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Abstract

In this paper, we have studied the perfect fluid distribution in the scale invariant theory of gravitation, when
the space-time described by Einstein-Rosen metric with a time dependent gauge function. The cosmological
equations for this space-time with gauge function are solved and some physical properties of the model are

studied.
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1. Introduction

Several new theories of gravitation have been formulated
which are considered to be alternative to Einstein’s
theory of gravitation. In alternative theories of gravita-
tion, scalar tensor theories proposed by Brans and Dicke
[1], Nordvedt [2], Wagoner [3], Ross [4], Dunn [5] and
Saez and Ballester [6] are most important among them.
In the theory proposed by Brans and Dicke [1] there ex-
ists a variable gravitational parameter G. Another theory,
which admits a variable G, is the scale covariant theory
of Canuto et al. [7]. Dirac [8,9] rebuilt the Weyl’s uni-
fied theory by introducing the notion of two metrics and
an additional gauge function /. A scale invariant varia-

tion principle was proposed from which gravitational and
electromagnetic field equations can be derived. It is con-
cluded that an arbitrary gauge function is necessary in all
scale-invariant theories.

It is found that the scale invariant theory of gravitation
agrees with general relativity up to the accuracy of ob-
servations made up now. Dirac [8,9], Hoyle and Narlikar
[10] and Canuto et al. [7] have studied several aspects of
the scale invariant theory of gravitation. But Wesson’s
[11,12] formulation is so far the best one to describe all
the interactions between matter and gravitation in scale
free manner.

Mohanty and Mishra [13] have studied the feasibility
of Bianchi type VIII and IX space-times with a time de-
pendent gauge function and a matter field in the form of
perfect fluid. In that paper, they have constructed a ra-
diating model of the universe for the feasible Bianchi
type VIII space-time. Mishra [14] has constructed the
non- static plane symmetric Zeldovich fluid model in this
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theory with a time dependent gauge function. Recently,
Mishra [15] has constructed static plane symmetric Zel-
dovich fluid model in scale invariant theory.

Rao et al. [16,17] have discussed cylindrically sym-
metric scalar meson fields and Brans-Dicke scalar fields.
It is found from the literature that the scale invariant
theory of gravitation has not been studied so far in Eins-
tein-Rosen space-time. Hence, in this paper, we have
taken an attempt to study the cylindrically symmetric
space-time in the scale invariant theory of gravitation. A
cosmological model has been presented.

2. Field Equations

Wesson [11,12] formulated a scale invariant theory of
gravitation using a gauge function g (xi) , where,

x',i=1,2,3,4 are coordinates in the four-dimensional
space-time and the tensor field is identified with the me-
tric tensor g;. This theory is both coordinate and scale

invariant in nature. The field equations formulated by
Wesson [11,12] for the combined scalar and tensor fields

are:
By BBy [ aw Bab a Ba
Gij + 71—4 ﬁzl +(g b ﬁz b -29 b7bjgij :—KT”-
(1)
with
1
G =Ry ) Rg; (2)

Here, G;; is the conventional Einstein tensor involving
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g;; - Semicolon and comma respectively denote covariant
differentiation with respect to g; and partial differen-
tiation with respect to coordinates. The cosmological
term Ag; of Einstein theory is transformed to
A, ,Bzgij in scale invariant theory with a dimensionless

constant A, . T

j 1s the energy momentum tensor of the

872G

ct

matter field and « =

The line element for Einstein- Rosen metric with a
gauge function f = ﬂ(ct) is.

dsy, = Bds; 3)
with

ds; =e**?® (czdt2 —drz)— r’e?tde’ —-e’®dz>  (4)

where A and B are functions of t only, and c is the veloc-
ity of light. Here we intend to build cosmological models
in this space-time with a perfect fluid having the energy
momentum tensor of the form

:(pm+pmcz)uuj_pmgij (5)

together with g;U ul=1

where U'is the four-velocity vector of the fluid; p,
and p,, are the proper isotropic pressure and energy

density of the matter respectively.
The non — vanishing components of conventional
Einstein’s tensor (2) for the metric (4) can be obtained as

| rq2
G11=C_2|:B4] (6)
6142_%['0‘4] (7
=L [A, 8] ®)

¢
1
__2|:
Gy :[Bf] (10)

Here afterwards the suffix 4 after a field variable de-
notes exact differentiation with respect to time t only.

~2B,, +B; | ©)

Using the comoving coordinate frame where U' = 5; ,

the non-vanishing components of the field Equation (1)
for the metric (3) can be written in the following explicit
form:

G, =
—KpmeZA’ZB C12|: :‘igz _?& Iﬁ;;( A +B ) OﬂzczezAzs:|
(11)
G, =0 (12)
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i.e. A=k, where K isan integrating constant.
Gy, =

_KpmezA—2B Cz|: ﬁ44 ﬂ4 +2ﬂ4( ) ﬂz 2,2A- ZBj|

B BB
(13)
Gy, =
2A-2B ﬁ44 _ﬂ_42_ & 20292428
-k p,e Cz{ 5 ,6’ 2ﬂ( ) ApC }
(14)
G44_
4_2A-2B ﬂ42 oA 20202428
3= -2—~ 0
| S TRV
(15)

Equation (12) reduces the above set of Equations
(11)-(15) as

G, =G, =
2k 2B ﬁ44 ﬂ4 ﬂ 20202k -28
—_ 1 2 ., 1=
K Ppe Cz{ 55 + ﬂ( )=ABc }
(16)
G :_KpmeZkﬁzB _
1 ﬂ44 1842 ﬂ4 2.2,2k-28B an
—|2——-=-2—7(B,)-A,Bce™
G44 Z—Kme462krzB i
ﬁ42 ﬂ4 22,2k -2B (18)
3=/ -2—(B,)-A,p°ce™

Now, Equation (1) and Equations (16)-(18) (Wesson
[12]) suggest the definitions of quantities p, (vacuum
pressure) and p, (vacuum density) that involves neither
the Einstein tensor of conventional theory nor the prop-
erties of conventional matter. These two quantities can
be obtained as:

2& 134 ﬂ4(B4)—AOﬁ2C262k‘725 :vacz (19)

B /3 B

ﬁ44 ﬂ4 ﬂ4 20202428 2
2= =7 Apce™ " =xp,ct (20)

A A

B B ]
3ﬂ_42_2lg4( ) 0,32 2 .2k -2B :K_pvc4 (21)
It is evident from Equations (19) and (20) that
B, =0=B =k, since %io (22)

where K, is an integrating constant. Using Equation (22)

in Equations (19)-(21), the pressure and energy density
for vacuum case can be obtained as
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1 Bu Bi 2.2 2k -2k

p, = Kok {2 ;4 ﬂ4 +A01B ce : (23)
1 IB 202g2k1-2k

Py = cteti2k |: ’B_4_Aoﬂ v (24)

Here p, and p, relate to the properties of vacuum
only in conventional physics. The definition of above
quantities is natural as regards to the scale invariant
properties of the vacuum. The total pressure and energy
density can be defined as

pt = pm + pv (25 )
P= Pt P, (26)
Using the aforesaid definitions of p, and p,, the

field equations in scale invariant theory i.e. (16)-(18) can
now be written by using the components of Einstein ten-
sor (6)-(10) and the results obtained in Equations (22)-
(24) as:

B; = —xp,cle™ " (27
-2B,, +B; =—xp,c’e™?® (28)
B; = —xp,c'e™?® (29)

3. Solution

From Equations (27) and (29), we obtained the equation
of state

P = ptcz (30)
Using Equation (27) in Equation (28), we obtained
B=dt+d, 31

where d, and d, are integrating constants.
Substituting Equation (31) in Equation (27) and Equa-
tion (29) respectively, the total pressure ‘ p, and energy
density ‘ p,” can be obtained as:
1 d;
_— 32
xc? { qe’z‘j it } (32)

2 is a constant. The reality condition

P, = ptcz =

where q=e?"

demands that d’ <0.
Using Equation (31) in Equations (23) and (24) respec-

. . 1
tively and taking S :—t, the pressure and energy den-
C

sity corresponding to vacuum case can be calculated as:

1 [Aq-1
- 33
Py Kczq{ o } (33)
1 [Aq-3
= 34
Py KC4q{ oz } (34)

In this case, when there is no matter and the gauge
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function £ 1is a constant, one recovers the relation

A H . .
CZ,DV =c’ G GCR; =-p, lLe. Cz,ov +p, =0, which is the
pid

equation of state for vacuum. Here Ag, = A,f° = con-
stant, is the cosmological constant in general relativity.

Also p, being dependent on the constants Agg, C and G,

is uniform in all directions and hence isotropic in nature.
The cosmological model with this equation of state is
rare in literature and is known as p — vacuum or false
vacuum or degenerate vacuum model [18-21], the cor-
responding model in the static case is a well known
de-Sitter model.

Now the matter pressure and density can be obtained

as.
1 q-1 d’
Pn=P P =—3 { ‘;tz —GZkl,;dll,dz (35)
1 |3-A,q d?
Pmn =P P = F|: qt20 - e2k1—21d|t—d2 :| (36)

Now, we have p, > as t—>0 and p, >xas
t—>o. Also when t<0, p, — constant. It is inter-

esting to note that the model free from singularity.

So, the Einstein-Rosen cylindrically symmetric model
in scale invariant theory of gravitation is given by the
Equations (12), (31) and (32) and the metric in this case
is
ds, =

|:ezk|—2d|t—2d2 (Czdtz —drz) 220t Mqu)

24 t+zd2deJ
(ct)’
(37)

4. Some Physical Properties of the Model
3 &
Q

The scalar expansion, ¢9=U;ii = for the model

given by Equation (37) takes the form
1 dt+dy—k
6 =——(der 38
~(d ) (38)

Thus, we find 9—>—l(dled2’k1) as t—0 and
c

0—->0 as t—>o.
If c>0, d <0 and d, >k, the model represents

expanding one for t <t (= k—d,

1

It is also observed that as % — constant as t— o

and 'Z’" — 6 as t— 0. Thus the universe confirms the

homogeneity nature of the space-time.
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Following Raychaudhuri [22], the anisotropy |a| can
be defined as

2
o =

2 2 2
(911,4 _ 922,4 J +( 922,4 _ g33,4J +( 933,4 _ gll,4 J
gll 922 gZZ 933 933 gll

(39)

Consequently for the model (37), 0" = g(dlt +d,)=0.

So the shear scalar remains constant for t — 0 and be-
comes indefinitely large for t — o .
2

. (o}
cXpansion 9— =

The ratio of anisotropy to 3

2
%e”‘"mz #0 for t=0. Thus there is a singularity of

t=0for 2k —2d, is not very large. Moreover, the

model is isotropy for finite t and does not approach iso-
tropy for large value of t.
It is observed that the vorticity ‘w’ vanishes which in-

dicates that U' is hypersurface orthogonal. As the acce-

leration u; found to be zero, the matter particle follows
geodesic path in this theory.

5. Conclusions

Every physical theory carries its own mathematical
structure and the validity of the theory is usually studied
through the exact solution of the mathematical structure.
In this theory black holes do not appear to exist. If the
existence of black holes in nature is confirmed, it will
represent a great success of general theory of relativity.
Since there is no concrete evidence at present for the
existence of black holes, one can take a stand point that
black holes represents a familiar concept of space time.
Therefore the scale invariant theory involves gauge theo-
ries as it relates to gravitational theories with an added
scalar field.

The significance of the present work deals with the
modification of gravitational and geometrical aspects of
Einstein’s equations. These are 1) scale invariant theory
of gravitation which describes the interaction between
matter and gravitation in scale free manner; and 2) the
gauge transformation, which represents a change of units
of measurements and hence gives a general scaling of
physical system. The nature of the cosmological model
with modified gravity that would reproduce the kinemat-
ical history and evolution of perturbation of the universe
is investigated.

Here, cylindrically symmetric static zeldovich fluid
model is obtained in the presence of perfect fluid distri-
bution in scale invariant theory of gravitation. As far as
matter is concerned the model does not admit either big
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bang or big crunch during evolution till infinite future.
The model appears to be a steady state.
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