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ABSTRACT 

We consider a multivariate Langevin equation in discrete time, driven by a force induced by certain Gibbs’ states. The 
main goal of the paper is to study the asymptotic behavior of a random walk with stationary increments (which are in- 
terpreted as discrete-time speed terms) satisfying the Langevin equation. We observe that (stable) functional limit theo- 
rems and laws of iterated logarithm for regular random walks with i.i.d. heavy-tailed increments can be carried over to 
the motion of the Langevin particle. 
 
Keywords: Langevin Equation; Dynamics of a Moving Particle; Multivariate Regular Variation; Chains with 

Complete Connections 

1. Introduction 

We start with the following equation describing a dis-
crete-time motion in  of a particle with mass 

 in the presence of a random potential and a viscosity 
force proportional to velocity: 

d ,d 1,
m

 1 1 , .n n n nm V V V F n       

Here d-vector n  is the velocity at time  V ,n d d  ma-
trix  represents an anisotropic damping coefficient, 
and d-vector n


F  is a random force applied at time  

The above equation is a discrete-time counterpart of the 
Langevin SDE t  [1,2]. Applications of 
the Langevin equation with a random non-Gaussian term 

 are addressed, for instance, in [3,4]. Setting  
 and  we obtain: 

.n

d t tV V  

1 ,nQ m F

dW
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The random walk  associated with this equa- 
tion is given by 

 
0n n

X


0
1

,
n

n k
k

X X V n


   .           (2) 

Similar models of random motion in dimension one, 
with i.i.d. forces 

n  were considered in [5-8], see 
also [9,10] and references therein. See, for instance, 
[11-14] for interesting examples of applications of Equa- 
tion (1) with i.d.d. coefficients in various areas. 

 nQ

In this paper we will assume that the coefficients  

 n n
Q

  are induced (in the sense of the following defi- 

nition) by certain Gibbs’s states. 

Definition 1. Coefficients  are said to be in-  n n
Q



duced by random variables   ,n n
Z

  each valued in a  

finite set  if there exists a sequence of independent  ,D

random d-vectors  , ,n n i n i D
Q Q

 
   which is indepen-  

dent of  n n
Z

  and is such that for a fixed  

 ,, n n i n
i D Q Q


    are i.i.d. and  , .

nn n ZQ Q

The randomness of  n n
Q

 is due to two factors:  

1) Random environment  which describes a 

“state of Nature”; and, given the realization of 

 n n
Z



  ,n n
Z

   

2) The “intrinsic” randomness of systems’ characteris- 
tics which is captured by the random variables  

 , .
nn n ZQ Q

Note that when  n n
Z

  is a finite Markov chain,  

, nn n ZQ Q  is a Hidden Markov Model. See, for instance, 
[15] for a survey of HMM and their applications. Heavy 
tailed HMM as random coefficients of multivariate linear 
time-series models have been considered, for instance, in 
[16,17]. In the context of financial time series, nZ  can 
be interpreted as an exogenous factor determined by the 
current state of the underlying economy. The environ- 
ment changes due to seasonal effects, response to the 
news, dynamics of the market, etc. When nZ  is a func- 
tion of the state of a Markov chain, stochastic difference 
Equation (1) is a formal analogue of the Langevin equa- 
tion with regime switches, which was studied in [18]. 
The notion of regime shifts or regime switches traces  
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back to [19,20], where it was proposed in order to ex- 
plain the cyclical feature of certain macroeconomic vari- 
ables. 

In this paper we consider  n n
Z

  that belong to the  

following class of random processes: 
Definition 2 ([21]). A C-chain is a stationary random  

process  taking values in a finite set (alphabet)   n n
Z



,D  such that the following holds: 
i) For any  1, 2 , , ,ni i i D
 1 1, 2 2 , , 0.n nP Z i Z i Z i     

ii) For any 0  and any sequence  
the following limit exists: 

i D   ,n n
i D
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k k
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k k

P Z i Z i k n

P Z i Z i k





   

  
 

where the right-hand side is a regular version of the con-
ditional probabilities. 

iii) Let 

 
 

0 0

0 0

, 1
sup 1 : , .

, 1

k k
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i j k n
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Then, limsup 0.n
n n


   

C-chains form an important subclass of chains with 
complete connections/chains of in-finite order [22-24]. 
They can be described as exponentially mixing full shifts, 
and alternatively defined as an essentially unique random 
process with a given transition function (g-measure) 
 0 0 , 0k kP X i X i k    [25]. Stationary distributions 

of these processes are Gibbs states in the sense of Bowen  
[21,26]. For any C-chain  there exists a Mark-  n n

Z


ovian representation [21,25], that is a stationary irreduci- 
ble Markov chain  in a countable state space and   n n

Y


a function : S D  such that      ,n D nn n
Z Y

 


 
  

where D  means equivalence of distributions. Chains 
of infinite order are well-suited for modeling of long 
range-dependence with fading memory, and in this sense 
constitute a natural generalization of finite-state Markov 
chains [24,27-30]. 

We will further assume that the vectors  are mul- 
tivariate regularly varying. Recall that, for 

,n iQ
,   a 

function  is said to be regularly varying of 
index 

:f  
 if    f t t


L t  for some function 
:L

0
  such that  for any positive 

real 
   L t L t 

   (i.e.,  is a slowly varying function). Let  L

   0 : , 0
dd    .  

Definition 3 ([31]). A random vector  is regu- 
larly varying with index 

dQ
0   if there exist a function 

 regularly varying with index :b   1   and a 
Radon measure   in the space d

0  such that  

   1
nnP b Q ,v     as  where  denotes  ,n  v

the vague convergence and  : .nb b n  
We denote by d, ,b  the set of all d-vectors regularly 

varying with index , associated with function  .b
The corresponding limiting measure   is called the 

measure of regular variation associated with  .Q
We next summarize our assumptions on the coeffi-  

cients  and nQ .M  Let  1 d: max iQ Q  i  and  

 d: sup : 1
q

M Mq q


 


 for, respectively, a vector 

       d1 , 2 , , dQ Q Q Q Q   d d  and a   matrix  

.M  
Assumption 1. Let  nZ

n  be a stationary C-chain 
defined on a finite state space  and suppose that ,D
 n n
Q

  is induced by   .n n
Z

  Assume in addition 
that: 

A1) 0log ,E Q      where  : max ,0x x   for 
.x  

A2) The spectral radius lim nn
n

M


 is strictly be- 

tween zero and one. 
A3) There exist a constant 0 

1
 and a regularly 

varying function  with index b   such that for all 

0. d, ,, ii D Q b 
.i

 with associated measure of regular 
variation   

2. Statement of Results 

For any (random) initial vector 0  the series  con- 
verges in distribution, as  to 

,V
,

nV
n 

0
: ,k

kk
V M Q




   

which is the unique initial value making  
0n n

V


 into a  

stationary sequence [32]. The following result, whose 
proof is omitted, is a “Gibssian” version of a “Mark-
ovian” [16, Theorem 1]. The claim can be established 
following the line of argument in [16] nearly verbatim, 
exploiting the Markov representation of C-chains ob-
tained in [21]. 

Theorem 1. Let Assumption 1 hold. Then d, ,bV   
with associated measure of regular variation  

     
0

1

0
,k

V Qk
E M 




        

where  1    stands for   d :x x     and 

     
0 0: .Q ii 

i D
P Z


     

In a slightly more general setting, the existence of the 
limiting velocity suggests the following law of large 
numbers, whose short proof is included in Section 3.1. 
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Theorem 2. Let Assumption 1 hold with A3) being 
replaced by the condition 0 .E Q      Then1 

     1

0lim n

n

X
E V I M E Q

n



   , a.s. 

Let  n n
Q


 denote independent copies of  and 

let be 

0 ,Q

 n n
A

  a sequence of vectors such that the se- 

quence of processes 

 
 

  1
1

0,,
ntn

t n k ntk
S b Q tA


  

 ,i

 

converges in law as  in the Skorokhod space  n 

 , dD    to a Lévy process      , , 0,t i D
t   


 

where i  are introduced in A3) with stationary inde- 
pendent increments,  and  ,

0 0,    ,
1
   being dis- 

tributed according to a stable law of index   whose 
domain of attraction includes 0  For an explicit form 
of the centering sequence n

.Q
A  and the characteristic fun- 

ction of  ,
1
   see, for instance, [33] or [34]. Remark 

that one can set  if 0nA 1   and  0nA nE Q  if  
1. 


 For each  define a process  in  ,n  nS


.

d,D    by setting 

 
      11 , 0n

t n nt ntS b X I M A t
       (3) 

Theorem 3. Let Assumption 1 hold with  0, 2 .   
Then the sequence of processes converges weakly   nS

in  d,D   ,  as  to .,n    1

tI M  ,   

It follows from Definition 3 (see, for instance, [31])  
that if d, ,bQ 

d

 then the following limit exists for any  

vector  :x
  : lim

n
nw x bx nP Q


          (4) 

Theorem 4. Assume that the conditions of Theorem 3 
hold. If 1   assume in addition that the law of 0.i  
is symmetric for any  Let 

Q
.i D  w x

1

0.Q


 be defined by 
Equation (4) with Q I Then, for any 

 such that  we have 
 M

w x
 

  0,dx

 
 1

0 if 0,
limsup

if 0,ln

n n
n

n

X A x

b n
 


 

  
  

  a.s.  (5) 

In particular, 

  1 ln ln

1limsup e ,

n

n n
n

n

X A x

b




  
  

 
 a.s. 

If either Assumption 1 holds with 2   or  
2

0E Q      is assumed instead of A3), then, in view  

of Equation (6), a Gaussian counterpart of Theorem 3 
can be obtained as a direct consequence of general CLTs 
for uniformly mixing sequences (see, for instance, [35, 

Theorem 20.1] and [36, Corollary 2]) applied to the  

sequence   .n n
Q

 If 
2

0 ,E Q      then a law of iter- 

ated logarithm in the usual form follows from Equation 
(5) and, for instance, [37, Theorem 5] applied to the se- 
quence   .n n

Q
  

We remark that in the case of i.i.d. additive component 
 similar to our results are obtained in [7] for a more 

general than Equation (1) mapping  
,nQ

 1 .n nV V  

3. Proofs 

3.1. Proof of Theorem 2 

It follows from the definition of the random walk nX  
and Equation (1) that 
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 (6) 

Note that 0E Q      implies  

 01
.

n
P Q n


    

It follows then from the Borel-Cantelli lemma that 

1
1

1
lim 0,n t

ttn
M V

n
  


      a.s. 

Furthermore, we have  

 01
1.k

k
P M V




    

Thus the law of large numbers for nX  follows from 
the ergodic theorem applied to the sequence   .n n

Q
  

□ 

3.2. Proof of Theorem 3 

Only the second term in the right-most side of Equation 
(5) contributes to the asymptotic behavior of .nX  The 
proof rests on the application of Corollary 5.9 in [34] to  

the partial sums 
1

.
n

t
t

Q

  In view of condition iii) in  

Definition 2 and the decomposition shown in Equation 
(6), we only need to verify that the following “local de- 
pendence” condition (which is condition (5.13) in [34]) 
holds for the sequence   :n n

Q
  

 0 , 0, 0n j n nnP Q b Q b j        ,   

The above convergence to zero follows from the mix- 
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ing condition iii) in Definition 2 and the regular varia- 
tion, as t goes to infinity, of the marginal distribution tail 

     0 0 , .j iP Q t P Z i P Q t      □ 

3.3. Proof of Theorem 4 

For  let  be the number of occurrences of 
 in the set 

,i D  nk i
 1 2, ,i ., nZ Z  Z

n

 That is,  

   1
.

j
n j Z i

k i
 

   

Define recursively  and  0 0iT 

    inf 1 :i iT j k T j Z i   k

C



 

(with the usual convention that the greatest lower bound 
over an empty set is equal to infinity). For  
let 

, ,i D n 

   
1

, ,,1
,

i

n

n i n iT j ij
S I M Q




    

where 

  1,
0,

0 if 1
: .

if 1,2n i
i

C
n E I M Q
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 ,: .
nn k i ii D

X S


   

Further, for each  let  if n 0nR  1,   
whereas if 1   let 

      1

0, 0 .n i ni D
R E I M Q k i nP Z i




        

Then   1

1
,

n

n n j nj
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     and hence  

     1

1
.

n

n j n nj n nX I M Q X A X R



        

It follows from the decomposition given by Equation 
(6) along with the Borel-Cantelli lemma that for any 

 d ,x

   
 1

lim 0,
ln

n n n n

n
n

X A x X R x

b n
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Let  Then      0 .
nn Z ii P Z     i

j     0 1
.

n

n j
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It follows, for instance, from Theorem 5 in [37] that if 
1   then for any  the following limit exists 

and the identity holds with probability one: 

d ,x
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Therefore (since n  is regularly varying with index b
2  ), in order to complete the proof Theorem 4 it 

suffices to show that for any  that satisfies the 
condition 

dx
  0w x   of the theorem, we have 

 1
0 if 0,

limsup
if 0,ln

n
n

n

X x

b n
 


 

 
  


  a.s. 

We first observe that by the law of iterated logarithm 
for heavy-tailed i.i.d. sequences (see Theorems 1.6.6 and 
3.9.1 in [33]), 

 

    
,

1
limsup 0

ln

n

n

k i i

n

nk i

S x

b k i
  


 ,   a.s. 

for any , i D  d , and 0.x    Since by the 
ergodic theorem, 

     0lim 0, ,n
n

k i n P Z i


       a.s., 

this yields 
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limsup 0
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 ,   a.s., 

and hence 

 1
limsup 0
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n

n

n

X x
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,   a.s. 

On the other hand, if 0, 
D

 Theorem 3.9.1 in [33] 
implies that for any i  and any  such that dx
  0,w x   we have 

 

    
,

1
limsup ,

ln

n

n

k i i

n
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S x
   a.s. 

b k i
    

,
To conclude the proof of the theorem it thus remains 

to show that for any  any  and all ,i j D d ,x
  1 2 ,1 ,    

    , , . . 0,i x j xP E n E n i o          (7) 

where, for ,i D  the events  are defined as 
follows: 

 ,i xE n

      , ,: l
ni x nk i iE n S x b nn

   . 

For ,i D let  02i P Z i     and define 

    , 1 ,: max ln
i nn i m n nk i iG S x b n


    . 

Then 
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The Ruelle-Perron-Frobenius theorem (see [26]) im-
plies that the sequence nk n satisfies the large deviation 
principle (by the Gärtner-Ellis theorem), and hence 

   e in
n i iP k i n C     for some constants   0iC 

and 0.i   Furthermore, for any 0, ,k
kA n A       

and 0,    there exists a constant  ,C C A 
.Ck

 
such that (see [33, p. 177]), 

kn i ,P E   There- 
fore, since 2 ,   we can choose  0,   such  

that    , , 0 ,
k kn i n jP E P E C k    with suitable   0 0C 

and 1.   A standard argument using the Borel-Can- 
telli lemma imply then the identity in Equation (7). □ 
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