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ijg . Semicolon and comma respectively denote covariant 

differentiation with respect to ijg  and partial differen-

tiation with respect to coordinates. The cosmological 
term Λ ijg  of Einstein theory is transformed to 

2
0Λ ijg  in scale invariant theory with a dimensionless 

constant 0Λ . ijT  is the energy momentum tensor of the 

matter field and 
4

8
.

G

c

   

The line element for Einstein- Rosen metric with a 
gauge function  ct   is. 

2 2 2
W Eds ds                 (3) 

with 

 2 2 2 2 2 2 2 2 2 2 2A B B B
Eds e c dt dr r e d e dz        (4) 

where A and B are functions of t only, and c is the veloc-
ity of light. Here we intend to build cosmological models 
in this space-time with a perfect fluid having the energy 
momentum tensor of the form 

 2m
ij m m i j m ijT p c U U p g            (5) 

together with 1i j
ijg U U   

where iU is the four-velocity vector of the fluid; mp

and mp  are the proper isotropic pressure and energy 

density of the matter respectively. 
The non – vanishing components of conventional 

Einstein’s tensor (2) for the metric (4) can be obtained as 

2
11 42

1
G B

c
                     (6) 

 14 4

1
G A

r
                   (7) 

2
22 44 42

1
G A B

c
                  (8) 

2
33 44 44 42

1
2G A B B

c
                (9) 

2
44 4G B                      (10) 

Here afterwards the suffix 4 after a field variable de-
notes exact differentiation with respect to time t only.  

Using the comoving coordinate frame where 4
i iU  , 

the non-vanishing components of the field Equation (1) 
for the metric (3) can be written in the following explicit 
form: 

 

11

2
2 2 2 2 2 244 4 4

4 4 02 2

1
2 2A B A B

m

G

p e A B c e
c

  
 

 
 



 
       

 

 

(11) 

14 0G                     (12) 

i.e. 1A k , where 1k is an integrating constant. 

 

22

2
2 2 2 2 2 244 4 4

4 02 2

1
2 2A B A B

m

G

p e B c e
c

  
 

 
 



 
     

 
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(14) 
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44

2
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c e B c e
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(15) 
Equation (12) reduces the above set of Equations 

(11)-(15) as 

 1 1

11 22

2
2 2 2 22 244 4 4

4 02 2

1
2 2k B k B

m

G G

p e B c e
c

  
 

 
 

 

 
     

 

 

(16) 
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1
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33

2
2 22 244 4 4

4 02 2

1
2 2

k B
m

k B

G p e

B c e
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
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   (17) 

 

1

1

2 24
44

2
2 22 24 4

4 02
3 2

k B
m

k B

G c e

B c e



 








  

 
   
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       (18) 

Now, Equation (1) and Equations (16)-(18) (Wesson 
[12]) suggest the definitions of quantities vp (vacuum 

pressure) and vp (vacuum density) that involves neither 

the Einstein tensor of conventional theory nor the prop-
erties of conventional matter. These two quantities can 
be obtained as: 

  1

2
2 22 2 244 4 4

4 02
2 2 k B

vB c e p c
  

 
 

      (19) 

  1

2
2 22 2 244 4 4

4 02
2 2 k B

vB c e p c
  

 
 

     (20) 

  1

2
2 22 2 44 4

4 02
3 2 k B

vB c e c
 

 


       (21) 

It is evident from Equations (19) and (20) that 

4 20B B k    since 4 0



        (22) 

where 2k  is an integrating constant. Using Equation (22) 

in Equations (19)-(21), the pressure and energy density 
for vacuum case can be obtained as 
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1 2

1 2

2
2 22 244 4

02 2 22

1
2 k k

v k k
p c e

c e

 


 




 
    

 
  (23) 

1 2

1 2

2
2 22 24

02 2 24

1
3 k k

v k k
c e

c e


 






 
   

 
   (24) 

Here vp  and vp  relate to the properties of vacuum 

only in conventional physics. The definition of above 
quantities is natural as regards to the scale invariant 
properties of the vacuum. The total pressure and energy 
density can be defined as 

t m vp p p                 (25) 

t m v                    (26) 

Using the aforesaid definitions of tp  and tp , the 

field equations in scale invariant theory i.e. (16)-(18) can 
now be written by using the components of Einstein ten-
sor (6)-(10) and the results obtained in Equations (22)- 
(24) as: 

12 22 2
4

k B
tB p c e                (27) 

12 22 2
44 42 k B

tB B p c e               (28) 

12 22 4
4

k B
tB c e                (29) 

 
3. Solution 
 
From Equations (27) and (29), we obtained the equation 
of state 

2
t tp c                 (30) 

Using Equation (27) in Equation (28), we obtained 

1 2B d t d                 (31) 

where 1d  and 2d  are integrating constants. 

Substituting Equation (31) in Equation (27) and Equa-
tion (29) respectively, the total pressure ‘ tp ’ and energy 

density ‘ t ’ can be obtained as: 

1

2
2 1

2 2

1
t t d t

d
p c

c qe


 

 
   

 
          (32) 

where 1 22 2k kq e   is a constant. The reality condition 

demands that 2
1 0d  . 

Using Equation (31) in Equations (23) and (24) respec-

tively and taking 
1

ct
  , the pressure and energy den-

sity corresponding to vacuum case can be calculated as: 

0
2 2

11
v

q
p

c q t
      

             (33) 

0
4 2

31
v

q

c q t



     

              (34) 

In this case, when there is no matter and the gauge 

function   is a constant, one recovers the relation 

2 4 Λ

8
GR

v vc c p
G




    i.e. 2 0v vc p   , which is the 

equation of state for vacuum. Here 2
0GR     = con-

stant, is the cosmological constant in general relativity. 
Also vp being dependent on the constants GR , c and G, 

is uniform in all directions and hence isotropic in nature. 
The cosmological model with this equation of state is 
rare in literature and is known as   – vacuum or false 

vacuum or degenerate vacuum model [18-21], the cor-
responding model in the static case is a well known 
de-Sitter model. 

Now the matter pressure and density can be obtained 
as: 

1 1 2

2
0 1

2 2 2 2

11
m t v k d t d

q d
p p p

c qt e  

  
    

 
    (35) 

1 1 2

2
0 1

4 2 2 2

31
m t v k d t d

q d

c qt e
  

  

  
    

 
    (36) 

Now, we have m   as 0t   and m  as 

t  . Also when 0t  , constantm  . It is inter-

esting to note that the model free from singularity. 
So, the Einstein-Rosen cylindrically symmetric model 

in scale invariant theory of gravitation is given by the 
Equations (12), (31) and (32) and the metric in this case 
is 

 
 1 1 2 1 2 1 2

2

2 2 2 2 2 2 22 2 2 2 2 2
2

1
W

k d t d d t d d t d

dS

e c dt dr r e d e dz
ct

    



    
 

(37) 
 
4. Some Physical Properties of the Model 
 

The scalar expansion, ; 3i T
i

Q
U

Q
    for the model 

given by Equation (37) takes the form 

 1 2 1
1

1 d t d kd e
c

                (38) 

Thus, we find 2 1
1

1
( )d kd e

c
    as 0t   and  

0   as t  . 
If 0c  , 1 0d   and 2 1d k  the model represents 

expanding one for 1 2
1

1

( )
k d

t t
d


  . 

It is also observed that as 
2

constantm


  as t   

and 
2
m 


  as 0t  . Thus the universe confirms the 

homogeneity nature of the space-time. 
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Following Raychaudhuri [22], the anisotropy   can 

be defined as 
2

2 22

11,4 22,4 22,4 33,4 33,4 11,4

11 22 22 33 33 11

g g g g g g

g g g g g g

 

     
         
       

 

(39) 

Consequently for the model (37),  2
1 2

8
0

3
d t d    . 

So the shear scalar remains constant for 0t   and be-
comes indefinitely large for t  . 

The ratio of anisotropy to expansion 
2

2




  

1 2

2
2 28

0
3

k dc
e    for 0t  . Thus there is a singularity of 

0t  for 1 22 2k d  is not very large. Moreover, the 

model is isotropy for finite t and does not approach iso-
tropy for large value of t. 

It is observed that the vorticity ‘w’ vanishes which in-

dicates that iu  is hypersurface orthogonal. As the acce-

leration 
.

iu  found to be zero, the matter particle follows 
geodesic path in this theory. 
 
5. Conclusions 
 
Every physical theory carries its own mathematical 
structure and the validity of the theory is usually studied 
through the exact solution of the mathematical structure. 
In this theory black holes do not appear to exist. If the 
existence of black holes in nature is confirmed, it will 
represent a great success of general theory of relativity. 
Since there is no concrete evidence at present for the 
existence of black holes, one can take a stand point that 
black holes represents a familiar concept of space time. 
Therefore the scale invariant theory involves gauge theo-
ries as it relates to gravitational theories with an added 
scalar field. 

The significance of the present work deals with the 
modification of gravitational and geometrical aspects of 
Einstein’s equations. These are 1) scale invariant theory 
of gravitation which describes the interaction between 
matter and gravitation in scale free manner; and 2) the 
gauge transformation, which represents a change of units 
of measurements and hence gives a general scaling of 
physical system. The nature of the cosmological model 
with modified gravity that would reproduce the kinemat-
ical history and evolution of perturbation of the universe 
is investigated. 

Here, cylindrically symmetric static zeldovich fluid 
model is obtained in the presence of perfect fluid distri-
bution in scale invariant theory of gravitation. As far as 
matter is concerned the model does not admit either big 

bang or big crunch during evolution till infinite future. 
The model appears to be a steady state. 
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