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ABSTRACT 

We introduce a new approach to image super-resolution. The idea is to use a simple wavelet-based linear interpolation 
scheme as our initial estimate of high-resolution image; and to intensify geometric structure in initial estimation with an 
iterative projection process based on hard-thresholding scheme in a new angular multiselectivity domain. This new do-
main is defined by combining of laplacian pyramid and angular multiselectivity decomposition, the result is multiselec-
tive contourlets which can capture and restore adaptively and slightly better geometric structure of image. The experi-
mental results demonstrate the effectiveness of the proposed approach. 
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1. Introduction 

In most digital imaging applications, high-resolution im- 
ages or videos are usually desired for later image proc- 
essing and analysis. The desire for high resolution stems 
from two principal application areas: improvement of 
pictorial information for human interpretation; and help- 
ing representation for automatic machine perception [1,2]. 
Image resolution describes the details contained in an 
image, the higher the resolution, the more image details 
[1,3]. Super-resolution is techniques that construct high- 
resolution images from several observed low-resolution 
images, thereby increasing the high-frequency compo- 
nents and removing the degradations caused by the im- 
aging process of the low-resolution camera. The basic 
idea behind super-resolution is to combine the non-re- 
dundant information contained in multiple low-resolution 
frames to generate a high-resolution image. The super- 
resolution (SR) reconstruction of a digital image can be 
classified in many different ways: SR in spatial domain 
[4,5], SR in the Frequency Domain [6,7], Statistical Ap- 
proaches [8,9], and Interpolation-Restoration [1,10]. In 
this last context, can be distinguished two categories, 
linear and nonlinear interpolation methods. 

Linear interpolation methods, such as bilinear, bicubic 
and cubic spline [11,12], edge-sensitive filter [13], blur- 
ring and ringing effects because they do not utilize any 
information relevant to geometric structure of image 
[14,15]. Nonlinear interpolation methods incorporate 
more adaptive image models and priori knowledge which  

often improve linear interpolators. Many approaches 
have been designed for addressing this task in recent 
years. We may cite for instance, Soft-decision Adaptive 
Interpolation (SAI) [16], Sparse Mixing Estimators 
(SME) [17], Iterative Projection [18], ··· 

The SAI approach has been improved by Zhang and 
Wu, by using an interpolator adapted to local covariance 
image based on autoregressive image models optimized 
over image blocks. This approach can be more accurate, 
it is much more demanding in computation and memory 
resources. The SME approach proposed by Mallat and 
Yu, computes a high-resolution estimator by mixing 
adaptively a family of linear estimators corresponding to 
different priors. Sparse mixing weights are calculated 
over blocks of coefficients in a frame providing a sparse 
signal representation. Mueller and Lu have proposed an 
iterative interpolation method based on the wavelet and 
contourlet transforms [19,20]. In this approach, the con- 
tourlet transform improves the visual quality of resulting 
images, by intensification of the geometric structure on 
the wavelet linear interpolation. This geometric structure 
is well represented by contourlets with variable angular 
selectivity [21]. However, the contoulets represent the 
image geometry with the same angular selectivity [19,20]. 
In order to overcome this limitation of representation of 
geometric structure in this iterative approach, we have 
increased the sensitivity of angular selectivity of con- 
tourlets. Our idea is based on a simple wavelet-based 
linear interpolation scheme as our initial estimate; and an 
iterative projection process based on hard-thresholding  
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scheme in a new angular multiselectivity domain. This 
new domain is defined by combining of laplacian pyra- 
mid and an angular multiselectivity decomposition. The 
result is new multiselective contourlets, which can rep- 
resent the different structures of the image geometry. 

The paper is organized as follows. In Sections 2 and 3, 
we discuss the new multiselective contourlets, and we 
will show how these multiselective contourlets can pro- 
vide a new degree of freedom to describe adaptively the 
different structures of the image geometry. Our multise- 
lective contourlets algorithm for image super-resolution 
is described in the Section 4. We report the results of our 
experiments in Section 5 and conclude the paper in Sec- 
tion 6. 

2. Laplacian Pyramid 

The Laplacian Pyramid  was first proposed in [22] 
as a new technique for compression image. To achieve 
high compression, it removes image correlation by com- 
bining predictive and transform coding techniques. 

 LP

In the Laplacian Pyramid decomposition at each level 
the original image happens in a high-pass and a low-pass 
filters, the resulting is a downsampled low-pass version 
of the original image, and of difference between the 
original image and the prediction. 

Under certain regularity conditions, the low-pass filter 
g  in the iterated  uniquely defines a unique scaling  LP

function that satisfies the following two-  
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expressed as (19). Now assume that for a fixed , the 
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cone in frequency space supporting of , , ,ˆ j n l m  is equal  

to 
2π

2
2l

 . Therefore, the contourlets , , ,j n l m  are  

directional [26,27], and the angular selectivity of these 
new contourlets is proportional to . Keeping that in 
mind, we will call the new cont

2l

ourlets , , ,j n l m  the mu  
tiselective contourlets, and the param angular 
selectivity level. 

The central result is that for each selectivity level 
the multiselective contourlets generate a tight frame
each subspace 

l-
eter l  the 

l , 
 for 

jW . 
Theorem 3.1 for any  0, ,l L   the family  

 2
, , , : , 0,1, 1l

j n l m n m , 2  �   is a tight frame for  

jW . 
Proof  
To prove that the family  

 2 , 0,1, , 2 1lm , , , :j n l m n  �   is a tight e for   fram

jW es to evaluate the equality:  , it suffic

2

2 1 2

, , ,
0

, .
l

2

j n l m j
mn

f f f W




   
�

  (25) 

Define the quantities 

 
2

2 1 2

, , , ,
0

,
l

j n j l m
mn

E f f




  
�

     (26) 

and 

    , , , , ,ˆ ˆj n l m j l m   k k  , , 2 .j
j l m n k   (27) 

Let us prove first that 
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Using the Poisson formula  

  (29) 

We obtain  

.

We shall now prove that 

  (30) 

According to the property (10), we verify that  

         (31) 
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 
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2 1 π
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2m l l

m
  
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Therefore,  

The equalities (8), (26), (28) and (30) imply that 
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fore, for each selectivity level , any function 

n�

There l

jf W  is represented as: 

   
2

2

1

, , , , , ,
0

.
l

n j l m j n l m
mn

f f 




  
�

x x   (32) 

Since  J

0 0j J jV V W   , any 
j j 0j

f V  is repre-  

sented as: 

   

 

2

2

2
0

, ,

1

, , , , , ,
0

,

J n J n
n

J l

j n l m j n l m
j j mn

f  

 





 







 

�

�
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   (33) 

with 

, , ,J n J n f                   (34) 

, , , , , , ,j n l m j n l m f              (35) 

and t
orthogonal s

      

im t for each selectivity le the the 

he decompositions of  2 2L   into mutual 
ubspaces: 

 2 2 ,J j
j J

L V W


 
  

 
�   (36) 

ply tha vel l , family  

 2
, : , , 0,1, , 2l
m n j J m, , ,, 1J n j n l     �   is a tight  

frame for  2 2L  , on which any function  2 2f L    

is represented as:  

   

 

2

2

2

, ,

1

, , , , , ,
0

J n J n
n

l
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
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
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�

�
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x
     (37) 
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sition of  2 2f L   is 
ficients 

The multiselective decompo
defined as the set of the coef , , ,j n l m  up to a 
scale J  

req
and a selectivity level 

low-f uency information 
L  plus the remaining 

,J n : 

  , , ,j n l m j J



 


  (38)  22 ,, ,0 <2 ,0
, .l J n nn m l L     ��


Since the multiselective contourlets de
image with the different selectivity level 
this multiselective decomposition represen

for each level , theorem
the multiselec



compose the 
 0,1, ,  , l L

ts and captures 
, 

 2.1 s
different structures of the image geometry. In particular

  0,1, ,l L 
tive contourlets 

hows that 

, , ,j n l m   
whi

ut there is more. Indeed, as shown in 
the following proposition, we can mix different frames 
inside the same reconstruction formula. 

Proposition 3.2 for any function:  

generate a tight
iginal imageframe, on e can reconstruct the or  ch w

according to (37). B

 
   

2
0 ,
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 
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, , ,J n J n f              (41) 
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We shall now prove that, for any 
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Using the Poisson formula  

  (45) 

and the equality (30), we obtain: 
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we obtain the following reconstruction for any 
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The reconstruction carried out in this proposition pro- 
vides a new degree of freedom to describe images 
adaptively. Indeed, at each point  and each scale 

we may search the adaptive ity reconstruction, 
at is, the selectivity level at improves the 

detection of the content of 
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 , jx  th
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th 
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4. Image Super-Resolution via Multiselective 
Contourlets 

The main idea is similar to the technique of interpolatio
proposed in [18]. Our algorithm of image super-resolu- 
tio e two constraints.  

4.1. Anti-Aliasing Filer Constraint 

In wavelet-space extrapolation, the objective is to obtain  

n 

n is to alternately enforc
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an estimation 0x̂  of high-resolution image x from low- 
resolution image Lx  (refer to Figure 1). In this case we 
impose anti-al  filer constraint, that is the given 
low-resolution i e is the downsampled output of the 
lo

iasi
m

ng
ag

w-pass anti-aliasing filter in a wavelet transform. As a 
simple way to get an estimate 0x̂  of the high resolution 
image, we can take the inverse v et transform by 
k eping 

wa el
e Lx  as the low-pass band and zeropadding all 

high-pass subbands. Consequen r any given image y, 
we can calculate the best approx 2L  norm) to 
y, subject to anti-aliasing filer con

tly, fo
imation (in 

s , through traint
orthogonal projection. Let F  and 1F   represent the 
forward and inverse wavelet transforms, respectively; 

ote P  as the diden onal  1s and 0s 

sforms, 
culated by  

        (47) 

e 

n

 de

multiselective contourlet coefficients. 

ag projection matrix of
that keeps the low-pass wavelet coefficients and zeros 
out the high frequency subband coefficients, and let 
P I P   . If we use orthonormal wavelet tran
then the projection of any image y can be cal

 1ˆ ˆ   0 ,y F P Fy PFx  

where 0x̂  is th estimation of the high-resolution image 
obtained as in Figure 1. 

4.2. Sparsity Constraint 

The second constraint is based on a model for natural 
images. Since the multiselective contourlets described in 
Section 3, generate a multiselective geometric represen- 
tation well-suited to preserve contours and edges and 
geometric structure of image, we assume that the un- 
known high-resolution image should be sparse in the 
multiselective contourlets domain. For the sake of sim- 
plicity, we choose to use a direct hard-thresholding 
scheme i  our proposed algorithm. Intuitively, we view 
our estimate to the high-resolution image as a noisy ver- 
sion of the true image. Enforcing our sparsity constraint 
works to noise the estimation of the interpolated signal 
while retaining the important coefficients near edges. we 
enforce this constraint through a hard-thresholding of the 

We suppose that the estimation x̂  of the high- 
resolution is a multiresolution approximation of the real 
image f at the resolution . Hence  02 0x̂ V ,


 and the 

om  of multiselective contourlets dec position x̂  is 
ficients defined as the set of the coef

, , , , , , ˆj n l m j n l m x   up to a scale 0J   and a sele- 

 

 

Figure 1. The anti-aliasing filer constraint. 

ctivity level 0L  , plus the remaining low-frequency 
information , , ˆJ n J n x  : 

    22, , , ,0 , ,0 2 ,0
ˆ , .lj n l m J n nj J n m l L
x  

      
    ��

   (48) 

Denote T  as the diagonal matrix that, given some 
threshold value T , zeros out insignifica t coefficients in 
the coefficient vector whose absolute values are smaller 
than T; and   as the adaptive selectivity reconstruction 
given by proposition (3.2),  

n

   , ,ˆ J n J nx  

 

2

2
, , , , , ,

1 0

.

n

j n m j n m
j mn

 



 


2 1J 



  

�

t

�

     (49) 

 t t

we choice the adaptive selectivity level  by mini- 
mizing the distortion introduced by thre  in fixed 
selectivity procedure:  

 ,j t
sholding

 


 


 
2 2L

n n � �

with 

, ,0,0 , , ,0
0,

, arg min j n j n l
l

 


  t t t ,j  (50) 

     
2 1

, , ,0 , , , , , ,
0

.
l

j n l T j n l m j n l m
m

  




  t t   (51) 

Denote x  the denoised high-resolution image. The 
sparseness constraint by hard-thresholding can be written 
as 

ˆ.Tx x               (52) 

4.3. Multiselective Contourlets Algorithm for 
Image Super-Resolution 

We show in Figure 2 the block diagram of the proposed 
r high-

thm by taking

multiselective contourlets algorithm fo resolution 
image reconstruction, which can be summarized as fol- 
lows: 

1) We start our algori  0x̂ , obtained by 
the simple wavelet interpolation shown in Figure
the initial estimate of the high-resolution image.  

2) We then attempt to improve the quality of inter- 
on, particularly in regions containing edges and 

contours, by iteratively enforcing the observation con- 
straint as well as the sparseness constraint. Let 

 1, as 

polati

ˆkx  re- 
present the estimate at the kth step. By comb
and (52), the 

ining (47) 
new estimate 1ˆkx   can then be obtained by  

 1
1 0ˆ ˆ ˆ .

kk T kx F P F x PFx       (53) 

3) Following the same principle o
based image recovery algorithm proposed in [28], we 

all 
amo

f the sparseness- 

gradually decrease the threshold value kT  by a sm
unt   in each iteration, i.e., 1k kT T 

rcum ng t
 
venti

. This has 
been sh n to be effective in ci he non-  ow
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Figure 2. The block diagram of the proposed algorithm for 
image super-resolution. 
 
convexity of the sparseness constraint. 

We compare the high-resolution images obtained by the 
proposed method with those obtained by wavelet linear 
[28], interpolation bicubic [29], contourlet transform [18], 
soft-decision adaptive interpolation (SAI) [16], and 
sparse mixing estimators (SME) [17]. In the experiments, 
we use five scales J = 5, and five selectivity level 

4) Return to step 2 and keep iterating, until the gene- 
rated images converge or a predetermined maximum 
iteration number has been reached. 

5. Numerical Experiments 

5L   
d we for multiselective contourlets decomposition, an

choose and is decreased by 0 10T   0.2 
erations

512 

 in each 
. We use 

2 , in-
iterati a maximum of 10 it
several rd test images of size  
cluding Lenna, Boat, Gauss disc, Peppers, Straws, and

gular regions. Peppers is mainly composed of regular 
Mandril is rich in 

fin

ms, we first down- 
sampled each image by a factor of 2 and then inter- 

on, with 
 standa 51

 
Mandril (Figure 3). Gauss disc image includes regular 
regions, Lenna and Boat include both fine details and 
re
regions separated from sharp contours. 

e details. Straws image contains directional patterns 
that are superposed in various directions. To show the 
true power of the interpolation algorith

polated the result back to its original size. 
The performance measure used was the Peak Signal to 

Noise Ratio (PSNR), A good high-resolution method 
must maximize the PSNR. Table 1 gives the PSNRs 
generated by all methods for the images in Figure 3. 
Figures 4 and 5 compare the high-resolution image 
obtained by different methods. Bicubic interpolations 
produce some blur and jaggy artifacts in the zoomed 
images, but the image quality is lower than with SME 
and SAI methods, as shown by the PSNRs. The Con- 
tourlet method yields almost the same PSNR as a bicubic 
interpolation but often provides better image quality. It is 
able to restore the geometrical structures (see Lenna’s hat 
and gauss disc zoom) when the underlying contourlet  

 

Figure 3. Images used in the numerical experiments. 
 

 

Figure 4. The zoom-in comparison of the Lenna and Gauss 
disc images. From left to right: high-resolution image, low- 
resolution image (shown at the same scale by enlarging the 
pixel size), wavelet linear, bicubic interpolation, contourlet, 
SME, SAI, and proposed method. 
 
vectors are accurately estimated. However, when the 
approximating contourlet vectors are not estimated 
correctly, it produces directional artifact patterns, be- 
cause the contoulets represent the image geometry with 
the same angular selectivity. Contrariwise in our pro- 
posed method, the angular selectivity can be adapted 
locally to the content of the image, which improves its 
gain in PSNR and its regularity of object boundaries of 
geometrical structures in the generated images, as shown 
in Boat and Peppers zooms. 
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Table 1. The performance of the proposed method relative to oth
of Figure 3. From left to right: wavelet linear [28], interpolat
estimators (SME) [17], and soft-decision adaptive interpolation (S

Image Wavelet lin Bicubic Contour  Proposed 

er methods. PSNRS (in decibels) are computed over images 
ion bicubic [29], contourlet transform [18], sparse mixing 
AI) [16]. 

let SME SAI

Lenna 31.59 34.03 34.17 34.61 34.74 35.10 

Boat 28.60 29.09 29.1

Gaussdisc 42.86 46.88 48.4

Peppers 30.85 32.32 31.9

Straws 19.15 20.53 20.5

Mandril 22.55 22.15 22.6

5 29.72 29.61 30.14 

5 50.61 50.46 50.89 

6 33.05 33.14 33.52 

4 21.55 21.42 21.56 

0 23.10 23.15 23.53 

 

 

Figure 5. The zoom-in comparison of the boat and peppers 
images. From left to right: high-resolution image, low- 
resolution image (shown at the same scale by enlarging the 
pixel size), wavelet linear, bicubic interpolation, contourlet, 
SME, SAI, and proposed method. 
 
6. Conclusion 

We have described a new method for high-resolution 
restoration of image using an iterative projection process 
based on anti-aliasing wavelet technique, and hard-thre- 
sholding scheme in a new multiselective contourlets 
analysis. This new multiselectve contourlets analysis can 
capture and restore slightly better regular geometrical 
structures of image. Experimental results show that the 
proposed algorithm achieves better super-resolution re- 
sults than other super-resolution methods in the litera- 
ture. 
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