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ABSTRACT

One of the active fields in applied probability, the last two decades, is that of large deviations theory i.e. the one dealing
with the (asymptotic) computation of probabilities of rare events which are exponentially small as a function of some
parameter e.g. the amplitude of the noise perturbing a dynamical system. Basic ideas of the theory can be tracked back
to Laplace, the first rigorous results are due to Cramer although a clear definition was introduced by Varadhan in 1966.
Large deviations estimates have been proved to be the crucial tool in studying problems in Statistics, Physics (Thermo-
dynamics and Statistical Mechanics), Finance (Monte-Carlo methods, option pricing, long term portfolio investment)
and in Applied probability (queuing theory). The aim of this work is to describe one of the (recent) methods of proving
large deviations results, namely that of projective systems. We compare the method with the one of projective limits and
show the advantages of the first. These advantages are due to the fact that: 1) the arguments are direct and the proofs of
the basic results of the theory are much easier and simpler; 2) we are able to extend most of these results using suitable
projective systems. We apply the method in the case of a) sequences of i.i.d. r.v.’s and b) sequences of exchangeable
r.v.’s. All the results are being proved in a simple “unified” way.
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1. Notation and Basic Results the net of p.m.’s {z,},  satisfies the weak large de-
viations principle.

Definition 1.1. Let E be a Hausdorff topological space, F In order to “pass” from a weak LDP to a full LDP we

a o-algebra of subsets of E, and {z,}{, =~ (with D a di- : .
rected set) a net of probability measures [Ep.m.’s) defined have to find a way of showing that, most of the probabil-

r hat. th ¢ , S ity mass (at least on an exponential scale) is concentrated
on F. We say that, the net of p.m.’s {,u d}deD satisties on compact sets. The tool for doing this, is the following.

the full large deviations principle ([1,2]), with normalize-
ing constants {r(d)}deD (r:D—R" such that
lim, 7(d) =) and rate function 1I:E —[0,00], if T is
lower semi-continuous and VB e F', we have:

1) (upper bound)

1imsudelog,ud (B)<-infI(x) (1)

I"(d) xecl(B)
2) (lower bound)
—inf /(x) < liminf ;log 1y (B) )
xeint(B) }”(d)

with cl(B) (int(B)) the closure (respectively the interior)
of the set B.

If, in addition, Va=0,L, = {x ekE: I(x) < a} (level
set) is compact, [ is called a good rate function.

Remark 1.2.

If the upper bound is valid for all compact sets, while
the lower bound is still true for all open sets, we say that

Copyright © 2012 SciRes.

Definition 1.3.
A net of pm.’s {z,} ~ defined on (EF) is called

exponentially tight, if Va >0, there is a compact set
K, (subset of E) such that:

. 1 :
limsup,_,, mlog My (K; ) <-a 3)

Exponential tightness is applied to the following pro-
position to strengthen a weak large deviations result. A
proof of the proposition can be found in [1].

Proposition 1.4.

Let {s}, , be a net of p.m.’s defined on (E,F)
that is exponentially tight.

Then: a) if the upper bound holds for all compact sets,
then it also holds for all closed sets.

b) if the lower bound holds for all open sets, then the
rate function is good.

Now, we will characterize families of topological
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spaces. This special kind of families will play an impor-
tant role in proving large deviations results.

Definition 1.5. The family {E,.p”} poge With 4 2

o

directed set, is called a projective system if:

1) Yae 4,E, is a Hausdorff topological space

2) Va,fed,a< ,B,pf E; > E, is a continuous,
subjective map such that, ift a<pf<y,pl=p’o ol
Also, p. istheidentity mapon E, .

We also consider a Hausdorff topological space E, F a
o-algebra of subsets of £ and VaeAd,p,:E—E, a

continuous, surjective map s.t. if a<pfB:p, =p’o Py

and forx,ye E,x#y then Jaed:p,(x)=p,(y).
The following two theorems give large deviations re-
sults in the case of projective systems [3].
Theorem 1.6. Let E be a Hausdorff topological space,
F a g-algebra of subsets of £ s.t.: a) F’ contains the class
of compact sets and b) F' contains a base U for the to-

pology.
Let {Ea, o } e be a projective system and

p,,0 €A be asabove. Assume that p,,a € 4 is mea-
surable when E is endowed with F' and E, with the
Borel o-algebra. Let {s,}  be a net of p.m.’s on F
and assume that:

i) Vae 4, the net of p.m.’s {yd op;I}d , satisfies

a large deviations principle with normalizing constants
{r(d)}deD and rate function

I1,:E, —[0,x]
ii) the net of p.m.’s {4}, is exponentially tight.
Then, the net {u,},  satisfies the large deviations

principle with normalizing constants {r(d)}deD and

good rate function 7(x)=sup, 7, (p, (x))-
When FE is endowed with a specific topology (namely
the topology induced by the maps {p,} _ ), Theorem

1.6 has the following form.

Theorem 1.7. Let E, {Ea,pf} be as in theorem

a,fed

1.6. Endow E with the initial topology induced by the
maps {p,| _ and let F be the o-algebra of subsets of
E such that Va e 4,p, is measurable, where E, is

endowed with its Borel o-algebra F, . Let {s,}, , bea
net of p.m.’s on F and assume that:

i) Yae 4, the net of p.m.’s {,ud op;l}d , satisfies

a large deviation principle with normalizing constants
{r(d)}deD and rate function 1, : E, —[0,]
ii) there is a function /:E —[0,%0] such that

Vb>0 the set Lb:{er:I(x)Sb} is compact and
Vaed,zeE,:

Copyright © 2012 SciRes.

I,(z)= inf{l(x) xep) (z)}

Then, the net of p.m.’s {z,} = satisfies the large

deviations principle with normalizing constants

(@)}

I(x)=sup, I,(p,(x))-
On early days, large deviations results were proved
using “large” spaces. One of these spaces is described

below.
Definition 1.8. Let {Ea,pf}

and good rate function 7, and

be a projective sys-
a,ped

tem. The projective limit of this system (denoted by
limE, ) is the subset of the product space Y =[] E,

aed

for which

which consists of the elements x=(y,) _,
v, =p’ ( yﬂ), when o < f, endowed with the topol-
ogy induced by Y ([2]).

The following basic result, analogous to that of Theo-
rem 1.7, allows one to transport a large deviations result
on a “smaller” topological space to a “larger” one.

Theorem 1.9. Dawson-Gértner (large deviations for
projective limits).

Let {z}, , beanetofp.m.’s defined on
E=1limE, . Assume that Va e 4, the net of p.m.’s

{/Ud Op;]}deD

with constants {r(d)}deD and good rate function

satisfies the full large deviations principle

1,:E, —[0,0]. Then, the net of p.m.’s {z,}  sat-

deD
isfies the full large deviations principle with constants
{r(d)}deD and good rate function:

1(x)=sup, 1, (p, (x)) )

Remark 1.10. The space E of Theorem 1.9 is specific,
namely E=X =IlimE, (in Theorem 1.7 E is arbitrary).

Theorem 1.9 is a special case of the Theorem 1.7.

Proof. (of Theorem 1.9)

Define the map (x)=sup, 1, (p, (x)). It is easy to
see (using properties of the projective limits) that
Vaed the map I,(y)= inf{](x)/x ep, (y)} ie.
condition ii) of Theorem 1.7 is satisfied. Then, theorem
1.9 follows from Theorem 1.7.

The motivation for this paper was to find a “unified”
way of proving large deviations results. This is done by
using the projective systems approach. Using this ap-
proach, and not the one of projective limits, the proofs of
most of the basic results of the theory are much easier
and simpler, the arguments direct. Also, we are able to
prove extensions of these results to more abstract spaces,
at least in the case of exchangeable sequences of r.v.’s.
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2. Applications

We now give some of the basic results of the large devia-
tions theory. Extensions of these theorems can be easier
proved using projective systems.

1) Theorem 2.1. (Cramer)

Let {X"}w

n=1

be a sequence of independent and iden-

tically distributed (i.i.d) random variables (r.v.’s), taking
values in R’ with (common) distribution x=L(X,),

and §, = iX, .
=]
) If
iy exp(t"x")y(dx) <ow,forsomet>0 (5)

then: a) (upper bound) VF < R closed:

lim supllogP{S” € F} <—infI(x) (6)
n

e n xeF
with
1(x)= sup {(x.£)~log ()}
and )
a(€)= ] o u(d) )

b) Va0, theset L, ={x/I(x)<a} iscompact.
2) (lower bound) VG c R* open:

lim infllogP{S” € G} > —inf I (x) )
n

n—»00 n xeG

Theorem 2.2 generalizes Cramer’s theorem in the case
of a separable Banach space. The proof is given here
using projective systems.

Theorem 2.2. (Donsker-Varadhan 1976) (Generali-
zation of Cramer’s theorem)

Let E be a separable Banach space and F' its Borel
o-algebra. Let {X,}” = be a sequence of i.i.d. E-valued
r.v.’sand V¢ >0

[ exp(e]]) (dx) <o where p=L(X,).

Then, the sequence of p.m.’s {L (%)} satisfies
the large deviations principle with constants ”E{i}nEN and
good rate function I: [(x)=sup {(x.&)~-log (&)},
where E* is the dual space of £ i;Ed

(€)= [exp(£)du.& eE°

(in other words Theorem 2.1. is true).
Proof.
Let 4=N be the family of finite-dimensional sub-

Copyright © 2012 SciRes.

spaces of E", directed upward by inclusion. For each
Ned,let N'={xeE/(x,£)=0,v&e N} and

Py E— E/ N* the canonical projection of E onto
E,=E/N* ,ie. py(x)=x+N";foreach
M,NeAM>N,let p¥ :E/M*— E/N* with

Py (x+M + ) =x+N" be the canonical projection. The

is a projective system
MeA

: M
family {EN,pN }N’
(E, = E/N* are finite-dimensional normed spaces)

and {EN,pf'f}

of Theorem 1.7, since:
1) The assumption implies that the sequence of p.m.’s.
{ M, }:: is exponentially tight, since:

p{ S, V}S e Eexp(1]5,])

s E{py},., satisfy the assumptions

n

n

e Eexp(t"X1 ||) = g "(irloea)
—_—

a<oo

If ¢, a are constants, and r such that: tr—loga > ¢

> r} <e™.

For given & >0, we choose the (compact) set:
K, ={x/lx < 2}

ii) Foreach N € 4 the sequence of p.m.’s

1

for £ >0, we get P{

“ satisfies the full large deviations principle

{’u" Op]_\’l} =1

with good rate function:
I,(z)= sug{(z,f])—logy ° p,'\,i (77)} .
ne

In fact, since:

If we define the r.v.’s ¥, =p,(X,),ieN, they are
i.i.d. with common distribution L(Y,)= o p,' and va-

i

lues in the space E, = E/N* . Also
Jexp(t"x-i— Nl")yop;,1 (dx) = J.exp(t"x")y(dx) <

from hypothesis, so using Cramer’s Theorem 2.1 (for
finite dimensional spaces, see e.g. [1,4]), we have that
the sequence of p.m.’s:

2 o

L
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satisfies the large deviations principle with rate function

(using that N = (E/NL )*)

Iy(z)= sup

Bl {(z,n) ~log o py (77)}

- sup{(z, n)- log;;p\]vi (77)}

neN

From i) and ii), and Theorem 1.7 we get that, the se-
quence of p.m.’s. {u,} " satisfies the large deviations
principle with good rate function

I(x)=sup 1y (py (x))-
But: <pN (x),77>=<x,77> and ;sz\]'vl(n)z,&(n), SO

l(x) = i/liIA)IN (pN (x))

=supsup {(p,\, (x),ﬂ> —10g/;:P\z_vl (77)}

Ned neN

= supsup {<pN (x),77>—10§:’>/L;-P\X/1 (77)}

=sup{(x.£)~log 1(¢)}

When someone deals with the empirical measures of
an i.i.d sequence, the following large deviations result is
true.

2) Theorem 2.3. (Sanov’s theorem in R for inde-
pendent random variables)

Let {X"}oo

., be asequence of independent and iden-

tically distributed r.v.’s, taking values in R with (com-
mon) distribution = L(X,), P(R) the space of pro-
bability measures on R equipped with the weak topol-
ogy o-(P(]R),Cb (R)) Then:

1) a) (upper bound) VF < P(R) (weakly) closed:
—inf 4, (v)

n—oo
veF

11msup—10gP{ 25 € F}

with 6 Dirac’s measure defined on x, and

dv dv
/ll(v): ‘[d,ul [dﬂjd,u, v<<,u,veP(]R) ©)

L
oo otherwise

(Kullback-Leibner information number or relative en-
tropy of v with respect to )
={v/2.(v)<

b) Va>0, the set L,
compact.

2) (lower bound) VG < P(R) open:
11m1nf—logP{ 25 € G}

Remark 2.4. Theorem 2.3 is also true in the case of

a} is (weakly)

—inf 4, (v)

veG

Copyright © 2012 SciRes.

r.v.’s taking values in a complete separable topological
space S and the space of probability measures P(S) is
endowed with the weak topology (Donker-Varadhan
(1976) and Bahadur-Zabell (1979) [1,5]). We prove now
a generalization of Theorem 2.3 (the space P(S) is en-
dowed with the z-topology instead of the weak), using
suitable projective systems. Also the r.v.’s are taking
values on any set S which is endowed with a o-algebra S
(no need for topology on §).

Let (S,S) be a measurable space (i.e. S is any set
and S a o-algebra of subsets of S) and assume that the
space P(S) is endowed with the -fopology

( W}V@Idenﬁ)deV,erB(s))
where B(S) the space of the bounded, S measurable
maps [ :S — R; convergence of nets of p.m.’s is de-
fined in a similar way). Let also B = B(P(S),B(S)) be
the o-algebra induced on P(S) by B(S).
Theorem 2.5. (Sanov’s theorem for the z-topology)
Let {X,}”

., beasequence of i.i.d. r.v.’s, with (com-

mon) distribution x=L(X,), and values in the set S
and S a g-algebra of subsets of S. Then:
1) a) (upper bound) VA€ B:

—inf A (v)

vec ,A

1 1
li —logP{—) 0 A
nlj}l;lo Sup n Og {n ,Z:; % < }
b) Va>0, :{v//ly(v
pact.

2) (lower bound) VA€ B:

hmmf—logP{ Zé‘ € A}

the set L, )Sa} is 7-com-

—inf 2, (v)
vein, A
Proof.
Let E=P(S),F=B=B(P(S),B(S)) and 4=N
the family of all finite subsets of B(S), directed upward
by inclusion. For Fe 4,E, =R",p, :E—>E, is de-

fined by: p, (V) = {Ifd V}ng

F,Ge A,GDF pi:E,—E, is the restriction map.
It is easy to see that: I) the maps {pF}FeA are F'—B-
measurable II) the z-topology on E, is the initial to-
pology induced by the maps {p,},_, , making the fam-

ity {Er.pf}, .,

and for

a projective system.

If L, = Z&X,,un

i=1
the probablhty measure:

M, op;l :(POL;I)OP;,I :Po(ijl’

n

L(L,)=PoL' and for Fe4

where Sn:iZ] z 7Z'F(Xj), with 7w, :S > R"
=
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defined by 7, (x)= {f(x)}feF and the r.v.’s

Z.,j=12,--- areiid R -valued and
31 (0)= e £ ()15 Jouto) <

feF
Using 2.1. (for F € A), we get that the sequence of
pm.’s {#n Op;l}o: satisfies the large deviations prin-

ciple with rate function:
Ip(z)=

s ()=o) (/) ()]

i.e. condition 1) of Theorem 1.7 is satisfied.
Also using an argument similar to that of Theorem 2.1
in [6], or else Lemma 2.1 [7] implies that Va >0, the set

L, :{v//iﬂ (V)Sa} is 7-compact. This, using Lemma

2.2 [7], implies that

I (z )—mf{ (v)/ver( )pF(v):z}

(condition ii) of Theorem 1.7). So, using Theorem 1.7, the

log | exp[ >

feF

sequence of p.m.’s { M, }:: satisfies the large deviations

1
principle with rate function 4, (v).

3) Theorem (Sanov’s theorem for exchangeable
r.v.’s)

Sanov’s Theorem 2.5 is still true in the case when the
independence, as a dependence relation among the ran-
dom variables of a stochastic process, is replaced by a
weaker one described below.

Definition 2.6. Let X,,---,X,,--- be r.v.s defined on
the p.s. (Q,F,P) and values in the ms. (S,S). We
say that the r.v.’s are exchangeable or interchangeable
[8], if the joint distribution of any « of them (x eN),
depends only on x and not the specific r.v.’s. (the r.v.’s
are identically distributed but not necessarily independ-
ent).

The notion of exchangeability is central in Bayesian
Statistics and plays a role analogous to that played by
i.1.d sequences in classical frequentist theory (in B.S. an
exchangeable sequence is one such that future samples
behave like earlier samples, meaning that any order of a
finite number of samples is equally like). The bivariate
normal distribution, the classical Polya’s urn model, any
convex combination of i.i.d. r.v.’s, are some examples of
exchangeable r.v.’s. An i.i.d sequence is (trivially) an
exchangeable one and the same is true for a mixture dis-
tribution of i.i.d. sequences. A converse proposition (to
this) is the well known, powerful result in the case of
exchangeable sequences, de Finetti’s theorem.

Theorem 2.7. (de Finetti’s representation theorem)

If {X,}  isa sequence of exchangeable r.v.’s, then

Copyright © 2012 SciRes.

there is a probability space (©,M,m) and transition
probability function P(-,-):©xS—[0,1], i.e. a function
such that:

a) VOe®,P(0,) isa probability measure on S

b) VAeS,P(-,A) isameasurable function on ®, and

P(-)=[P(6.-)dm(0) (10)

with }3(6,~) is the product measure on (SN,SN ) with
all its components equal to P(6,-). We say that, P is a
mixture of the p.m.’s P, () = P(9,~) with mixing meas-
ure m.

Theorem 2.8. (Sanov’s theorem for exchangeable
r.v.s in z-topology)

Let (S,S) be a measurable space, the space P(S)

is endowed with the z-topology and B = B(P(S ).B(S)).
=P,oX;',0c® and:

J. [ jdng, v < 7,,veP(S)
Ty

0, otherw15e

Letalso =,
(11)

Let {Xn}::

taking values in S and suppose that the function
1:0 > P(S),n(0)=n,=PF,0 X, is t-continuous.
Then:

1) If the space ® is compact

a) (upper bound) VA€ B:

, be a sequence of exchangeable r.v.’s

1 1
li —logPy—)> 0 A
msur e .5, <.
<—inf A(v) with A(v)=inf 2, (v)
vecl, A Oes(m)
p) Ya>0,theset L, = {V//l(v) < a} is 7-compact.
2) (lower bound) VA€ B:

—inf A(v)

vein, A

hmmf—logP{ 25 € A}

n—»00

Proof.
Using Theorems 2.1 and 2.2 [9], it is enough to prove:
whenever 6, ———0,0,, 0 ®, the sequence of

pm’s u,=F, oL satisfies the large deviations prin-
ciple with rate function 4, (v).

We define the projective system {E " pg}F e where

A=N the family of all finite subsets of B(S), di-
rected upward by inclusion, E, =R" for Fe 4, the

(A,

and for F,Ge A,GDF py:E;,—E, is the restric-
tion map.
Finally E = P(S),E = B=B(P(S),B(S)). Then:

map p,:E— E, is defined by pF
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I) For F e A4:thep.m.
] - s, )
/u" OpFl = (Pgn OL"I)OpFI = }:9” O(7j

where S, =% 7.7, =n.(Y,),n,:S >R"
j=1 ‘

”F(x)={f(X)}/.EF and the r.v.s Z,,j=12,- are

Li.d (with respect to the p.m. F, ) with values in R”.
The map:

@ (0,2) = sup {Z (a(f)z(x))

aeR” feF
_logjexp( Z a(f)f(x)jdng (x)}
feF
is jointly lower-semi-continuous, so using Theorem 3.1. [9]
(or directly using Gartner-Ellis theorem), we get that the
sequence of p.m {,u,, ° p;l}: satisfies the large devia-

tions principle with rate function:

19(2)-
as;g {/éa(f)z(x)—log_[exp(éa(f)f(x)}dng (x)}

1) It can be proved (in a way analogous to Theorem 2.1
Daras [6], see also the proof of Theorem 2.5) that

17 (z)=inf {4, (v)/v e P(S).p, (v)=z|

Finally, the result follows using I) and II) and Theo-
rem 1.7.

Remark 2.9.

a) Sanov’s theorem is true in a more general setting,
namely when the p.m. P is a mixture of p.m.’s [6]. Then,
Theorem 2.8 follows, as a corollary, using de Finetti’s
theorem.

b) Theorem 2.8 extends a result of Dinwoodie and
Zabell [9]. They prove their statement for a sequence

{X,}”, of r.v.’s taking values in a Polish space S (no
need here for topology on S) and the space P(S ) is en-
dowed with the weak topology (stronger than the

z-topology).
4) Moderate deviations

Let {b,}  beapositive real sequence such that:
b b
—"1 n—m OO’_n n—ow 0 H (12)
1 n
nZ
and {X,}”  asequence of exchangeable r.v.s with dis-

tribution 4= PoX;" andfor neN:

1 n
M, = (L, ) =138y, ~ ) (13)
n n i=1

Copyright © 2012 SciRes.
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Let A(S) be the subspace of B(S) consisting of all
those maps g, such that jg(x) dz,(x)=0,Y0€®. En-
N

dow the space M(S) of finite signed measures on S with
the topology 7, generated by A(S), i.e. the smallest
topology making the maps of the form:

VWJng,g e A(S) continuous and let

B, =B(M(S),A(S)) the o-algebra induced on M (S)
by A(S). Then if 4, =PoM;" and

2
1 dv
A —||—| dnv<n
i, ()= zf[dng] PEm (g
o otherwise

the following large deviations principle is true [6].
Theorem 2.10. (moderate deviations for empirical
measures)

Let {X,}”

., be a sequence of exchangeable r.v.’s
taking values in S. Assume that the map
1:0>M(S),n(0)=mn,=F,0 X" s
Then:

1) If the space © is compact, then

a) (upper bound) VB e B, :

T-continuous.

lim supb%log;z: (B)< —inf}(v) with

xeclTAB
1(v)=inf1,(v)
Oes(m)
b) Va20, the level set L, ={v/A(v)<a} is -
compact.
2) (lower bound) VBeB,:

liminf = log 11, (B) > —inf 7 (v)
ne bn xeint;, B
Remark 2.11.
a) Large deviations with normalizing constants of the
form (12) are being called moderate deviations [6,10].
b) Theorem 2.10 generalizes Theorem 3.1. in [11].

There, the sequence 4, is based on a sequence of r.v.’s

taking values in a m.s. (5,S) and the space M (S)is
endowed with the z-topology.

¢) Theorem 2.10 is true in general, namely when the
p-m. P is a mixture of p.m.’s [6]. Then, Theorem 2.10
follows using de Finetti’s theorem.
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