
American Journal of Computational Mathematics, 2012, 2, 287-294 
http://dx.doi.org/10.4236/ajcm.2012.24039 Published Online December 2012 (http://www.SciRP.org/journal/ajcm) 

Face Recognition from Incomplete Measurements via 
ℓ1-Optimization 

Miguel Argaez1*, Reinaldo Sanchez2, Carlos Ramirez2 
1Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, USA 

2Program in Computational Science, The University of Texas at El Paso, El Paso, USA 
Email: *margaez@utep.edu, rsanchezarias@miners.utep.edu, caramirezvillamarin@miners.utep.edu 

 
Received May 15, 2012; revised August 5, 2012; accepted September 12, 2012 

ABSTRACT 

In this work, we consider a homotopic principle for solving large-scale and dense  underdetermined problems and 

its applications in image processing and classification. We solve the face recognition problem where the input image 
contains corrupted and/or lost pixels. The approach involves two steps: first, the incomplete or corrupted image is sub-
ject to an inpainting process, and secondly, the restored image is used to carry out the classification or recognition task. 
Addressing these two steps involves solving large scale  minimization problems. To that end, we propose to solve a 

sequence of linear equality constrained multiquadric problems that depends on a regularization parameter that con-
verges to zero. The procedure generates a central path that converges to a point on the solution set of the  underde-

termined problem. In order to solve each subproblem, a conjugate gradient algorithm is formulated. When noise is pre-
sent in the model, inexact directions are taken so that an approximate solution is computed faster. This prevents the ill 
conditioning produced when the conjugate gradient is required to iterate until a zero residual is attained. 
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1. Introduction 

Over the last years, new developments in the area of 
computational harmonic analysis have shown that a wide 
class of signals can be well represented by linear combi- 
nations of only few elements of an appropriate basis. The 
benefits and applications of this new advance abound and 
are of extensive research in the present. 

The new sampling theory of compressed sensing has 
unified several insights about wavelets and sparse repre- 
sentation, benefiting several disciplines in sciences in- 
cluding image processing. Practical compressed sensing 
problems involve solving an optimization problem of the 
form 

0
min  subject to ,

x
x Ax b        (1) 

for decoding a sparse signal  that has been sig-
nificantly sub-sampled by a sampling matrix 

nx  �
m nA �  

with  Here .m n
0

x  counts the number of non-zero 
entries of the vector .x  

Solving (1) is equivalent to finding the sparsest vector 
x such that .Ax b  Nevertheless, finding such a vec- 
tor x is by nature a combinatorial and generally NP-hard 

problem [1]. Efficient numerical algorithms to recover 
signals under this framework have been developed [2-4], 
and extensions of this theory have been explored for 
solving general problems in different areas including 
statistics, signal processing, geophysics, and others. Sig- 
nificant progress toward understanding this problem has 
been made in recent years [5-7], and its study has be- 
come state-of-the-art interdisciplinary research. 

One of the most important characteristics of problem 
(1) is that under some mild conditions, the input vector 
x  can be recovered by solving an -norm underde- 
termined problem 

1

1
min  subject to .

x
x Ax b        (2) 

This decoding model in compressed sensing is known 
as the basis-pursuit problem, first investigated by Chen, 
Donoho and Saunders [8] and theoretically studied by 
Donoho and Huo [9]. Candès and Tao [5] proved for- 
mally this equivalence provided that x  is sufficiently 
sparse, and that A possesses certain properties. 

The compressed sensing theory is extended to solve a 
more general problem that considers noise on the meas-
urements, and almost sparsity for the input vector to be 
recovered. That is, *Corresponding author. 
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1
min  subject to ,

x
x Ax b         (3) 

where the energy of the noise vector is upper bounded by 
.  
Problem (3) can also be reformulated as an uncon- 

strained regularized linear least-squares problem. One 
strategy consists of replacing the Tikhonov regularization 
with one that uses the 1 -norm [2,4]. Another equiva- 
lent formulation is aimed at minimizing the 1 -norm 
function regularized by a linear leasts-quares problem [3], 
known as unconstrained basis pursuit denoising. All 
these approaches have proved to be successful for solv- 
ing compressed sensing problems. 



We reformulate problem (3) by 

1
min  subject to ,

x
x Ax b       (4) 

where  is bounded by m � .  
In this work we propose a new strategy to obtain an 

optimal solution to problem (4), and present an applica- 
tion in robust face recognition to demonstrate the effect- 
tiveness of our algorithm. The idea consists of relaxing 
the nondifferentiable objective function by a sequence of 
multiquadric, continuously differentiable, strictly convex 
functions that depend on a positive regularization pa- 
rameter .  More precisely, we solve 

2

1

min  subject to .
n

x i

x Ax b 


       (5) 

The main accomplishment of this idea is that it leads 
to the generation of a path that converges to an optimal 
solution of problem (4). This leads us to a path-following 
algorithm similar to the ones used in primal-dual inte- 
rior-point methods. The path-following strategy that we 
are proposing uses inexact fixed-point directions to ob- 
tain approximate solutions to problems of the form (5). 
Such inexact directions are computed via a conjugate 
gradient algorithm. In order to prevent the procedure 
from becoming costly, a proximity measure to the central 
path is introduced for each regularization parameter. The 
regularization parameter is defined in a dynamic manner 
that converges to zero as in interior-point methods. 

2. Problem Formulation 

We study the  underdetermined problem (4), where  1
m,nx �   ,b �

11
,

n

ii
x x


   and A  is a full-rank  

matrix with .  The Lagrangian function associated 
with problem (4) is 

m n

   T

1
, ,l x y x Ax b y     

where  is the Lagrange multiplier for the equal-
ity constraint. The optimality conditions for (4) are given 
by 

my �

 

   

   

   

T

T

*

T

1   if 0,

1      if 0,
, :

and 

1,1  if 0,

ii

in m i

ii

A y x

A y x
X x y

Ax b

A y x



 

 
  



 

.

    
 
        

   
  

     

�  

Notice that the main role in the characterization of the 
optimal conditions for problem (4) is not played by the 
Lagrange multiplier ,y  but by .TA y  Using this fact, 
the complementarity conditions associated with the pri-
mal variables ix  are determined by 

 
 

T

T

0 with 1  if 0

0 with 1  i

.

f 0.

i i i ii

i i i ii

x z z A y x

x z z A y x

    

    

    


   

 

Therefore a necessary condition for a feasible point 
 , n mx y  �   to be an optimal solution of (4) is 

T

1

0, 0 and  0.
n

i i
i

x z x x z A y 



           

3. A Regularization Path 

The nondifferentiability of (4) is overcome by regulariz-
ing the 1 -norm with a sum of continuously differenti-
able functions in the following way: for 


0   suffi- 

ciently small,  11

n

ii
x g x


   where g  is the scalar  

function defined by 

  2 , .i i ig x x x  �  

3.1. Optimality Conditions 

We propose to obtain an optimal solution to problem (4) 
by solving a sequence of subproblems of the form (5) as 

0.   
Since each subproblem (5) is strictly convex, then the 

optimal solution is obtained by solving the associated 
KKT conditions. The Lagrangian function associated 
with (5) is  

   T2

1

, ,
n

i
i

l x y x Ax b y 


         (6) 

where my �  is the Lagrange multiplier for the equal-
ity constraint. Therefore, the KKT conditions are given 
by the following square system of nonlinear equations: 

    1 2 T 0
, ,

0
D x x A y

F x y
Ax b






       
     

    (7) 

where    2diag  for 1,2, ,  and 0.iD x x i n         

3.2. A Fixed Point Problem for the KKT 
Conditions 

We propose to solve (7) using a fixed-point method. To 
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that effect, we rewrite these nonlinear equations as the 
augmented system  

  1 2 T 0
,

0

xD x A
y bA





     
           

    (8) 

where   ,nx� ,my �    2diag ,iD x x     

1,2, , ,i n   and 0.   
The matrix associated with (8) is nonsingular since A  

has full rank and  1 2D x
  is positive definite. In this 

manner, the nonlinear Equation (7) is posed as a fixed- 
point problem. In order to solve (8) for a fixed 0,   
we proceed by taking an initial point 0x  and iteratively 
compute  ,k k k x y   for  until two con- 
secutive iterations are less than some stopping criteria. 

0,1,k  

3.3. Inexact Directions for the Augmented 
System 

For a current point _,x  the following system 

  1 2 T 0_
,

0

xD x A
y bA





     
           

   (9) 

is reduced to a weighted normal equation. The first block  

of equations gives  1 2 T_ 0,x D x A y   and since  

,Ax b   we obtain the weighted normal equation 

 1 2 T_ .AD x A y b             (10) 

With this reduction, we move from an indefinite sys- 
tem of order  to a positive definite system of or- 
der  Moreover, the conjugate gradient algorithm ap- 
plied to (10) converges in at most  iterations in exact 
arithmetic. The solution 

n m
.m

m
x  of (9) is computed directly  

by  1 2 T_ x D x A y   once  is obtained. y

Taking into account that the values of TA y  charac- 
terize the optimality set * ,X  we formulate a conjugate 
gradient algorithm that finds an approximation of TA y  
rather than y, see Figure 1. 

At each iteration, the CG algorithm satisfies the first  

block of equations  1 2 T_ 0,D x x A y    therefore  

controlling the stopping criteria for solving the aug-
mented system (9) is equivalent to controlling the stop-
ping criteria for solving the linear system 0.Ax b     

we define the vector  0, n mrBased on this,  �  as the 
or for the augmented system, where  

.r Ax b
residual vect

    Note that 0r   implies 

.Ax b    Now, since   is bounded by ,  then  

the conjugate hmgradient algorit  stops when  
.Ax b    This implies the stopping criterio
zero, overcoming the ill-conditioning of the 

 

Figure 1. Conjugate gradient algorithm. 

4. Path

l path associated with problem (4) 

 Following Method 

4.1. Central Path 

We define the centra
by  

   1 2 T 0D x x A y
C



, : .
0

n mx y
Ax b

   
 

 


        
     

�  (11) 

The set consists of all the points that are sol
of the su blem (5) for 

C  
bpro

utions 
0. 

) as t

 This set defines a 
smooth cur  called the central path that converges to an 
optimal solution of problem (4 he regularization pa- 
rameter 

ve

  tends to zero [10]. 

4.2. Pro mity Measures xi

ollows in the direction 
sequence f regularization 

Our path-following method f
generated by a decreasing 

C  
 o

parameters   Since moving on C   obtain an opti-
mal solution for (4) could be computationally expensive, 
we restrict th iterates to some neig orhoods of the cen-
tral path given by 

to

e hb

1
: .

1k

j jn m
j k

j



 
 




     
  

�    (12) 

4.3. Updating the Perturbation Parameter 



Since T 0x z    is a necessary condition for obtain
optimal solution of problem (4), then following th

ing an 
e same 

 primal-idea of dual methods we define the regularization 
parameter by 

n does not 
need to be 
weighted normal equation close to the solution. 

T

,
x z 
 

                (13) 
n

where T, ,x x z A y    1    is the centering pa- 
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 0,1 ,rameter in  and is the
able 

 n   size of the primal vari- 
.x  T guarantee the decreo  ase of the parameter ,  

we update it by  prev  where mi n ,  0,1   
and prev  de s the p vious value for the regularize- 
tion parameter. 

Now, we present a global orithm for so  
the convex and nondifferentiable problem (4). The 
methodology consists in following the central path C  
to 

note re

ization alg lving

obtain an optimal solution. To prevent the algorithm 
from becoming computationally expensive a series of 
neighborhoods, ,

k
  around the central path are de-

fined to be used as proximity measures of the path for a 
decreasing regularization parameters .  To obtain an 
approximate solution on the path for a given 0,   an 
inexact fixed-point procedure is applied to (8) until a 
point  , .x y   If an optimal solution to (4) is not 
found, we decrease ,  specify a new neighborhood 

  and repeat the fixed-point procedure. An optimal 
solutio found as ,n for (4) is   approaches to zero. For 
the primal variables x  we define their corresponding 
complementarity variables z  such that 0i ix z    and 

0iz   for 1, ,i n   at the optimal solution of prob- 
lem (4). This allows us to define the regularization pa- 
rameter   in the same manner as in interior-point 
methods. 

4.4. Path Following Algorithm 

In this sec
ry” (

tion we
PFSR

 prese t our “Path-
) algo ithm. The pseu

2. 

n
r

Following
Recove do-cod

 Sign
e for

al 
m of 

the algorithm is presented in Figure 
The PFSR algorithm generates two sequences of iter- 

ates. The first sequence (inner loop) generates a series of 
iterates for obtaining an approximate solution of sub- 
problem (5) for a fixed regularization parameter 0.   
The second sequence (outer loop) generates a series of 
approximate solutions for the subproblem (5) that con- 
verges to an optimal solution of problem (4) for a se- 
quence of decreasing regularization parameters 0.   

5. Sparse Signal Recovery 

In this section, we present a set of experiment ltal res
AB im

u s 
ple-that illustrate the performance of th

m. 
e MATL

mentation for the proposed algorith
In the implementation of Algorithm 1 the initial points 

and the parameters are chosen as follows. In Step 1a, the 
initial points for TA y  and x  are the n-dimensional 
zero vector. In Step 2, we fix the maximum number of 
CG iterations by cg_maxiter = 10. 

In the implementation of Algorithm 2 the parameters 
are chosen as follows. The initial regularization parame-
ter   is given by 

 T1 ,
n

i i
1i

x A b    


 

Figure 2. PFSR algorithm. 
 
where x  is the minimum energy reconstruction. Our 
num perimentation suggests erical ex 0.008 

0 as the 
 (5) to

 
m
as a 

In Step 3, we axi-
um ber o  solve. 

good choice. 
 num

set maxiter = 1
f subproblems of the formm

The new regularization parameter   is updated in Step 
10 by  min ,gap    with 0.9.   

5.1. Sparse Signal Recovery Example 

This experimentation has the obje ive of investigating 
the cap g sparse

ct
ability of recoverin  signals by our PFSR 

algorithm. The goal in this test is to reconstruct a 
re m < n. length-n sparse signal from m observations, whe

We start with a classical example also considered in 
[2,4,11]. The problem consists of recovering a signal 

4096x�  with 160 spikes with amplitude ±1, from m = 
1024 noisy measurements. We use a partial DCT matrix 
A whose m rows are chosen randomly from the n n  
discrete cosine transform, without having access to it in 
explicit form, but using A as a linear operator on .n�  
The same for the matrix T.A  Partial DCT matrices are 
fast transforms for which matrix-vector multiplications 
cost just  logO n n  flops, and storage is not required. 
This case is common for compressed sensing [3,4].  
this problem, we have ,mAx   �  where the 
noise vector 

In
b

  is set according to a Gaussian distribu- 
tion with mean 0 an  standard deviation 0.01. The origin- 
nal and reconstructed signal are shown in Figure 3. 
Moreover, the algorithm was successfully run one hun-
dred times wit  an average CPU time of 0.2895 seconds, 
and 0.0491 average relative 2-norm error defined by 

d

h

2

2

2-norm error ,
x x

x






  

being x  the true solution and x the solution reached by 
m. the PFSR algorith

Copyright © 2012 SciRes.                                                                                AJCM 



M. ARGAEZ  ET  AL. 291

 Original signal x0 
1 

0.5 

0 

–0.5 

–1 

1 

0.5 

0 

–0.5 

–1 

0         1000        2000        3000        4000
PFSR Solution 

0         1000        2000        3000        4000  

Figure 3. Signal reconstruction. 

5.2. The Effect of Noise 

For the same test problem described above, we run the 
algorithm considering the noiseless case, and zero mean 
Gaussian no arying from 
0.01 to 0.04. The stopping criterion for the conjugate 

ed by the noise level as ex- 

ro- 
blems for instance, an input sample can usually be ex- 

at 
is, be expressed as a linear 

ise with standard deviations v

gradient residual is determin
plained in Section 3.3. In all cases we successfully re- 
cover the original signal after a process of thresholding. 
Table 1 reports the results for this experimentation 
showing that the algorithm is also effective for solving 
noiseless sparse recovery problems. Moreover, success- 
ful recovery was obtained with noise level up to 0.04. 

6. Sparse Representation in Classification  
and Image Processing 

There exist a number of areas where the sparse represent- 
tation model (4) emerges naturally. In classification p

plained from few other previously trained samples. Th
an incoming sample b can 

combination of only few columns  , 1, , ,iA i n    
where the matrix ,m nA �  ,m n  is a matrix whose 
columns are previously trained samples. 

On the other hand, natural images can be efficiently 
encoded in an appropriate basis that exploits the hight 
correlation present between pixels. Among many emerg-
ing class of transformations, the Di crete Cosine Trans-
form (DCT) and Discrete Wavelet Transform (DWT) are 
a 

s

0.01 0.02 0.03 0.04 

standard basis where natural images can be sparsely 
represented. This property has been extensively studied 
in recent years, leading to a construction of new models 
for images where the sparsity is incorporated in the 
model as a regularizer. 

6.1. Classification 

In pattern recognition and machine learning, a classifica-  

Table 1. Performance considering different setups for noise. 

Noise 0.00 

2-norm error 0.016 0.063 0.121 0.208 0.294 

Recovery %100  %100  %100  %100  %100  

Time [s] 0.4056 0.3432 0.3744 0.4056 0.4836

 
tion m consists of ng ri or -
in np a t of al rie
ma  an da f  
labels/classes 

proble  findi an algo thm f assign
g a given i ut dat o one  sever catego s. For-

 1w , nw, ,W   lly, given  input taset, a set o

 , ,nt1,tT   tr g and a ainin dataset  

  , : 1,t i n  i i i

of the sample ,iu  a classifier is a mapping f from W to T, 
assigning the correct label t T  to ut w, that 
is, 

D u  such that  is the label/class 

 a given inp

t

 , .f D w t  
Consider a tra  inin  , : 1, , ,i iu t i n    g data set 

 , 1, 2, ,d
i iu t N � 

N 
,  with n being the number of 

samples and the number of classes. The vector 
,d

iu  �  represents the ith sample, and it  is the corre-
sponding label. 

The sparse representation p
ple ,db �  find the sparsest  

vector 
T

1 2,, , n

roblem is formulated as 
follows: For a testing sam

x x x x     such that 

1 1 2 2 .n nb x u x u x u          (14) 

 sampl
erefore inducing a rse representation. 

rrange the given samples from the 
same i-th class as the colum s of a submatrix 

 

We show that indeed a valid test sample can be repre- 
sented using only the training es from its same 
class, th  natural spa
Let us rea training in  

n  

,1 ,2 ,, , , .i

i

d n
i i i i nu u u     �  In other words, we group 

all of those samples with the same label into a matrix 
.i

A

A  Any test sample b from the same class will be rep-
resented as a linear combination of the training samples 
associated with class i:  

,1 ,1 ,2 ,2i i i ib x u x u , , ,i n i nx u
i i

          (15) 

for some values of , , 1, , .i j ix j n �   Now, making 
use of the whole training dataset, we define a d n  
matrix A by concatenating all of the n training samples of 
the different N classes, that is  1 2, , , .NA A A

entation of the test sample 
A

b t
 Then, 

the linear repres
: 

hat belongs 
to class i is written by

,b Ax                  ( ) 

where 
T

,1 ,20, ,0, , , , ,0i ix x x     Thus, 

the test sample b is expressed by a sparse linear combi- 
nation of the training 

16

  �

samples, more specifically, as a 
linear combination of only th
longing to the same class. This motivates us to formulate 
the following problem: 

, , ,0 .
i

n
i nx 

ose training samples be- 
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1
min subject to ,x Ax b      (17)

follows the same structure as (2). 

. 

6.1.1. Discriminant Functions and Classifier 
s computed, we 

 

which 
One of the advantages of this formulation is that the 

lack of robustness with respect to outliers can be over- 
come. Furthermore, we do not need to care for model 
selection as in support vector machine approaches for 
classification problems [13]

Once the sparse representation vector x i
identify the class to which the testing sample b belongs. 
The approach consists in associating the nonzero entries 
of x with the columns of A corresponding to those train- 
ing samples having the same class of the testing sample b. 
The solution vector x is decomposed as the sum of 
d-dimensional vectors ˆ ,kx  where ˆkx  is obtained by 

h class k keeping only those entries in x associated wit
and assigning zeros to all the other entries. Then, we de- 
fine the N discriminant functions 

  2
ˆ , 1, , .k kg b b Ax k N       (18) 

Thus, kg  represents the approximation error when b 
is assigned to category k. Finally, we assign b to the class 
with the smallest approxi tion error. That is, ma

  ˆ arg min , 1, , .kt g b k N      (19) 

In this manner, we identify the class of the test sample 
b based on how effectively the coefficients as
with the training samples of each class recreate b. 

red by its 
error rate on the entire population. Cross Valida
statistical method for evaluating performance i
th

eing validated. 

sociated 

6.1.2. Cross Validation 
A classifier performance is commonly measu

tion is a 
n which 

e data is divided in two sets: one used for the training 
stage, and the second one used for testing (validation). 
Both training and testing sets should cross-over in con- 
secutive rounds in such a way that each sample in the 
data set has a chance of b

In the case of K-fold cross validation, a K-fold parti- 
tion of the dataset is created by splitting the data into K 
equally (nearly equal) sized subsets (folds), and then for 
each of the K experiments, K − 1 folds are used for 
training and the remaining one for testing. A common 
choice for K-Fold cross validation is K = 10. The work in 
[12], compares several approaches for estimating accu- 
racy, and recommends stratified 10-fold cross-validation 
as the best model selection method because it provides 
less biased estimation of the actual accuracy. In our nu- 
merical experimentation we follow this validation ap- 
proach to test the performance of the classification algo- 
rithm. 

6.2. Image Processing 

In many practical image processing applications, we are 
interested in recover a target image ,nu �  that has 
been subject to a degradation processes modeled as 

,b Hu                 (20) 

where mb �  is the degraded image,   is additive 
noise of certain distribution, and H is a linear operator 
that acts on the target image u. For instance, H can be a 

odels atmospheric turbulence, 
n process due to movement. 

 whic

the image. Consequently, addition
in orde

convolution operator that m
or defects on the acquisitio

From a point of view of parameter estimation, problem 
(20) corresponds to an inverse problem h is very 
difficult to solve due to the ill-conditioning nature of H 
and the large number of degrees of freedom present in 

al information is re-
quired r to obtain a meaningful solution to (20). 
This is accomplished with the 1  norm regularization, 
and our problem becomes 

1
min subject to  ,

x
x H x b      (21) 

where   is an sparsifying matrix for u, and x is a 
sparse vector of coefficients. That is, .u x   

When H models a process of missing information, it 
receives the name of mask, and is constructed by remov- 
ing from the n n  identity matrix, the n − m rows asso- 
ciated with the missing data. In this setting, we consider 
that n − m pixels has been lost, leading to an incomplete 
image .mb �  

7. Robust Face Recognition 

rrup d. 
man faces from the 
ambridge University 

In this section, we demonstrate the effectiveness of the 
proposed lgorithm by showing a rea a l application in ro- 
bust face recognition. The challenge consists in auto- 
matically identify an input human face image within an 
existing database of several individuals [14]. Further-
more, we assume that the input image has been subject to 
a data loss process, or that several of its pixels has been 
severely co te

We consider the database of hu
AT&T laboratories in Cambridge (C
Computer Laboratory)1 which consists of 400 images of 
40 individuals each of which with ten different images. 
For some individuals, the images were taken at different 
times, lighting and facial expression. The size of each 
image is 112 92  pixels with 256 gray levels in a pgm 
format. 

The proposed approach involves two steps. First, the 
test image containing several corrupted or lost pixels is 
reconstructed via inpainting. To that end, we solve prob- 
lem (21) where b is the corrupted test image,   is the 
wavelet Daubechies level 7 matrix, and H is the matrix 
1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 
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f the tra
e. Both processes are carried out by solving an 

ro

ach of which 
so

2) s and 3) Corruptive vertical 
lin

) re- 
sp

e 
tation that shows that our 

 efficiently when recov- 

ering large signals with noisy data. The sparse represent- 
tation approach is applied to a face recognition problem 
where the data is incomplete and/or corrupted. An in- 
painting procedure is carried out for reconstructing the 
input image, and then a classification process is per- 
formed in order to identify the correct individual. Both 
processes are accomplished with the proposed algorithm 
for 1  minimization problems, achieving a high recog- 
nition rate. 



(mask) associated with the missing pixels. 
Secondly, we exhibit the reconstructed test image to a 

training dataset in order to find the sparsest linear com-
bination o ining samples that better represents the 
test imag

1  minimization problem. 
Figure 4 depicts the recognition process where the test 

image is corrupted by two different kind of masks. 
In our numerical experiments, we perform a c ss vali- 

dation scheme in order to assess a recognition rate for a 
total of 10-fold cross validation runs, e



lves 40 test problems. None of these experiments in- 
cluded the test image in the training dataset. We consider 
three different types of corruptive masks: 1) Random 
missing pixels uniformly distributed over the test image, 

 Corruptive horizontal line
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es. Despite Figure 4 shows two corrupt test images 
with a total of 34.12% (top) and 15.18% (bottom

ectively, in our numerical experiments we consider a 
percentage of lost data ranging from 5 to 40%. The av- 
erage recognition rate obtained after the cross validation 
experiments was 97.25%, and Table 2 reports each of 
these rates per fold. 

In Figure 5 one can notice that the solution vector x 
for problem (17) is sparse, and its nonzero components 
mark those training samples iu  in the dictionary A that 
are from the same class of the test sample b, that is, those 
other pictures of the individual b in the training dataset. 

8. Concluding Remarks 

In this work we present a novel methodology for solving 
large-scale and dense   underdetermined problems. 
Fo

Figure 4. Classification scheme. 
1  r solving the large-scale and dense linear systems as- 

sociated with the problem, a conjugate gradient algo- 
rithm is formulated. The regularization parameter is im- 
plemented in the same fashion as in interior-point meth- 
ods by characterizing the complementarity variables as- 
sociated with the primal variables of the problem. W

Table 2. Recognition rate per fold. 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Recognition rate 100% 97.5% 95% 97.5% 95% 

 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Recognition rate
present a numerical experimen
algorithm is capable to perform

%95  %100  %95  %100 %97.5
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Figure 5. Sparse linear combination. 
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