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ABSTRACT 

Alpha helix is a common type of secondary structure in the protein structure that consists of repeating helical turns. 
Patterns in the protein sequences that cause this repetitive pattern in the structure have long been sought. We used the 
discrete Fourier transform (DFT) to detect the periodicity signals correlated to the helical structure. We studied the dis-
tribution of multiple properties along the protein sequence, and found a property that showed strong periodicity corre-
lated with the helical structure. Using a short-time Fourier transform (STFT) method, we investigated the amplitude of 
the periodical signals at each amino acid position. The results show that residues in the helix structure tend to display 
higher amplitudes than residues outside of the helices. This tendency is dramatically strengthen when sequence profiles 
obtained from multiple alignment were used to detect the periodicity. A simple method that predicted helices based on 
the amplitude yielded overall true positive rate (TPR) of 63%, 49% sensitivity, 72% specificity, and 0.22 Matthews 
Correlation Coefficient (MCC). The performance seemed to depend on the length of helices that the proteins had. 
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1. Introduction 

The alpha helix is a protein secondary structure element 
with each helical turn consisting of 3.6 residues on aver-
age. Discovering the periodical signals in protein se-
quence underlining this regular structure will help under-
stand protein folding and protein function. Discrete Fou-
rier Transform (DFT) is a commonly used method for 
detecting periodicity in sequences of numerical data. 
Given a sequence of numerical values, DFT transforms it 
into a combination of components, with each one corre-
sponding to a frequency. The amplitude value associated 
with a frequency component is proportional to the sig-
nificance of that frequency, and thus is an indication of 
whether a periodicity of that frequency exists in the data 
sequence and how strong the periodicity signal is. 

One approach to finding repeated elements in protein 
sequences is doing self-alignment. Another approach is 
to detect periodicities in protein sequences using methods 
like FT [1-6]. When FT is used to detect periodicity in 
protein sequences, one fundamental step is to transform 
the nominal protein sequences into numerical sequences. 
Different studies handled this step in a different way de-
pending on the purpose of the studies. The REPPER 
method [7] converted protein sequences into numerical 
sequences based on hydrophobicity scale. In REPETITA  

[8], protein sequences were transferred into functions 
based on Atchley’s five numerical scales [9]. The FT 
method can detect whether a periodicity of a certain fre-
quency exists in the whole protein sequence. However, if 
the periodicity only exists in a region of the sequence, the 
method can’t reveal the boundaries of the region. To ad-
dress this problem, the Short-Time Fourier Transform 
(STFT) method uses a sliding window to detect the pe-
riodicity at each position of the sequence [10,11]. Al-
though the afore-mentioned methods have been used to 
detect repeated elements or periodicity in protein se-
quences, no efforts have been made to detect sequence 
periodicity pertaining to a particular secondary structure. 
The ability to detect such a periodicity would enable re-
searchers to quickly determine the secondary structure of 
a protein sequence and help to reveal the function of the 
protein. Thus, there is an urgent need for methods that 
can accurately detect sequence periodicity correlated to 
secondary structure. 

In this study, we evaluated the effectiveness of differ-
ent numerical scales in detecting the periodicity corre-
lated with the helices. Then, we analyzed the signal am-
plitude at the position of each residue. Finally, we ex-
plored the feasibility of predicting helices based on the 
signal amplitude. 
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2. Methods and Materials 

2.1. Datasets 

Protein structures and helical segments were obtained 
from the Structural Classification of Protein (SCOP) [12]. 
We excluded the SCOP classes that did not consist of 
alpha helixes. Six classes were retained: A, C, D, E, F 
and G. We obtained 20 longest alpha-helical segments 
from each of the classes. Thus, a total of 120 helical 
segments was obtained. These helical segments were 
used to evaluate the effectiveness of different numerical 
scales in detecting periodicity correlated with the helical 
structure. The average length of these helical segments is 
53.9 for class A, 41.3 for C, 43.7 for D, 36.9 for E, 40.9 
for F, and 20.5 for G. The protein structures to which 
these 120 segments belonged were also identified. There 
were 118 proteins in total. These proteins were used in 
the experiments for investigating the amplitude at each 
residue position and for predicting helical residues based 
on the amplitude. 

2.2. Measurement of the Prediction  
Performance 

The performance of predicting helical residues was 
evaluated using true positive rate (TPR), sensitivity, 
specificity, and Matthews Correlation Coefficient (MCC) 
as follows.  

 Ture_Postive_Rate TP TP FP        (1) 

 Sensitivity TP TP FN           (2) 

 Specificity TN TN FP           (3) 

     
TN TP FP FN

MCC
TP FN TN FP TP FP TN FN

  


   
(4) 

where TP was the number of residues that were predicted 
to be helical and were actually in a helix; FP was the 
number of residues that were predicted to be helical but 
were actually in non-helix regions; TN was the number 
of residues that were predicted to be non-helical and 
were actually in non-helix regions; and FN was the 
number of residues that were predicted non-helical but 
were actually in helical regions. 

3. Results 

3.1. Detect Periodicity in Alpha Helix  
Sequences Using Discrete Fourier 
Transform (DFT) 

The alpha helical structure is a periodical structure with 
each helix turn consisting of 3.6 amino acids on average. 
Thus, on a helical segment of N residues, this periodical 
structure should result in a periodical signal with fre-  

quency of 3.6N  in the protein sequence. We investi-
gated whether this periodical signal of frequency 3.6N  
was detectable in protein sequence. First, the protein se-
quence was translated into a sequence of numerical val-
ues based on a property scale of the amino acids. Then, 
DFT was used to detect periodicity in the sequence using 
the same procedure as in [8]. We explored eleven prop-
erty scales related to residues’ propensities in secondary 
structure and alpha helix (Table 1). We used DFT to 
generate the amplitude-frequency plot for the set of 120 
alpha helical segments taken from the SCOP database. 
Table 2 shows the number of segments that displayed an 
amplitude peak at 3.6f N . The results showed that 
when feature F11 was used to transform protein sequence 
into numerical sequence, the DFT was able to detect a 
peak at frequency 3.6N  in 92 out of 120 helix seg-
ments (76.7%). 
 
Table 1. Property scales examined for detecting periodicity 
in the alpha helices. 

ID Feature description Source 

F1 Secondary structure Atchley et al., [9] 

F2
Free energy in alpha-helical 

conformation 
AA Index [13]: 
MUNV940101 

F3
Helix initiation parameter at posision 

i, i + 1, i + 2 
AA Index: FINA910102

F4
Helix termination parameter at 

posision j − 2, j − 1, j 
AA Index: FINA910103

F5
Alpha-helix propensity derived from 

designed sequences 
AA Index: 

KOEP990101 

F6
Normalized positional residue 
frequency at helix termini Nc 

AA Index: 
AURR980104 

F7
Normalized positional residue 
frequency at helix termini Cc 

AA Index: 
AURR980116 

F8
Weights for alpha-helix at the 

window position of 1 
AA Index: 

QIAN880108 

F9
Weights for alpha-helix at the 

window position of 0 
AA Index: 

QIAN880107 

F10
Helix termination parameter at 

posision j + 1 
AA Index: FINA910104

F11
Helix initiation parameter at  

posision i − 1 
AA Index: FINA910101

 
Table 2. Number of helical segments that exhibited a peak 
at frequency 3.6f = N  in the discrete Fourier transform. 

Property scale used in the discrete Fourier 
transform  

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Numbers of helical 
segments that  

exhibited a peak at 
frequency 3.6N  

75 72 83 83 69 80 76 82 83 74 92
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3.2. Short-Time Fourier Transform (STFT)  
to Locate Alpha-Helical Segments 

First, the protein chain was translated into a sequence of 
numerical values using feature F11. Then, a window of 
size 15 was slid along the protein sequence to generate a 
time-frequency plot using the STFT. To find the loca-
tions and boundaries of the alpha helices, we will need to 
find the time intervals (i.e. protein segments) that show 
high amplitudes at frequency 3.6N , where N is the 
length of the protein chain. Figure 1 shows a contour 
map of a STFT time-frequency plot of a protein (chain A 
of PDB id 1mhs) with sequence length N = 510. The 
contour lines show the amptitute values. The red vertical 
line in Figure 1 corresponds to frequency  

3.6 141.7N  . Figure 2 shows that amplitudes for fre-
quency of 3.6N  along the protein chain (the time do-
main). 

The results above showed that a majority of alpha helices 
had detectable periodicity in the protein sequence corre- 
lated with the helical structure. Therefore, we explored 
the feasibility of predicting the alpha helical secondary 
structure by detecting periodicity on the protein sequence. 
This test was performed using the 118 proteins that con- 
tained the 120 helices used above. The challenge in this 
step is that a protein chain has a mixture of alpha helices, 
beta sheets and coils. While the DFT can detect the pe-
riodicity associated with the alpha helices, it is not able 
to detect the locations and boundaries of the alpha helices. 
To overcome this problem, we treated the positions of 
amino acids as a sequence of time points and used the 
short-time Fourier transform (STFT) to discover time- 
frequency relationship in the protein sequences [10,11].  

If STFT is able to predict alpha helix, then residue po-
sitions corresponding to the actual alpha helices should 
have high amplitudes at frequency 3.6N  (see Figure. 

 

 

Figure 1. A coutour map of STFT time-frequency plot of a protein chain. The frequency corresponding to the periodicity of 
helical structure is shown by the red vertical bar. The contour lines show the amplitude values. 

 

 

Figure 2. Blue line shows the amplitude values on the frequency of 3.6N  along the time line (residue position) from Figure 

. Red horizontal lines show the actual regions of alpha helices along the protein sequence. 1 
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2). For each protein, we sorted residues based on their 
amplitudes at frequency 3.6N , and looked at the en-
richment of alpha helix r idues at the top 10% of the 
amplitudes and compared that with the actual fraction of 
residues that are helical in the proteins (Table 3). In the 
118 proteins, 49% of the overall residues were in the 
helical structure. In comparison, 54% of the residues that 
are in the top 10% amplitude range are actually helical 
residues. This result shows that helical residues tend to 
enrich in the region of high amplitudes. Table 3 also 
shows that different SCOP class showed different degree 
of enrichment. 

Protein sequence profiles generated from multiple 
al

es

and it consists of 20 numerical values corresponding to 

ignment have been used in different studies [14,15]. 
We also explored the feasibility of using them to improve 
the detection of helical residues. Sequence profiles were 
generated by running the PSI-BLAST program [16] 
against the NCBI’s non-redundant database using 4 itera-
tions and an e value of 0.001. One row of the sequence 
profile corresponds to one residue position in the protein 

the percentages of the 20 natural amino acid types found 
in that position of the multiple alignment. Then, for a 
given property scale, the protein sequence was translated 
into a sequence of numerical values by calculating a 
weighted sum for each residue position using the corre-
sponding 20 values in the sequence profile as weighting 
factors. Table 3 shows that using sequence profiles, the 
enrichment of helical residues in the top 10% amplitude 
range was dramatically increased from 54% to 71% for 
the overall dataset. Increment was observed in all SCOP 
classes. We divided the whole amplitude range into 10 
bins with the first bin corresponding to the top 10% am-
plitude range (0% - 10% range) and the last bin corre-
sponding to the last 10% range (90% - 100%). We ana-
lyzed the enrichment of helical residues in each of the 10 
bins. The results (Table 4) showed a clear trend that 
helical residues tend to high amplitudes at frequency 

3.6N . For example, for SCOP class A, 92% of the 
resid s in the first bin (0% - 10% range) were actually  

Table 3. Helical residues tend to show gh amplitudes in frequency 

ue
 

i h 3.6N . 

Enrichment of helical residues in the top 10% amplitude range 
SCOP Class 

ent 

Actual faction of total residues that 

Single sequence Multiple alignm are actually helical 

A 0.76 0.92 0.64 

C 0.47 0.70 0.46 

D 0.55 0.79 0.47 

E 0.44 0.70 0.43 

F 0.62 0.66 0.61 

G 0.38 0.51 0.33 

T l ota 0.54 0.71 0.49 

 
Table 4. Enrichment of helical residues in each bin of the amplitude range. 

Enrichment of helical residues in each bin of amplitude range 
SCOP Class 

0% - 10% 10% - 20% 20% - 30% 80% - 90% 90% - 100% 30% - 40% 40% - 50% 50% - 60% 60% - 70% 70% - 80% 

A 0.92 0.85 0.84 0.79 0.80 0.69 0.68 0.66 0.63 0.58 

C 0.70 0.64 0.59 0.54 0.48 0.44 0.36 0.36 0.30 0.30 

D 0.79 0.68 0.59 0.58 0.49 0.47 0.35 0.34 0.30 0.30 

E 0.70 0.61 0.54 0.50 0.41 0.38 0.33 0.33 0.27 0.28 

F 0.66 0.74 0.74 0.73 0.68 0.68 0.65 0.64 0.61 0.47 

G 0.51 0.47 0.43 0.46 0.32 0.38 0.35 0.26 0.27 0.20 

T l ota 0.71 0.66 0.62 0.60 0.53 0.51 0.45 0.43 0.40 0.35 

The w plitud  was  into 10 ith the in corre ng to th 0% am  range 10% ra  las rre-
sponding to the last 10% range (90% - 100%).  

hole am e range divided  bins w  first b spondi e top 1 plitude  (0% - nge) and the t bin co
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helical and the fraction was gradually decreased to 59% 
in the last bin (90% - 100% range). 

Our results have shown the enrichment of helical resi-
dues in the high amplitude regions. Base on this observa-
tion, we designed a simple method for predicting helical 
residues. The prediction was evaluated using leave- 
one-out cross validation at protein level. We calculated 
the average amplitude of helical residues in the training 
set, then residues in the test set with amplitudes higher 
than the average was predicted to be helical residues. 
This method predicts helical residues with overall 0.63 
true positive rate (TPR), 0.49 sensitivity, 0.72 specificity, 
and 0.22 Mathew’s correlation coefficient (MCC). The 
prediction performance varied from SCOP class to class. 
Best performance was achieved for class A with 0.78 
TPR, 0.51 sensitivity, 0.73 specificity, and 0.23 MCC 
and worst for class G with 0.44 TPR, 0.48 sensitivity, 
0.69 specificity, and 0.17 MCC. The average length of 
helixes is 53.9 residues in domain A, 41.3 in C, 43.7 in D, 
36.9 in E, 40.9 in F, and 20.5 in domain G. This predic-
tion performance on a class seems depend on the average 
length of helical segments. This is understandable, since 
each turn of helix has 3.6 residues, longer helical seg-
ments would present clear periodicity signal than shorter 
ones. Another factor that may affect the prediction in 
different classes is that the STFT detects the periodicity 
in a window of residues. This method will achieve best 
result if all residues in the widow are helical residues. 
However, for residue positions that are at the beginning 
or the end of the each helical fragment, half of the win-
dow consists of non-helical residues. Thus, the periodic-
ity signals for these positions will be weaker compared 
with positions at the middle of the helixes. 

4. Conclusions 

In this study, we explored the effectiveness of using DFT 
to detect the periodicity associated with the secondary 
structure of helix. We analyzed the distribution of multi-
ple numerical properties along the protein sequence and 
found that numerical index FINA910101 displayed 
strong periodicity correlated with the helix structure. 
FINA910101 is the helix initiation parameter for amino 
acids. We used STFT to detect periodicity at amino acid 
positions of protein sequence. We focused on the fre-
quency 3.6N , which is associated with the helical 
structure. We found that helical residues have the ten-
dency of associating with higher amplitudes on that fre-
quency. When sequence profiles generated from multiple 
sequence alignment were used to detect periodicity, 
helical residues displayed higher degree of enrichment in 
the high amplitude regions. These results show that the 
periodical structure of helixes causes detectable periodic-
ity in the protein sequence. We then examined the effec-

dues based on the periodicity. The method predicted 
helical residue with overall 0.63 TPR, 0.49 sensitivity, 
0.72 specificity, and 0.22 MCC. The prediction per-
formance varies from a SCOP class to another. The per-
formance seems to depend on the length of helical struc-
tures. 

The results presented in this study show that there are 
detectable sequence periodicity that are correlated with 
the secondary structure of helices. Our method can accu-
rat

tiveness of a simple method for predicting helical resi-

ely detect such periodicity, and thus provides an effi-
cient way for predicting secondary structure of proteins. 
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