On the Set of 2 - Common Consequent of Primitive Digraphs with Exact d Vertices Having Loop

Xiaogen Chen
School of Computer Science \& Engineering, Zhanjiang Normal University, Zhanjiang, China
Email: cxiaogen@126.com

Received September 2, 2012; revised October 15, 2012; accepted October 23, 2012

Abstract

Let d and n are positive integers, $n \geq 2,1 \leq d \leq n$. In this paper we obtain that the set of the 2 - common consequent of primitive digraphs of order n with exact d vertices having loop is $\left\{1,2, \cdots, n-\left[\frac{d}{2}\right]\right\}$.

Keywords: Boolean Matrix; Common Consequent; Primitive Digraph

1. Introduction

Let $V=\left\{a_{1}, \cdots, a_{n}\right\}$ be a finite set of order n, $G=(V, E)$ be a digraph. Elements of V are referred as vertices and those of E as arcs. The arc of E from vertex u to vertex v is denoted by (u, v). Let A be a $n \times n$ matrix over the Boolean algebra $\{0,1\}$. If the adjacency matrix of G is A, where $A=\left(m_{i j}\right), m_{i j}=1$, if $\left(a_{i}, a_{j}\right) \in E$ and $m_{i j}=0$ otherwise, then A is Boolean matrix. G is called adjoint digraph of A.

The map: $A \leftrightarrow G$ is isomorphism.
Let G^{l} be a digraph corresponding to the A^{l}, and

$$
a_{i} G^{l}=\left\{a_{j} \in V \mid\left(a_{i}, a_{j}\right) \in E\left(G^{l}\right)\right\},
$$

where $l>0$ is an integer.
In 1983, Š. Schwarz [1] introduced a concept of the common consequent as follows.

Definition 1.1 Let G be a digraph. We say that a pair of vertices $\left(a_{i}, a_{j}\right), a_{i} \neq a_{j}$, has a common consequent (c.c.) if there is an integer $l>0$ such that

$$
\begin{equation*}
a_{i} G^{l} \cap a_{j} G^{l} \neq \phi \tag{1}
\end{equation*}
$$

If $\left(a_{i}, a_{j}\right)$ have a c.c. then the least integer $l>0$ for which (1) holds is denoted by $L_{G}\left(a_{i}, a_{j}\right)$.

Definition 1.2 Let G be a digraph. The generalized vertex exponent of G, denoted by $\exp _{G}(1)$, is the least integer $l>0$ such that

$$
\begin{equation*}
\bigcap_{i=1}^{n} a_{i} G^{l} \neq \phi \tag{2}
\end{equation*}
$$

In 1996, Bolian Liu [2] extends the common consequent to the k-common consequent ($k-$ c.c. $)$ as follows.

Definition 1.3 Let G be a digraph. We say that a group of vertices

$$
\begin{aligned}
& \left\{a_{i_{1}}, \cdots, a_{i_{k}}\right\} \subseteq V=\left\{a_{1}, \cdots, a_{n}\right\} \\
& 2 \leq k \leq n, a_{i_{s}} \neq a_{i_{t}}, s \neq t
\end{aligned}
$$

has a k-common consequent $(k-c . c$.$) , if there is an$ integer $l>0$ such that

$$
\begin{equation*}
\bigcap_{j=1}^{k} a_{i_{j}} G^{l} \neq \phi \tag{3}
\end{equation*}
$$

If $\left\{a_{i_{1}}, \cdots, a_{i_{k}}\right\}$ have a k-c.c., then the least integer $l>0$ for which (3) holds is denoted by $L_{G}\left(a_{i_{1}}, \cdots, a_{i_{k}}\right)$.

If there is at least one group $\left\{a_{i_{1}}, \cdots, a_{i_{k}}\right\}$ for which $L_{G}\left(a_{i_{1}}, \cdots, a_{i_{k}}\right)$ exists, we define

$$
L_{G}(k)=\max L_{G}\left(a_{i_{1}}, \cdots, a_{i_{k}}\right)
$$

where $\left\{a_{i_{1}}, \cdots, a_{i_{k}}\right\}$ runs through all groups with k elements for which $L_{G}\left(a_{i_{1}}, \cdots, a_{i_{k}}\right)$ exists. If there is no group $\left\{a_{i_{1}}, \cdots, a_{i_{k}}\right\}$ for which $L_{G}\left(a_{i_{1}}, \cdots, a_{i_{k}}\right)$ exists, we define $L_{G}(k)=0 . L_{G}(k)$ is called $k-c . c$. of G.

A digraph G is said to be strongly connected if there exists a path from u to v for all $u, v \in V(G)$. A digraph G is said to be primitive if there exists a positive integer p such that there is a walk of length p from u to v for all $u, v \in V(G)$. The smallest such p is called the primitive exponent of G.

A digraph G is primitive iff G is strongly connected and the greatest common divisor of all cycle lengths of G is 1 .

Let $V=\left\{a_{1}, \cdots, a_{n}\right\}$ and $P_{n}(d)$ be the set of all primitive digraphs of order n with exact d vertices having loop. It is obvious that if $G \in P_{n}(d)$, then
$L_{G}\left(a_{i_{1}}, \cdots, a_{i_{k}}\right)$ exists for any group
$\left\{a_{i_{1}}, \cdots, a_{i_{k}}\right\}, 2 \leq k \leq n$. We define

$$
L(n, d, k)=\max \left\{L_{G}(k) \mid G \in P_{n}(d)\right\} .
$$

The properties of primitive digraphs and its $k-$ c.c. see [3-5]. In this paper we obtain that the set of the $2-$ common consequent of primitive digraphs of order n with exact d vertices having loop is

$$
\left\{1,2, \cdots, n-\left\lceil\frac{d}{2}\right\rceil\right\}
$$

where n and d are positive integers, $n \geq 2,1 \leq d \leq n$, $\lceil a\rceil$ is the least integer greater or equal to a.

2. Preliminaries

It is easy to see that $L(n, d, k)$ exists by [1].
Lemma 2.1 Let $G=G(V)$ be a primitive digraph of order $n(n \geq 2)$ and V_{1} be a nonempty proper subset of V, then $V_{1} G$ contains at least one element of V which is not contained in V_{1}.

Lemma 2.2 Let $G=G(V)$ be a primitive digraph of order $n(n \geq 3)$ and $a_{i} \in V$, where vertex a_{i} with having a loop, $2 \leq k \leq n$, then $\left|a_{i} G^{k-1}\right| \geq k$.

Proof: Since vertex a_{i} has a loop, hence $a_{i} \in a_{i} G$, and $\left|a_{i} G^{k-1}\right| \geq k$ by lemma 2.1.

The follow lemma is obvious.
Lemma 2.3 [2] If $2 \leq k_{1} \leq k_{2} \leq n, G$ is a primitive digraph, then $L_{G}\left(k_{1}\right) \leq L_{G}\left(k_{2}\right)$.

Lemma 2.4 Let $V=\left\{a_{1}, \cdots, a_{n}\right\}$,
$E=$

$$
\begin{aligned}
& \left\{\left(a_{i}, a_{i}\right),\left(a_{j}, a_{j+1}\right),\left(a_{n}, a_{1}\right) \mid i=1, \cdots, d, j=1, \cdots, n-1\right\}, \\
& G_{0}=(V, E),
\end{aligned}
$$

where n, d, k are integers and $1 \leq d \leq n, 2 \leq k \leq n$, then

$$
L_{G_{0}}(2)=n-\left\lceil\frac{d}{2}\right\rceil \text { and } L_{G_{0}}(n)=n-1
$$

Proof: First of all, It is obvious that G_{0} is belong to $P_{n}(d)$.
Let $V_{1}=\left\{a_{1}, \cdots, a_{d}\right\}, V_{2}=\left\{a_{d+1}, a_{d+2}, \cdots, a_{n}\right\}$, then V_{1} is a set in which every vertex have a loop, For all $u, v \in V, u \neq v$.
Case $1 u, v \in V_{1}$.
There exists a walk of length less than or equal to $n-\left\lceil\frac{n}{2}\right\rceil$ form u to v (or from v to u), and $n-\left\lceil\frac{n}{2}\right\rceil \leq n-\left\lceil\frac{d}{2}\right\rceil$, then $u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \neq \phi$.
Case $2 u, v \in V_{2}$.

There exists a walk of length less than or equal to $n-d$ form u to a_{1} (and form v to a_{1}),

$$
n-d \leq n-\left\lceil\frac{d}{2}\right\rceil
$$

then

$$
u G_{0}^{n-\left[\frac{d}{2}\right]} \cap v G_{0}^{n-\left\lceil\frac{d}{2}\right]} \supseteq\left\{a_{1}\right\} \neq \phi
$$

Case $3 u \in V_{1}, v \in V_{2}$.
There exist a walk of length less than or equal to $n-d$ form v to $x \in V$, by Lemma 2.2,

$$
\begin{aligned}
& \left.\left|u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \geq n-\left\lceil\frac{d}{2}\right\rceil+1 \cdot \right\rvert\, v G_{0}^{\left.n-\left\lceil\frac{d}{2}\right\rceil \right\rvert\,} \\
& \geq d-\left\lceil\frac{d}{2}\right\rceil+1 \cdot\left|u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \\
& =\left|u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil}\right|+\left|v G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil}\right|-\left|u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \cup v G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \\
& \geq n-\left\lceil\frac{d}{2}\right\rceil+1+d-\left\lceil\frac{d}{2}\right\rceil+1-n=d-2\left\lceil\frac{d}{2}\right\rceil+2>0
\end{aligned}
$$

hence $u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \neq \phi$.
So we have $u G_{0}^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G_{0}^{\left.n-\left\lvert\, \frac{d}{2}\right.\right\rceil} \neq \phi$ for all $u, v \in V$.
Note that if $l<n-\left\lceil\frac{d}{2}\right\rceil$, then $a_{\left\lceil\frac{d}{2}\right\rceil} G_{0}{ }^{l} \cap a_{d+1} G_{0}{ }^{l}=\phi$.
Hence $L_{G_{0}}(2)=n-\left\lceil\frac{d}{2}\right\rceil$
Let u be arbitrary vertex belong to V, then there exists a walk of length less than or equal to $n-1$ form u to a_{1}, then $\bigcap_{i=1}^{n} a_{i} G_{0}^{n-1} \neq \phi$. It is easy to see that if $l<n-1$ then $\bigcap_{i=1}^{n} a_{i} G_{0}^{l} \neq \phi$.

Hence $L_{G_{0}}(n)=n-1$. The proof is now completed.

3. The Main Results

Theorem 3.1 Let $G \in P_{n}(d), n, d$ be integers,

$$
n \geq 3,1 \leq d \leq n
$$

then $L(n, 2, d)=n-\left\lceil\frac{d}{2}\right\rceil$
Proof: Let $V=\left\{a_{1}, \cdots, a_{n}\right\}$ be set of vertices of G and V_{1} be subset of V in which each vertex have a loop, $V_{2}=V-V_{1}$. for all $u, v \in V, u \neq v$.

Case $1 u, v \in V_{1}$.

There exists a walk of length less than or equal to $n-\left\lceil\frac{n}{2}\right\rceil$ form u to v (or from v to u), and $n-\left\lceil\frac{n}{2}\right\rceil \leq n-\left\lceil\frac{d}{2}\right\rceil$, then $u G^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G^{n-\left\lceil\frac{d}{2}\right\rceil} \neq \phi$.
Case $2 u, v \in V_{2}$.
Suppose that there be a walk of length equal to $n-\left\lceil\frac{d}{2}\right\rceil$ of $u: u u_{1} u_{2} \cdots u_{s-1} v x_{1} x_{2} \cdots x_{p}$, and there be a walk of length equal to $n-\left\lceil\frac{d}{2}\right\rceil$ of

$$
v: v v_{1} v_{2} \cdots v_{t-1} u y_{1} y_{2} \cdots y_{q}
$$

where $s+p=t+q=n-\left\lceil\frac{d}{2}\right\rceil$.
Let $X=\left\{x_{1} x_{2}, \cdots, x_{p}\right\}$ and $Y=\left\{y_{1} y_{2}, \cdots, y_{q}\right\}$. If there be one vertex of X or Y belong to V_{1}, then

$$
u G^{n-\left[\frac{d}{2}\right]} \cap v G^{n-\left\lceil\frac{d}{2}\right]} \neq \phi
$$

Otherwise, $V-\left\{u, u_{1}, u_{2}, \cdots, u_{s-1}, v, x_{1}, x_{2}, \cdots, x_{p}\right\}$ and $V-\left\{v, v_{1}, v_{2}, \cdots, v_{t-1}, u, y_{1}, y_{2}, \cdots, y_{q}\right\}$ contains at most $\left\lceil\frac{d}{2}\right\rceil$ element of V_{1}. In other word, $\left\{u, u_{1}, u_{2}, \cdots, u_{s-1}\right\}$ contains at least $\left\lceil\frac{d}{2}\right\rceil$ element of V_{1}. Note that G is strongly connected, $u \neq v$. There exists a walk of length less than or equal to $n-\left\lceil\frac{d}{2}\right\rceil$ from v to one vertex of $\left\{u_{1}, u_{2}, \cdots, u_{s-1}\right\}$ which belong to V_{1}. Therefore

$$
u G^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G^{n-\left\lceil\frac{d}{2}\right\rceil} \neq \phi
$$

Case $3 u \in V_{1}, v \in V_{2}$.
There exist a walk of length less than or equal to $n-d$ form v to $x \in V_{1}$, by Lamma 2.2

$$
\begin{aligned}
& \left|u G^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \geq n-\left\lceil\frac{d}{2}\right\rceil+1 \cdot\left|v G^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \\
& \geq d-\left\lceil\frac{d}{2}\right\rceil+1 \cdot\left|u G^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \\
& =\left|u G^{n-\left\lceil\frac{d}{2}\right\rceil}\right|+\left|v G^{n-\left\lceil\frac{d}{2}\right\rceil}\right|-\left|u G^{n-\left\lceil\frac{d}{2}\right\rceil} \cup v G^{n-\left\lceil\frac{d}{2}\right\rceil}\right| \\
& \geq n-\left\lceil\frac{d}{2}\right\rceil+1+d-\left\lceil\frac{d}{2}\right\rceil+1-n=d-2\left\lceil\frac{d}{2}\right\rceil+2>0 \\
& \text { hence } u G^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G^{n-\left\lceil\frac{d}{2}\right\rceil} \neq \phi
\end{aligned}
$$

So we have $u G^{n-\left\lceil\frac{d}{2}\right\rceil} \cap v G^{n-\left\lceil\frac{d}{2}\right\rceil} \neq \phi$ for all $u, v \in V$. Hence

$$
L(n, 2, d) \leq n-\left\lceil\frac{d}{2}\right\rceil
$$

Note that

$$
L_{G_{0}}(2)=n-\left\lceil\frac{d}{2}\right\rceil \text {, }
$$

then

$$
L(n, 2, d)=n-\left\lceil\frac{d}{2}\right\rceil
$$

The proof is completed.
Corollary 3.2 Let $G \in P_{n}(d)$ and n, d be integers, $n \geq 3,1 \leq d \leq n$, then $L(n, n, d)=n-1$.

Proof: Let V be a set of vertices of G and let u be an arbitrary vertex belong to V, then there exists a walk of length $n-1$ from u to x, where x having a loop. Hence

$$
\bigcap_{i=1}^{n} a_{i} G^{n-1} \neq \phi, L(n, n, d)=n-1
$$

Note that $L_{G_{0}}(n)=n-1$ by Lemma 2.4, hence

$$
L(n, n, d)=n-1 .
$$

Applying Lemma 2.3, Theorem 2.1 and Theorem 2.2, we have conclusion.

Corollary 3.3 Let $G \in P_{n}(d), n, k, d$ and be integers, $n \geq 3,2 \leq k \leq n, 1 \leq d \leq n$, then

$$
n-\left\lceil\frac{d}{2}\right\rceil \leq L(n, k, d) \leq n-1 .
$$

Corollary 3.4 Let G be a primitive digraph of order n with girth $s(1 \leq s \leq n-1)$, then

$$
L_{G}(2) \leq s\left(n-\left\lceil\frac{s}{2}\right\rceil\right)
$$

Proof: Since G is a primitive digraph of order n with girth s, then G^{s} is a primitive digraph of order n with exact s vertices having loop. By Theorem 3.1, we have

$$
L_{G}(2) \leq s\left(n-\left\lceil\frac{s}{2}\right\rceil\right)
$$

Theorem 3.5 Let n and d be integers, $1 \leq d \leq n, n \geq 2$, then there exists $Q \in P_{n}(V, d)$ so that $L_{Q}(n, 2)=r$ for arbitrary $r \in\left\{1,2, \cdots, n-\left\lceil\frac{d}{2}\right\rceil\right\}$.

Proof: Let $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$.
We construct $Q \in P_{n}(V, d)$ so that $L_{Q}(n, 2)=r$ for
arbitrary $r \in\left\{1,2, \cdots, n-\left\lceil\frac{d}{2}\right\rceil\right\}$.
Case $1 \quad r=1$.
Let

$$
E_{1}=\left\{\left(v_{i}, v_{i}\right),\left[v_{j}, v_{1}\right] \mid i=1, \cdots, d, j=2, \cdots, n\right\},
$$

$G\left(Q_{1}\right)=G\left(V, E_{1}\right)$. It is obvious that $Q_{1} \in P_{n}(V, d)$ and $L_{Q_{1}}(n, 2)=1$.
Case $22 \leq r \leq n-\left\lceil\frac{d}{2}\right\rceil$.
Case $2.1 r>\left\lfloor\frac{d}{2}\right\rfloor$.
Let $m=r+\left\lceil\frac{d}{2}\right\rceil, 1 \leq d \leq n, 2 \leq r \leq n-\left\lceil\frac{d}{2}\right\rceil$,
Hence $d<m, 3 \leq m \leq n$.
Let

$$
\begin{aligned}
& E_{2}=\left\{\left(v_{i}, v_{i}\right),\left(v_{j}, v_{j+1}\right),\left(v_{m-1}, v_{k}\right),\left(v_{k}, v_{1}\right) \mid i=1, \cdots, d,\right. \\
&j=1,2, \cdots, m-2, k=m, m+1, \cdots, n\} \\
& G\left(Q_{2}\right)=G\left(V, E_{2}\right) .
\end{aligned}
$$

obviously,

$$
Q_{2} \in P_{n}(V, d)
$$

Let $V_{1}=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$, then V_{1} is the set of vertices which is in cycle lengths of m. Let $V_{2}=V-V_{1}$, arbitrary vertex $u, v \in V, u \neq v$. If $u, v \in V_{1}$ or $u \in V_{1}, v \in V_{2}$, by Lemma 2.4,

$$
u Q_{2}^{m-\left\lceil\frac{d}{2}\right\rceil} \cap v Q_{2}^{m-\left\lceil\frac{d}{2}\right\rceil} \neq \phi .
$$

If $u, v \in V_{2}$, then $u Q_{2}^{m-\left\lceil\frac{d}{2}\right\rceil} \cap v Q_{2}^{m-\left\lceil\frac{d}{2}\right\rceil} \supset\left\{v_{1}\right\} \neq \phi$.
If $l<m-\left\lceil\frac{d}{2}\right\rceil$, then $v_{\left\lceil\frac{d}{2}\right\rceil} Q_{2}^{l} \cap v_{d+1} Q_{2}^{l}=\phi$.
Hence $L_{Q_{2}}(n, 2)=r$.
Case $2.2 r=\left\lfloor\frac{d}{2}\right\rfloor$.
Let $m=r+\left\lceil\frac{d}{2}\right\rceil$, then $m=d$.
Let

$$
\begin{aligned}
& E_{3}=\left\{\left(v_{i}, v_{i}\right),\left(v_{j}, v_{j+1}\right),\left[v_{m-1}, v_{k}\right],\left(v_{k}, v_{1}\right)\left(v_{m}, v_{1}\right) \mid i=1, \cdots,\right. \\
& \quad d, j=1,2, \cdots, m-1, k=m+1, \cdots, n\} \\
& G\left(Q_{3}\right)=G\left(V, E_{3}\right) .
\end{aligned}
$$

It is obvious that $Q_{3} \in P_{n}(V, d)$ and $L_{Q_{3}}(n, 2)=r$.
Case $2.3 r<\left\lfloor\frac{d}{2}\right\rfloor$.

Let $m=r+r=2 r$, then $m \leq d$. Let

$$
\begin{aligned}
& E_{4}=\left\{\left(v_{i}, v_{i}\right),\left(v_{j}, v_{j+1}\right),\left[v_{m-1}, v_{k}\right],\left(v_{k}, v_{1}\right)\left(v_{m-1}, v_{t}\right)\left(v_{m}, v_{1}\right)\right. \\
& \quad \mid i=1, \cdots, d, j=1,2, \cdots, m-1, k=m+1, \cdots, n, \\
& \quad \quad s=d+1, \cdots, n, t=m+1, \cdots, d\} \\
& G\left(Q_{4}\right)=G\left(V, E_{4}\right) .
\end{aligned}
$$

It is obvious that $Q_{4} \in P_{n}(V, d)$ and $L_{Q_{4}}(n, 2)=r$.
The proof is now completed.
Remark 3.6 By Theorem 3.5, we obtain that the set of the 2 - common consequent of primitive digraphs of order n with exact d vertices having loop is

$$
\left\{1,2, \cdots, n-\left\lceil\frac{d}{2}\right\rceil\right\} .
$$

But, in Theorem 3.5, $Q \in P_{n}(V, d)$ is not unique.

Example.

Let
$n=7, d=5, r=3, V=\{1,2,3,4,5,6,7\}$,
$E_{5}=\{(i, i),(j, j+1),(6,1),(7,1),(5,7) \mid i=1,2, \cdots$,
$5, j=1, \cdots, 5\}$
$E_{6}=\{(i, i),(j, j+1),(6,1),(7,1),(5,7),(3,2) \mid i=1,2, \cdots$,
$5, j=1, \cdots, 5\}$
$G\left(Q_{i}\right)=G\left(V, E_{i}\right), i=5,6$.
Obviously,

$$
Q_{i} \in P_{7}(V, 5), i=5,6 . \quad L_{Q_{5}}(7,2)=L_{Q_{6}}(7,2)=3,
$$

but $M_{5}=M\left(Q_{5}\right)$ and $M_{6}=M\left(Q_{6}\right)$ are not isomorphic digraph.

REFERENCES

[1] S. Schwarz, "Common Consequents in Directed Graphs," Czechoslovak Mathematical Journal, Vol. 35, No. 110, 1985, pp. 212-246.
[2] B. L. Liu, " k - Common Common Consequents in Boolean Matrices," Czechoslovak mathematical Journal, Vol. 46, 1996, pp. 523-536.
[3] R. A. Brualdi and B. L. Liu, "Generalized Exponents of Primitive Directed Graphs," Journal of Graph Theory, Vol. 14, No. 4, 1990, pp. 483-499. doi:10.1002/jgt. 3190140413
[4] S. Schwarz, "A Combinatorial Problem Arising in Finite Markov Chains," Mathematica Slovaca, Vol. 36, 1986, pp. 21-28.
[5] B. Zhou, "The Upper Generalized Exponent of a Digraph," Advances in Mathematics, Vol. 6, 2000, pp. 499506.

