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ABSTRACT 

In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected 
individuals in the form of fractional order differential equations. First the non-negative solution of the model in frac- 
tional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the gen- 
eral solutions are presented and a discrete-time finite difference scheme is constructed using the nonstandard finite dif- 
ference (NSFD) method. A comparative study of the classical Runge-Kutta method and ODE45 is presented in the case 
of integer order derivatives. The solutions obtained are presented graphically. 
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Mathematical epidemiology plays an important role in 
our society. Epidemic models to represent the interaction 
of different individuals by linear and nonlinear incidence 
have been discussed by many authors [1-3]. Literature of 
SIR diseases transmission model is quite large see [4-6], 
where S represents the number of individuals that are 
susceptible to infection, I represents the number of indi- 
viduals that are infectious and R denotes the number of 
individuals that have recovered. The SIR epidemic mod- 
els are used in epidemiology to compute the amount of 
susceptible, infected and recovered people in a popula- 
tion. These models are also used to explain the dynamics 
of people in a community who need medical attention 
during an epidemic. However, it is important to note that 
these epidemic models do not work with all diseases. For 
the SIR model to be appropriate, once a person has re- 
covered from the disease, they would receive lifelong im- 
munity. But if a person was infected but is not infectious 
then someone need to modify the SIR epidemic model by 
including exposed class. The mathematical representa- 
tion of SIR epidemic model consisting of three coupled 
ordinary equations which represents the dynamics of sus- 
ceptible, infected and recovered individuals, respectively 
is given by 

  

where λ is the constant birth rate, μ is the natural death 
rate,   is the fraction of infected individuals who leave 
the infected class per unit time, β is the rate of production 
of new infected individuals, and f(S, I) is a function re- 
lating the rate of conversion of the susceptible population 
to the infected population. Mickens [7] introduced first 
time the square root interaction term in the SIR-model is 
given by 
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With 

     0 0 .0 , 0 , 0S S I I R R   0  

The total population is        .N t S t I t R t    
*Corresponding author. So we obtain by adding all equations of above system 
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Differential equations of fractional order have been the 
focus of many studies due to their frequent appearance in 
different applications in fluid mechanics, biology, phys- 
ics, epidemiology and engineering. Recently, a large 
amount of literatures developed concerning the applica- 
tion of fractional differential equations in nonlinear dy- 
namics [8-10]. The differential equations with fractional 
order have recently proved to be valuable tools to the 
modeling of many physical phenomena. This is because 
of the fact that the realistic modeling of a physical phe- 
nomenon does not depend only on the instant time, but 
also on the history of the previous time which can also be 
successfully achieved by using fractional calculus. The 
reason of using fractional order differential equations is 
that fractional order derivatives are naturally related to 
systems with memory which exists in most biological 
systems. Also they are closely related to fractals which 
are abundant in biological systems. As fractional calculus 
is the generalization of the ordinary differentiation and 
integration to non-integer and complex order. Also be- 
cause of fractional order derivatives many authors estab- 
lished new models in different fields. In this paper, we 
consider a square root interaction in the SIR-model pre-
sented by Mickens [7] in fractional order. First we show 
the positive solution of square root interaction in the SIR 
epidemic model in fractional order. Then, we show the 
local stability of the epidemic model with fractional or- 
der. Finally, we compare our numerical results with non- 
standard numerical method and fourth order Runge-Kutta 
method. 

This paper is organized as: In Section 2, we present 
formulation of the model with some basic definitions and 
notations related to this work. In Section 3, we show the 
non-negative solution and uniqueness of the model. In 
Section 4, the local stability of the model is presented. In 
Section 5, the numerical simulations are presented gra- 
phically. Finally, we give conclusion. 

2. Formulation of Model with Preliminaries 

In this section, we present the SIR-model for which the 
interaction term is the square root of the susceptible and 
infected individuals in the form of fractional order dif- 
ferential equations. The new system is described by the 
following set of fractional order differential equations: 

        ,tD S t S t I t S t              (5) 

         ,tD I t S t I t I t              (6) 

      ,tD R t I t R t                     (7) 

   .tD N t N t                            (8) 

Here tD  is fractional derivative in the Caputo sense 

and   is a parameter describing the order of the frac- 
tional time-derivative with 0 1  . For 1   the sys-  
tem will be reduced to ordinary differential equations. 
This kind of fractional differential equations is the ge- 
neralizations of ordinary differential equations. Now we 
give some basic definitions related to this work and can be 
found in fractional calculus see for example [11-15]. 

Definition 1 A function  is said to be in 
the space 

  0f x x 
 C   R  if it can be written as 

   x1  for some pf x x f p   where  1f x  is 
con- tinuous in  0, , and it is said to be in the space 

m
C  if  m ,f C m N . 

Definition 2 The Riemann-Liouville integral operator 
of order 0   with  is defined as 0a 
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Properties of the above operator can be found in [11]. 
Definition 3 For , , 0, 0,f C a c R       and 

1,    we have 
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where  , 1B     is the incomplete beta function 
which is defined as 
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The Riemann-Liouville derivative has certain disa- 
dvantages when trying to model real-world phenomena 
with fractional differential equations. 

Definition 4 The Caputo fractional derivative of 
 f x  of order 0   with  is defined as 0a 
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The fractional derivative was investigated by many 
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The definition of fractional derivative involves an in- 
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tegration which is non-local operator (as it is defined on 
an interval) so fractional derivative is a non-local opera- 
tor. In other word, calculating time-fractional derivative 
of a function  f t  at some 1  time requires all the 
previous history, i.e. all 

t t
f t  from  to 0t  1t t . 

3. Non-Negative Solutions 

In this section, we show the positivity of the system. We 
first consider 

 4 4
: 0R X R X     

and  

          T
, , ,X t S t I t R t N t . 

In order to prove the theorem about non-negative so- 
lutions, we need to state the following Lemma [9]. 

Lemma 3.1. (Generalized Mean Value Theorem) Let 
   ,f x C a b  and    ,D f x C a b   for 0 1  . 

Then we have 
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Remark 3.2. Suppose    ,f x C a b  and  

   ,D f x C a b   for 0 1  . It is clear from Lemma  

3.1 that if  for all   0D f x  0, x b , then the 
function f is non-decreasing, and if  for all  D f x 0

 0,x b , then the function f is non-increasing. 
Theorem 3.3. There is a unique solution for the initial 

value problem given by (5)-(8), and the solution remains 
in . 4R

Proof. The existence and uniqueness of the solution of 
(5)-(8), in  can be obtained from [5, Theorem 3.1 0,
and Remark 3.2]. We need to show that the domain 4R  is 
positively invariant. Since 
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On each hyperplane bounding the non-negative orthant, 
the vector field points into 4R . 

4. Local Stability Analysis of Model 

The system of ODE’s given by (1)-(3) has a unique 
non-trivial solution. By setting the right hand side of the 
Equations (1)-(3) equal to zero, we get 
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All the parameters are taken to be positive, then 
, ,S I R    are positive. For the unique positive equilibria 

the Jacobian matrix at this fixed point is 
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The eigen values  1 2 3, ,    are given by 

  3det , , 0J S I R I   
  

  , 

where I3 is the unit matrix of order 3 × 3. By evaluating 
this determinant we obtain the following equation 

    2 0.a b ab bc               (9) 

It is clear that λ1 = −μ is negative. For others roots we 
can write 

 2 0.a b ab bc                  (10) 

Let the remaining roots of this equation are λ2 and λ3, 
that satisfying the following relations 

2 3 2 3 .0, 0ab bc ab bc               (11) 

From Equation (11) we conclude that: 
1) If λ2 and λ3 are real, then both roots have same sign. 
2) If λ2 and λ3 are real, then both roots are negative. 
3) If λ2 and λ3 are complex, then λ2 = λ3 and the real 

parts are negative. 
4) Thus, all the eigenvalues are negative or have ne- 

gative real parts, and hence we conclude that this fixed 
point is located at  , ,S I R    is locally stable. 

5. The NSFD Scheme 

In general, the non-standard finite difference rules, in- 
troduced by Mickens [7,16-19], do not lead to a discrete 
model for the unique solution of any dynamical system 
based on differential equations. First, we give the basic 
rules of nonstandard ordinary differential equations (ODEs) 
is given by 

 1 2, , , , , 1,2, , .k my f t y y y k m     

where   , kf t y t  is the nonlinear term in the differen- 
tial equation. Using the finite difference method we have 
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where k  is a function of the step size h = Δt. The func-
tion k  have the following properties: 

   2 , for 0.k h h h h            (12) 
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local discrete representations, for example 

2 3 1 1
1,

2
k k

k k k

y y
y y y y y 



    
 

2 ,  

here ., , 0,1, ,n

T
h t nh n

N
   N Z  

The NSFD scheme for (1)-(4) system is shown as  
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Here 
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Now making the transformation of variables 
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in the first equation of system (13), we obtain a quadratic 
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Note that our interest is calculating 1k  which is 
based on the knowledge of , and then we 
used the transformation given in Equation (14). The so- 
lution for the quadratic Equation (15) is 
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Similarly, the remaining equations of the system (13) 
can be solved for the variables at the  time 
step: 
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6. Numerical Method and Simulation 

In this section we find the numerical solutions. For nu- 
merical simulation, we use μ = 0.04,   = 0.03, β = 0.05 
and λ = 1. For the effectiveness of the proposed algo- 
rithm which as an approximate tools for the solution of 
the nonlinear system of fractional differential Equations 
(1)-(4). Figures 1-4 show the approximate solutions ob- 
tained using ODE45 and classical RK4 method of S(t), 
I(t), R(t) and N(t) when α = 1. Figures 5-8 show the 
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Figure 1. The plot represents the susceptible individuals. 
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Figure 2. The plot represents the infected individuals. 
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 Recovered individuals 
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Figure 3. The plot represents the recovered individuals. 
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Figure 4. The plot represents the total population. 
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Figure 5. The plot represents the susceptible individuals for 
different values of α. 

90

80

70

60

50

40

30

20

α = 0.75

α = 0.85

α = 0.95

α = 1 

0                5                10                15  

Figure 6. The plot represents the infected individuals for 
different values of α. 
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Figure 7. The plot represents the recovered individuals for 
different values of α. 
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Figure 8. The plot represents the total population for 
different values of α. 
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approximate solutions of S(t), I(t), R(t) and N(t) for α = 
0.75, 0.85, 0.95, 1. 

7. Conclusion 

In this paper, we introduced fractional derivatives in the 
SIR epidemic model with square root interaction of the 
susceptible and infected individuals. First the non-nega- 
tive solution of the model in fractional order is presented. 
Then the local stability analysis of the model in fractional 
order is presented. Finally, the general solutions were also 
discussed and a discrete-time, finite difference scheme is 
constructed using the nonstandard finite difference (NSFD) 
method. 
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