland sizes. Due to the diverse nature of the small 
wetlands and environment in which they occur, single 
data types and methodology are insufficient for mapping 
them correctly. High spatial resolution data, however, re- 
mains ideal for small wetlands detection and delineation. 
The study offers spatial explicit data of particular wet- 
lands that may later be used for their monitoring. 
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