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ABSTRACT 

This paper deals with vibrations of structures subjected to moving inertial loads. In literature structures are usually sub-
jected to massless forces. In numerical applications, however, the direct influence of the inertia of a moving object is 
usually neglected since the characteristic matrices, although simple, can not be easily derived. The paper presents a di-
rect, non-iterative treatment of the motion of a mass along the finite element edge. The general characteristic matrices 
of finite elements that carry an inertial particle are given and can be applied directly to almost all types of structures. 
Numerical tests and a comparison with examples from the literature and especially with analytical results, prove the 
efficiency and accuracy of our analysis. 
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1. Introduction 

Increasing the speed and weight of vehicle gives rise to 
new problems, poorly studied as of yet. These are mainly 
the adverse exploitation effects caused by wave phe-
nomena. Problems show up when we perform computer 
simulations. In the case of wave problems, the numerical 
description of moving inertial loads requires great mathe-
matical care. Otherwise we get a wrong solution. There is 
no commercial computing package that would enable the 
direct simulation of moving loads, both gravity and iner-
tia. Perhaps this is due to the lack of universal matrices 
describing such moving inertial loads. 

Analytical and semi-analytical results for simply sup-
ported or cantilever beams under a moving mass are 
known [1-4]. This solution is based on the classical 
separation of variables. It results in the finite trigonomet-
ric series which fulfils boundary conditions. The inter-
esting solution to the problem of interaction between 
moving bodies and structures is essentially simplified 
owing to separation of the two objects [5]. However, 
with more realistic structures usually the finite element 
approach is applied. Accurate results are fundamental for 
decisions at a design stage. An accurate estimation of the 
dynamic influence is essential for proper modelling. Ac-
curate results are important not only for increasing the 
durability and reliability of systems: predicting the level 
of the dynamic response of structures under a moving 
load allows of protecting the environment, especially 

populated urban centres or historical places. 
The development of computer methods has led to a se-

ries of works on numerical calculations, especially using 
the finite element method. This method is much more 
versatile than analytical or semi-analytical methods. Pa-
pers discussing moving loads with constant or periodic 
amplitude [6,7] rely on the step by step modification of 
the right hand side vector of the resulting system of alge-
braic equations. The results have been presented in pa-
pers devoted to modelling the motion of a vehicle as a 
group of oscillators [8-10]. These problems require the 
coincidence of displacements and forces of two subsys-
tems: the main structure and the moving oscillator. For 
the balance of the respective quantities in both systems, a 
simple iterative procedure is applied. The convergence of 
such an iterative scheme is limited to a certain range of 
parameters, such as the travelling velocity, stiffness of 
the structure, inertia, and especially the time step. Other-
wise the iterative procedure must be more complex and 
time consuming. In addition, the oscillator can not re-
place the point mass. In the limiting case of infinite 
spring stiffness, it has been shown that the moving oscil-
lator problem for a simply supported beam is not equiva-
lent, in a strict sense, to the moving mass problem [11]. 

The insertion of the inertia of the moving load effect 
requires not only modification of the right hand side 
vector, but also selected parts of the global inertia, 
damping, and stiffness matrices of the system, at every 
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time step. The first study to discuss the influence of the 
inertia of a moving mass was reported in [12]. An inertial 
load moving at a constant speed on the Euler beam was 
considered. Further works [13-15] are also related to 
beams or plates in which the nodal parameters are inter-
polated by cubic polynomials. Let us apply them to the 
pure hyperbolic equation of the string vibrations. Unfor-
tunately, the results there are wrong. Simulations fail 
because of the divergence of the solution. 

In literature, we can also find examples of the space- 
time finite element method applied to moving loads. The 
idea is based on the equilibrium of the energy of a struc-
ture in time interval (Figure 1). 

It is based on the weak formulation and allows us to 
solve much more complex problems, including moving 
concentrated physical parameters. This approach was 
successfully applied to simple moving mass problem, 
solved by discrete methods [16,17]. 

Although the space-time approach in the case of a dif-
ferential equation with constant coefficients and station-
ary discretization results in practically the same algo-
rithms as classical time integration methods, most engi-
neers chose methods of the Newmark group for compu-
tations. A simple modification of the inertia matrix by 
adding the AD hoc moving mass lumping in nodes in the 
Newmark algorithm or direct differentiation of the accel-
eration of the mass particle according to the moving ar-
gument and then incorporation of the resulting matrices 
to the solution scheme fail. 

The practice of numerical simulations, however, re-
quires simplicity and efficiency of procedures. Charac-
teristic matrices for an inertial particle should be capable 
of being easily incorporated into computer procedures. 
Thus all existing commercial codes would gain new pos-
sibilities of calculations. We will focus our attention on 
this aim. 

We will derive correct matrices which can be applied 
to discrete solutions by methods of the Newmark group 
of all types of differential equations, especially a string, 
the Bernoulli-Euler beam or the Timoshenko beam. They 
differ from matrices used in literature. Numerical tests  

 

 

Figure 1. The mass trajectory in space and time. 

and a comparison with test examples published so far are 
given. 

2. Mathematical Model 

Let us consider differential equations of structures con-
taining a concentrated mass. We will focus our attention 
on the term which describes forces induced by a moving 
inertial particle. In the case of a string we can write the 
equation in the form: 
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Here,  ,w x t  is the vertical deflection of the mid- 
line, m is the moving mass, N is the tension of the string, 

A  is the mass density per unit length, P is the external 
point force, and there is usually a gravitation force mg. 
The position of the moving point can be described with a 
quadratic function with respect to time 

  2
0

1
=

2
f t x vt vt                (2) 

where 0x  is an initial position of the mass. v and v  
denote the mass velocity and acceleration respectively. 

We impose initial conditions  ,0 0w x  ,  
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0
, 0

t
w x t t


    and boundary conditions  0, 0w t  , 
 , 0w l t  . 
The Bernoulli-Euler beam is described by the equation 
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with initial conditions  ,0 0w x  ,  
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   2 2 2 20, 0, , 0,w t x w l t x       and the Timoshen- 
ko beam 
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with the same boundary and initial conditions as for the 
Bernoulli-Euler beam. Here, EI is the bending stiffness, 
GA k  is the shear stiffness, I  is the rotatory inertia 
of the cross section of the beam, and   is the angle of 
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rotation of the cross section. 
In each type of problem we have identical inertial 

terms      2 2d , dx f t m w f t t t  . Below we will 
consider only this term, since the remaining parts of the 
equations are treated in the classical way by the finite 
element method. 

Let us follow the direct derivation commonly carried 
out in the literature. The acceleration of a mass particle 
moving at a varying speed v in the space-time domain is 
described by the Renaudot formula 
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where  f t  describes the position of the load. The above 
formula represents simply the chain rule of derivation. 
The corresponding parts of the equation describe the lat- 
eral acceleration, Coriolis acceleration, centrifugal accel- 
eration and acceleration associated with the change of 
particle velocity. These names are generally not adequate 
in the case of all structures. Let us compare two different 
problems: the vibrations of a string and longitudinal vi- 
brations of a bar. In both cases we have the identical 
governing equation. However, in the case of longitudinal 
displacements we can not call the forces described by 
terms of the equation as centrifugal or Coriolis. 

3. The Finite Element Carrying the Moving 
Mass Particle 

We must underline here that the derived matrices con-
tribute only the point mass effects. They must be simply 
added to classical matrices elaborated for a structure, i.e. 
for a string or a beam. The full discrete motion equation is 
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Here, M is the inertia matrix of a structure, Mm is a 
moving mass matrix, added only to the inertia matrix of 
the element on which it travels. The same occurs in the 
case of a damping matrix of the structure C and the point 
mass Cm, and in the case of a stiffness matrix of the 
structure K and the point mass Km. The vector 1iF   is 
the vector of external forces established in time 1it   and 

i
me  is the right hand side vector resulting from the the 

mass inertia term, established at the beginning of the 
time interval  1,i it t  . We will concentrate our attention 
on the mass influence only, thus we will derive matrices 
Mm, Cm, Km, and i

me  in the equation 
1 1 1i i i i

m m m mM w C w K w e              (7) 

The matrices of the finite element that carry the iner- 

tial particle are composed from two sets: matrices de-
scribing the element of a structure and matrices that in-
corporate the mass influence. Since the elemental matri-
ces are commonly known, below we will consider only 
the influence of the moving mass. 

The solution of this problem concerns a mass particle 
moving on a general finite element. This can be applied 
to all types of structures: strings, beams, plates, shells, 
etc. Below we will derive the resulting matrices which 
will then be applied and tested with an Euler and a Ti-
moshenko beam. 

Let us consider a finite element of length b of the edge 
of the mass trajectory. The mass particle m passes 
through the finite element with a varying velocity v in the 
time interval h, starting at the point 0x x  (Figure 2). 

The equation of virtual energy which describes the 
motion of the inertial particle can be written in the fol-
lowing form 
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d
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where a virtual displacements  w x  can be described 
with a function 

  1 21
x x

w x w w
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           (9) 

Quantities marked by  *.  refer to a virtual state. w1 
and w2 are nodal transverse virtual displacements at the 
ends of a finite element. We take first-order polynomials 
as the shape functions describing the interpolation of the 
displacements: 

     1 2, 1
x x

w x t w t w t
b b

    
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      (10) 

Here,  1w t  and  2w t  are the nodal displacements 
in time. This is a natural assumption since the finite ele-
ment edge is straight in the case of simple shape func-
tions describing linear displacement distributions in the 
element. In such a case the third term of (5) reduces to 
zero. That is why we must write the Renaudot formula (5) 
in a different form: 

 

x0

 

Figure 2. The mass trajectory in the space-time finite element. 
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The fourth term of (11) is developed in a Taylor series 
in terms of the time increment t h   
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Upper indices indicate the time in which the respective 
terms are defined. We assume the backward difference 
formula ( =1). In this case we have 
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According to Equations (2), (10) and (13), Equation (11) 
is given by the difference formula 
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The upper index denotes time layer. The energy (8), 
with respect to (9) and (14) can be written in quadratic 
form, which, after a classical minimization, results in the 
matrix Equation (7), where 
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with coefficient 2
0

1
, 0 1

2
x vh vh b       

 
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Here,   is a parameter which defines the position of 
the mass in the element at the beginning of the time in-
crement. 

This determines the position of the mass at time t h , 
related to the finite element length b. The different terms 
describe the transverse inertia force related to the vertical 
acceleration, the Coriolis force, and the centrifugal force. 
The matrix factors Mm, Cm, and Km can be called the 
mass, damping, and stiffness matrices. The last term me  
describes the nodal forces at the beginning of the time 
interval  ,i it t t  . We must emphasize here that the 
matrices (15)-(17) and the vector (18) contribute only the 
moving inertial particle effect. The matrices of the mass 
influence in a finite element of a structure must be added 
to the global system of equations. We notice that the ma-
trices (15)-(17) differ from the matrices that cause the 
divergence of the solution in the case of direct differen-
tiation of (5)1. 

4. Numerical Results 

The scheme of computations is given in Figure 3: 
The finite element is subjected at a mid-point to the 

force and the inertia parameter, i.e. the concentrated mass. 
The force vector, usually placed at the right hand side of 
the resulting system of algebraic equations, is simply 
distributed over neighbouring nodes (bending moments 
in the case of a beam must be considered in nodes as  

 

 

Figure 3. Theoretical scheme of the problem and the scheme 
assumed for computations. 
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well). The concentrated mass is incorporated directly into 
the left-hand-side matrices. Their coefficients vary in 
each time step and this requires the solution a system of 
equations once per time step. No iterations are required, 
unless unilateral contact is assumed. There are two gains 
in such a solution: more accurate and faster computa-
tions. 

There are a few publications in which the inertial load 
moving on structures are considered directly numerically. 
The Timoshenko beam was described by Lee [18]. We 
will compare our curves with those results. Therefore, 
the data in the example is as follows: the length L =1 m, 
Young modulus E = 207 GPa, shear modulus G = 77.6 
GPa, mass density ρ = 7700 kg/m3. The velocity  

   πv a L EI A  was determined by the parameter  

α. Another parameter β determines the cross section area 
2 2 πA L  and cross section inertia moment 

 4 4 34πI L . The moving mass m had values of  

0.441 kg and 11.03 kg. Trajectories of the moving mass 
point normalized to the static displacement of the simply 
supported Euler beam loaded in the middle by force mg 

  3 48stw mgL EI  was presented in Figures 4-6. Fig- 
ure 4 exhibits the dimensionless deflection of the simply 
supported Timoshenko beam under a moving mass for β 
= 0.15 and α = 0.11, 0.5, and 1.1. This corresponds to the 
mass moving at v = 42.78, 194.4, and 427.7 m/s on a 
relatively elastic beam. Lee solved the problem 
semi-analytically. A fourth order differential equation 
was solved by the Fourier transform and finally inte- 
grated by the Runge-Kutta method. In our test, we com- 
pare the results of Lee with our semi-analytically [19] 
obtained curves together with our Newmark time inte-
gration procedure applied to the finite element model of 
the Timoshenko beam. We notice a perfect coincidence 
of both solutions and quite good coincidence with Lee 
results. 

Figure 5 shows the accuracy, which increases with the 
number of elements in the structure. Ten to twenty ele-
ments is sufficient in our example. 

Another comparison was carried out between the 
Newmark and Houbolt methods. Both methods are suffi-
ciently accurate. However, the curve for the Newmark 
method perfectly coincides with our semi-analytical re-
sults (Figure 6). 

Now we will compare the displacements under a 
moving mass obtained with our approach with reference 
results by Stanisic and Sadiku [1,2]. The simply sup-
ported Bernoulli-Euler beam of length L = 6 m, bending 
stiffness   4 2275.4408 m sEI A  , moving mass m = 
0.2 ρAL, velocity of v = 6 m/s was assumed (Figure 7). 

The simply supported Timoshenko beam was also 
considered in [4]. We compare our results with those 
published in the reference paper. Data were assumed as 
in [18], listed at the beginning of this section. The pa- 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Normalized deflections of the simply supported 
Timoshenko beam under a moving mass particle for β = 
0.15: (a) α = 0.11 (v = 42.78 m/s); (b) α = 0.5 (v = 192.4 m/s); 
and (c) α = 1.1 (v = 427.8 m/s). 

 

 

Figure 5. Accuracy of the Newmark method depending on 
the number of finite elements—displacements under a moving 
load (β = 0.03, α = 1.1). 
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Figure 6. Comparison of displacements under a moving 
load computed with the Newmark and Houbolt method in 
the case of large time step (β = 0.15, α = 0.11). 

 

 
Figure 7. Comparison of displacements of the Bernoulli- 
Euler beam under the moving contact point with published 
by Stanisic [1] and Sadiku [2]. 

 
rameter cra v v , where the critical velocity  

   πcrv L EI A . The acceleration v  is is defined  

by the non-dimensional parameter  3v AL EI   . 
Two cases were considered. First the case of 0.03  , 

0.11a   was computed and depicted in Figure 8 for the 
acceleration 1  , for a constant speed 0  , and for 
a small retardation  0.05   . Figure 9 presents the 
case for a higher initial speed 0.5a   and 0.03  , 
for a constant speed 0  , and with acceleration 1  . 

5. Conclusion 

In this paper we proposed a new approach to the vibra-
tion analysis of structures subjected to a moving inertial 
particle by using the finite element method in space and a 
time integration method, for example the Newmark 
method, in time, here represented by the Newmark and 
Houbolt methods. Elements describing a moving mass 
particle (15)-(18) can be commonly used both in the 
analysis of the Euler beam and the Timoshenko beam. In 
engineering practice, most dynamic simulations are per-
formed by the Newmark method. Each approach extends 
a group of problems that can be directly solved by this 
commonly used time integration method, and is valuable. 
We showed in the paper that these matrices result in ac- 

 

Figure 8. Comparison of displacements of the Timoshenko 
beam under a moving contact point with those published by 
Lee [4]—parameters β = 0.03, α = 0.11. 

 

 

Figure 9. Comparison of displacements of the Timoshenko 
beam under a moving contact point with those published by 
Lee [4]—parameters β = 0.03, α = 0.5. 

 
curate and stable solutions of problems with a mass 
moving on a structure. Timoshenko beams or other shear 
resistant structures exhibit discontinuities in the solutions 
of the differential equations [19-21]. Although in practice 
nonlinear effects smooth the trajectories, high jumps of 
some physical quantities are observed. We assumed that 
identical computational results should be obtained both 
by analytical and numerical tools. There is no reason to 
say that numerical solutions converge to inaccurate re-
sults. Our finite element approach proves that simple 
elemental matrices derived from a mathematically cor-
rect analysis gives a perfect convergence to the analytical 
forms. 
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