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ABSTRACT 

Stress and strain in the structure of self-assembled quantum dots constructed in the Ge/Si(001) system is calculated by 
using molecular dynamics simulation. Pyramidal hut cluster composed of Ge crystal with {105} facets surfaces ob-
served in the early growth stage are computationally modeled. We calculate atomic stress and strain in relaxed pyrami-
dal structure. Atomic stress for triplet of atoms is approximately defined as an average value of pairwise (virial) quan-
tity inside triplet, which is the product of vectors between each two atoms. Atomic strain by means of atomic strain 
measure (ASM) which is formulated on the Green’s definition of continuum strain. We find the stress (strain) relaxation 
in pyramidal structure and stress (strain) concentration in the edge of pyramidal structure. We discuss size dependency 
of stress and strain distribution in pyramidal structure. The relationship between hydrostatic stress and atomic volumet-
ric strain is basically linear for all models, but for the surface of pyramidal structure and Ge-Si interface. This means 
that there is a reasonable correlation between atomic stress proposed in the present study and atomic strain measure, 
ASM. 
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1. Introduction 

The quantum dot (QD) is a nanostructure which is as- 
sembled from a few thousand to a few ten of thousand 
semiconductor atoms such as silicon (Si) and germanium 
(Ge). This micro-scale structure sometimes shows quan- 
tum size effect such that carriers or electrons are con- 
fined in very small dimensions. Therefore, previous stu- 
dies have been developed so as to be applied to high- 
performing electronic devices, the quantum dot laser, the 
quantum dot solar cell, and so on. 

In order to effectively utilize the special performance 
of quantum dots (QDs) for actual device behavior, we 
need to obtain high-performance QDs by reducing their 
size to approximately 15 - 20 nm (comparable with de- 
Broglie wave length) or less in x, y and z directions. In 
addition, it is also important that, to some extent, QDs do 
not include any crystal defect or any impurity atom 
which would disturb the uniformity of the laser wave. 
For the purpose of satisfying these requirements in the 
industrial production, there is a self-organized growth 
method. Formation of three-dimensional island, called 
Stranski-Krastanov (S-K) growth, is caused by strain 
during epitaxial growth due to lattice mismatch between 

different crystals in the substrate and the epitaxial layers. 
This method has the advantage that it is quite easy to 
form dense array of QDs. However, the shortage of uni- 
formity in the cluster arrays, often called array defect, 
and the dispersion of cluster sizes are still today’s issues 
[1]. Moreover, there is the lack of clarity in understand- 
ing detailed mechanical properties of QDs. Unique re- 
sidual stress and strain distribute in QDs created by S-K 
growth. Indeed, atomic configuration and strain field in 
QDs is important because they affect QD’s electronic 
structure and mechanical property, so the analysis of 
X-ray diffraction and electron scattering experiment have 
been conducted. As a result, some understanding in re- 
gard with the appearance of dot positions and their con-
figurational correlation has been done and creation of an 
equilibrium dot shape becomes possible. From now on, 
QD will widely prevail as a new nano material and de- 
vice architecture, so we should try to evaluate QD’s me- 
chanical properties. 

There have been studies on measurement of strain in 
QDs by using RHEED or XRD [2,3], but these provide 
only the average and qualitative estimation. In the case 
when experimental measurement is difficult, the com- 
puter simulation is often helpful and gives certain in- 
sight. There have been the studies on calculating the dis- *Corresponding author. 
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tribution of strain and stress in Ge islands on the Si(001) 
surface by means of atomistic simulation [4-6]. Also, 
there have been the studies on Ge/Si(001) system as the 
model system of hetero-epitaxial growth. Mo et al. suc- 
cessfully captured the STM images of Ge surfaces grow- 
ing three-dimensionally on Si(001) substrate [7]. In their 
work, they found that Ge atoms aggregate on rectangle or 
square bases whose edges become along <100> direc- 
tions in the Si substrate. Moreover, it has determined that 
there is a structure called hut cluster whose facets of Ge 
surface might be especially composed of {105} planes, 
though the atoms are crystallographically reconstructed. 
After further investigations, using STM and quantum 
calculation, the pyramidal structural model of QD with 
{105} facets has been constructed [1,8]. 

Therefore, in this article, using molecular dynamics 
(MD), we estimate the mechanical properties in the struc- 
ture of self-assembled QD in Ge/Si(001) system. We are 
focusing on the Ge hut clusters which have observed in 
previous researches [1,7]. There are two main species of 
hut clusters: pyramids and wedges. We are to computa- 
tionally model pyramidal one because it has higher 
symmetry and simpler configuration. We will discuss 
stress and strain distribution and size dependency of me- 
chanical properties in the pyramidal structure. The 
knowledge of QD’s mechanical properties that is ob- 
tained by MD in this study contributes to electron state 
control and strength design of QDs. This serves as guide- 
lines for developing QD. 

This paper is organized as follows. First, we formulate 
atomic strain measure and atomic stress, and show com- 
putational setup and conditions for pyramidal QD struc- 
ture. Then, the results of MD simulations are shown and 
discussed. Finally, we show conclusions for the mecha- 
nical properties in pyramidal hut clusters of QDs. 

2. Theory 

2.1. Empirical Interatomic Potential 

In this study, the interatomic potential of Tersoff type 
(T3) is used, in which the potential is capable to describe 
the covalent bonding in diamond structure such as those 
of silicon and germanium crystal. In the formulation of 
this potential, bond strength between atoms implicitly 
depends on coordination number of each atom and ex- 
perimental binding energy obtained as cohesive one is 
integrated. Tersoff potential is superior to other many- 
body potentials as for accurate reproduction of the elastic 
properties [9]. Here, we use potential parameters given 
by former reference [10]. 

2.2. Atomic Strain Measure 

In order to estimate the strain in the three-dimensional 
structure using computational result obtained by molecular 

dynamics (i.e. atomic coordinates), we introduce herewith 
an idea of strain measure defined in the atomic scale [11]. 
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where α and β are components (α, β = x, y, z). In Equa- 
tion (1), all of the components except for uij

α or uij
β (uij is 

displacement between atoms i and j) have been calcu- 
lated from the reference (undeformed) atomic configura- 
tion, ri

α(0). In order to evaluate strain at individual 
atomic sites, Equation (1) is simply averaged over the 
neighboring atoms with which the atom i interacts, as 
follows:  
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where Nneighbor is the number of neighbors. The value 
obtained by Equation (2) shows a local and atomic strain 
around the atom i. We call it atomic strain measure 
(ASM) of the atom i. 

The atomic strain of Si and Ge should be calculated on 
the basis of each equilibrium lattice strain. However, the 
initial atomic configuration of simulation model is basi- 
cally constructed by using lattice constant of Si. So, the 
reference atomic distance rij(0) is adjusted properly in 
calculating the atomic strain of Ge using Equation (2). 
Since actually lattice constant of Ge is 4.2% longer than 
that of Si, rij(0) is modified as follow:  

   Ge-Ge or Ge-Si0 | 0 1.042ij ijr r           (3) 

2.3. Atomic Stress for Triplet Potential 

Stress of an atom is evaluated by derivative of increase 
of potential energy with regard to strain. Based on solid 
mechanics and elasticity, this potential energy is sup- 
posed to be identical to the strain energy which has been 
stored by deformation process. The strain is approxi- 
mately obtained from directional vector between atoms, 
rij, by assuming uniform strain field in the deformation. 
In the MD method, atomic stress is strictly formulated 
for pairwise interaction (from virial theorem) and is gen- 
erally calculated as for pairwise potential. However, 
Tersoff potential includes three-body term. So, it is re- 
quired that atomic stress for triplet of atoms is approxi- 
mately defined as an average value of pairwise (virial) 
quantity inside triplet, which is the product of vectors 
between each two atoms.  
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jk ikr r r  ij                 (5) 

where Ωi is an ideal volume per atom in reference con-
figuration and Etot is total energy of atomic system. 

3. Computation Model 

In the Si-Ge system, the nanostructure with {105} crys- 
talline facets is observed in the early stage of epitaxial 
growth of germanium (Ge) atoms. This characteristic 
structure is generally called a hut cluster. Hut clusters are 
put into two major categories, pyramids and wedges [1]. 
The pyramid one is computationally modeled in this 
study. Figure 1 shows a schematic drawing of geometri- 
cal design for the computation model which is originally 
and actually confirmed by previous STM observation [7]. 
The computation model is consists of Si substrate and Ge 
atomic layers. The latter is called wetting layer (WL) 
being a few ML thick, where 1 ML corresponds to the 
thickness of one atomic layer, i.e., one half of lattice 
constant. The pyramidal-shaped cluster is formed on the 
WL. Both Si and Ge crystals have diamond structures 
though the lattice constant of Ge crystal is set up with 
that of Si crystal. As a result, initial configuration of Ge 
crystal possesses compressive residual stress and/or 
strain. Periodic boundary conditions are applied in x- and 
z-directions so that the system is modeled on infinite 
two-dimensional superlattice. The 2 ML thickness of Si 
substrate on the bottom is supposed to be rigid body and 
their atomic displacements are to be all frozen. Figure 2 
shows the computation model labeled A created as stated 
above. Table 1 shows computational parameters of MD 
simulation. To investigate size dependency of mechanic- 
cal property of QD, we also calculate models B and C 
having different sizes from A. In each model, the height 
of pyramidal structure is 8 ML, 12 ML and 16 ML, re- 
spectively. WL is 4 ML thick. These models are used as 
initial atomic configuration for MD simulation. 

In order to analyze the strain in the structure, we first 
need to obtain a stable crystal structure. The calculation 
procedures are as follows: 

1) Structural relaxation (100.0 ps) from the initial con- 
figuration without control of system temperature (equili- 
bration of the structure).  
 

 

Figure 1. The schematic drawing of computation model (geo- 
metrical design). 

2) The system temperature is dropped down to 300 K 
for relatively long steps, by using conventional velocity 
scaling method. 

3) Equilibrium calculation (20.0 ps) with the control 
temperature. 

Then, finally, we obtain stable crystal structure. Table 
2 shows the detail of these relaxation procedures. 

During the procedure 3), we calculate atomic strain 
measure (ASM) and atomic stress of individual atoms by 
using the formulation, Equation (2) and Equation (4), 
described in Section 2 above. ASMs are measured with 
regard to reference configuration of atoms and are calcu- 
lated from atomic configuration at any time. Since atoms 
are moving all the time, the ASM and atomic stress of  
 

y [0 0 1]

x [0 1 0]

z [1 0 0]

 

Figure 2. The initial atomic configuration of MD simulation 
model A. 
 

Table 1. The model parameters used for MD simulation. 

Model A B C 

Cell size x,y direction [nm] 20.098 25.530 30.961

Cell size in y direction [nm] 6.215 25.530 30.961

Base length of the pyramid L [nm] 13.580 16.295 21.727

Height of the pyramid h [nm] 2.173 3.259 4.345 

Height of Ge wetting layer hw [nm] 1.086 

Height of Si substrate hs [nm] 2.173 

The number of atoms 76134 132076 209009

The number of atoms at the pyramid 7684 21626 46559

The number of Ge atoms at the 
wetting layer 

21904 35344 51984

The number of Si atoms 46546 75106 110466

The angle θ [deg.] 11.3 

 
Table 2. The model parameters used for relaxation calcula- 
tion.  

Initial temperature [K] 300.0 

Time increment [fs] 0.5 

Calculation procedure 
Model 

(1) (2) (3) 

A 13,140

B 16,250

The number of time steps

C 

50,000 

17,400

10,000

Temperature gradient [K/s] –5.0 × 1012 
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individual atom largely fluctuates at every computational 
step. Therefore, we impose a time average to ASM and 
atomic stress of individual atom so as to exclude unim- 
portant fluctuation and make clearer evaluation. Here, we 
focus on the ASM (components εxx and εyy) of individual 
atoms along the center axis of pyramidal structure. 

4. Result and Discussion 

Figures 3 and 4 show the distribution of the ASM, view- 
ing on the cross-section parallel to xy plane. These are for 
the εxx component in the direction of [010] and for the εyy 
components in the direction of [001], respectively. As 
shown in Figure 3, εxx is almost zero in top of the py-
ramidal structure. It means that strain relaxation occurs in 
the pyramidal structure. In addition to that, relatively 
large compressive strain is observed in the bottom edge 
of the pyramidal structure. Figure 5 shows the schematic 
of local compressive strain. This local compressive strain 
observed in edge of the pyramidal structure is understood 
as a residual strain which is caused by elastic deforma- 
tion in x direction ([010]) in the pyramidal structure and 
by strong constraint from Si substrate in WL under the 
pyramidal structure. As shown in Figure 4, a certain 
large tensile strain is also observed in the region marked 
by a circle. This is because a stress component perpen- 
dicular to the surface (y direction, [001]) is vanished out, 
but strain components in other two directions (x and z, 
[100]) reside in compressive regime and they cause lat- 
eral strain in the y direction. 

Figures 6 and 7 show the distribution of ASM for the 
εxx and for the εyy on the center line of the pyramid. The 
value of abscissa corresponds to 0 - 8 ML for Si substrate 
(0 - 2 ML for fixed atoms), 9 - 12 ML for WL, and 13 
ML and larger for pyramidal structure of hut cluster, re- 
spectively. As shown in Figure 6, the largest compres- 
sive ASM of Ge atom in 9 ML (at the interface be- 
tweenWL and Si substrate) is found. This is reasonable 
because these Ge atoms and Si atoms join coherently and 
Ge atoms are subject to constraint from Si substrate at 
the bottom. At the top of pyramidal structure, strain 
marks peak value due to atomic rearrangement in the 
surface. As shown in Figure 7, pyramidal structure and 
WL expand in y direction by compressive elastic strain in 
x and z directions. 

Next, we discuss the size dependency of pyramidal 
structure. Figure 8 shows the relation between εxx and the 
position normalized by the height of WL and pyramidal 
structure. As shown in Figure 8, the distribution of εxx is 
identical in every model. Other components of ASM are 
obtained in similar trend as εxx. Accordingly, ASM dis- 
tribution in pyramidal structure and WL is three-dimen- 
sionally identical and is independent of the size of py- 
ramidal structure. Furthermore, in spite of atomic struc- 
ture, the ASM is continuous smoothly even at the inter-

face between the pyramidal structure and WL. 
 

 y [0 0 1]

x [0 1 0]

z [1 0 0]

Strain 

relaxation 

Higher 
compressive 

Strain 

 

Figure 3. Distribution of ASM component εxx (cross-section 
onto xy plane). 

 
 y [0 0 1]

x [0 1 0]

z [1 0 0]

Tensile
strain 

 

Figure 4. Distribution of ASM component εyy (cross-section 
onto xy plane). 

 

 

Figure 5. Residual compressive strain in the edge of pyra- 
midal structure. 
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Figure 6. ASM distribution at every 1 ML: εxx component. 
 

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28

A
to

m
ic

 s
tr

ai
n 

ε y
y
 [

%
]

Monolayer [ML]

model A
model B
model C

 

Figure 7. ASM distribution at every 1 ML: εyy component. 
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atomic coordinate normalized by the length L of pyra- 
middal structure as abscissa. As shown in Figures 9 and 
10, positive σm (i.e. tensile stress) occurs at the surface of 
pyramidal structure. On the other hand, negative σm (i.e. 
compressive stress) occurs at Ge atoms in Ge-Si interface. 
Compressive hydrostatic stress at the Ge-Si interface is 
largely owing to the compressive stress in x and z direc- 
tions, which is caused by lattice mismatch between Ge 
WL and Si substrate. On the other hand, tensile hydro- 
static stress at the surface of pyramidal structure is 
brought about by surface tension. Accordingly, some 
concentration of hydrostatic stress is also observed as a 
result of surface atomic reconstruction. It is believed that 
contribution of compressive stress in x and z directions 
by lattice mismatch to this tensile hydrostatic stress is 
smaller because of strain (stress) relaxation in pyramidal 
structure. The distribution of σm is smooth even at the 
Ge-Si interface, but that at the surface region shows un- 
dulation. Atoms in the Ge-Si interface joins coherently. 
However, the {105} facet of pyramidal structure has 
atomic-scale surface step. The undulation of σm at the 
surface of pyramidal structure is caused by the variation 
of coordination number of each atoms due to this sur- 
face-step structure. 
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Figure 8. Normalized ASM distribution of each 1 ML in 
WL and pyramidal structure: εxx component. 
 

In order to discuss in detail distribution of stress and 
strain in pyramidal structure and WL, we also calculate 
hydrostatic stress and volumetric strain and focus on size 
dependency and correlation of them. Hydrostatic stress 
of individual atoms is calculated from atomic stress 
components, 

3

xx yy z
m i i i
i

z  


 
             (6) 

Figures 9 and 10 show hydrostatic stress σ m at the 
surface of pyramidal structure and the interface between 
Ge WL and Si substrate (in the following, it is called 
“Ge-Si interface”) beneath the pyramidal structure, re- 
spectively.  

As shown in Figures 9 and 10, distribution of hydro- 
static stress normalized by length L at the surface and 
Ge-Si interface is identical, except for the center region.  In these diagrams, hydrostatic stress σm is plotted for 
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(a) h = 2.173 nm                         (b) h = 3.259 nm                          (c) h = 4.345 nm 

Figure 9. The distribution of hydrostatic atomic stress σm at surface of pyramidal structure (atomic coordinate normalized 
base length L plot along the abscissa). 
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Figure 10. The distribution of hydrostatic atomic stress σm at Ge in between Ge WL and Si substrate under the pyramidal 
structure (atomic coordinate normalized base length L plot along the abscissa). 
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The reason why the difference at the center occurs is 

that the apex of pyramidal structure is the same size but 
is not scaled in total size. However, it is believed that 
hydrostatic stress at the surface of pyramidal structure 
and the Ge-Si interface is constant without dependence 
on size of pyramidal structure. 

Figures 11 and 12 show the relationship between hy- 
drostatic stress σm and atomic volumetric strain εV. Here, 
atomic volumetric strain is calculated from components 
of ASM, Figure 11 shows plots for atoms on the center 
line of the pyramid, just as Figures 6 and 7 above. Sev- 
eral plots of positive σm (>0) are found at the surface re-
gion, and their distribution seems at random. Figure 12 
is a magnified figure of Figure 11 for its densely plotted 
area. The relationship between hydrostatic stress and 
atomic volumetric strain is basically linear for all models, 
except for the surface of pyramidal structure and Ge-Si 
interface. This means that there is a reasonable correla- 
tion between atomic stress proposed in the present study 
and atomic strain measure, ASM. 

5. Conclusions 

We perform molecular dynamics simulation for investi- 
gating mechanical characteristic in an uncapped pyrami-
dal structure in the Ge/Si(001) system with lattice mis-
match. We estimate the strain by mean of atomic strain 
measure (ASM) which is formulated on the Green’s defi-  
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Figure 11. The relationship between hydrostatic stress σm 
and atomic volumetric strain εV. 
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Figure 12. The correlation between hydrostatic stress σm 
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