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ABSTRACT 

We provide some exact results for an asset pricing theory test statistic based on the average F distribution. This test is 
preferred to existing procedures because it deals with the case of more assets than data points. The case mentioned is the 
practical one that asset managers routinely have to consider. 
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1. Introduction 

The idea of the average F test was first introduced to the 
literature by [1] as a means of testing asset pricing theo- 
ries in linear factor models. Recently [2] developed the 
idea further by focusing on the average pricing error, 
extending the multivariate F test of [3]. They show that 
the average F test can be applied to thousands of indi- 
vidual stocks rather than a smaller number of portfolios 
and thus does not suffer from the information loss or the 
data snooping biases. In addition, the test is robust to 
ellipticity. More importantly, [2] demonstrate that the 
power of average F test continues to increase as the 
number of stocks increases. 

One drawback of the average F test is that [2] did not 
provide the closed form solution for the average F den- 
sity function. Despite the fact that the average F statistic 
has been used in other areas of econometrics, e.g., [4] in 
the study of structural breaks of unknown timing in re- 
gression models, the functional form of the average F 
distribution remains unknown. 

In this study we propose a few analytical develop- 
ments for the average F distribution. Although the com- 
plete functional form is not provided, our results might 
be useful toward further research in the future. 

2. Definition of the Average F Distribution 

A testable version of linear factor models is 
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and ̂  and ̂  are the maximum likelihood estimators 
of   and  , respectively. Under the classical assump- 
tion hat asset returns are multivariate normal condi- 
tional on factors, the average F statistic is distributed as 
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unknown. Note that all F -distributions in quation (3) 
have the same degrees f freedom, and S  is thus 
distributed as the sample mean of N  indepe dent and 
identically distributed F distributi s. Let 

 E
o

n
on x  be a 

variable distributed as  1,F n , where 1n T K   , 
and denote its probability y function densit  as  pdf x . 
Then the characteristic function of the  1,F n - 
bution can be derived as follows 
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we have a definition referred to as the “logarithmic case” 
alternative to Tricomi’s confluent hypergeometric func- 
tion in (6). See [6] and [7] (Vol. 1, pp. 260-262 and Vol. 
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