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ABSTRACT 

The purpose of this study was to investigate the 
differences in the sensory threshold between 
the paretic and nonparetic sides of hemiplegic 
patients. 28 patients who were hemiplegic post- 
stroke (14 men and 14 women) participated in 
the electrical sensory and pain thresholds study; 
22 patients who were hemiplegic post-stroke (13 
men, 9 women) participated in a study measure- 
ing the sensory threshold with light touch. Elec- 
trical sensory and pain thresholds were meas- 
ured in the forearm via transcutaneous electrical 
nerve stimulation. The light-touch threshold was 
measured in the forearm using monofilaments. 
The light-touch, electrical sensory, and pain 
thresholds for the paretic side were significantly 
higher than for the nonparetic side in our popu- 
lation, respectively. In both the nonparetic and 
paretic sides, the male group generally showed 
higher thresholds for pain and sensation than 
did the female group. These results suggest that 
the different evaluations of sensory thresholds 
performed in this study for healthy rehabilitation 
will be a valuable clinical tool in hemiplegic pa- 
tients after stroke. 
 
Keywords: Sensory Threshold; Paretic and  
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1. INTRODUCTION 

Sensory impairment is common following stroke [1]. 
After stroke, a loss of physical connections (synapses, 
dendrites, axons) linking brain regions appears from im- 
pairment to the axons to the infarct site [2]. A correlation 
between after stroke motor function and structural integ-  

rity of the corticospinal tract has been found [3,4]. The 
sensory element of the superior thalamic radiation (sSTR) 
contains all afferent links to the somatosensory cortex [5]. 
Borstad et al. suggested that stroke associated structural 
changes to the sSTR may have relation to after stroke 
sensory function [2]. It is important to build an under- 
standing of discriminative sensory impairment because 
this type of subtle sensory disorder might be related to 
functional outcomes in patients who are rehabilitating 
after a stroke [6,7]. In many studies, it has been estab- 
lished that sensory impairment is detrimental to motor 
recovery [8,9]. Poor functional recovery may be partially 
result from learned nonuse phenomenon and bring about 
degeneration of motor function [10,11]. Tyson et al. 
found that sensory impairment was significantly associ- 
ated with mobility or lack thereof, independence in re- 
covery, and activities of daily living [12]. Also, sensory 
impairment indicates to predict length of hospital stay 
and discharge placement [2]. Measuring the prevalence 
and severity of sensory loss, particularly in patients who 
present for treatment and accurate detection of this loss, 
is essential [13]. Better understanding of impairments 
and outcomes can improve the established clinical path- 
ways and facilitate better timing and allocation of reha- 
bilitation [14]. However, conventional sensory testing is 
insufficient for exact assessment of the amount of sen- 
sory impairment in patients [15]. The word threshold 
refers to the points of stimulus strength at which the par- 
ticipant first notices the stimulation at all and as painful, 
respectively [16,17]. Sensory acuity is most generally 
determined by a threshold test. The functional part of 
sensory acuity is often forecast by using discrimination 
tests that evaluate the quality of sensation [18]. In addi- 
tion, the assessment of change in a given sensory thresh- 
old could be a profitable tool in the clinical evaluation of 
pain [19]. The electrical sensory threshold is significant 
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because the therapist can regulate treatment intensity 
from their patient’s subjective sensation during use of a 
transcutaneous nerve electrical stimulator [20]. Recently, 
experimental and clinical investigations have demon- 
strated some parameters for the electrical sensory thresh- 
old in healthy volunteers [19,21,22]. However, there are 
few clinical studies demonstrating the sensory threshold 
in patients after a stroke. Unilateral cerebral hemisphere 
lesions can cause sensory impairment on the nonparetic 
side [23,24]. Corkin et al. asserted that lesion size was a 
demonstrable factor in sensory impairment on the non- 
paretic side [25]. Hemiplegic patients with ipsilateral as 
well as contralateral tactile impairment face considerable 
additional rehabilitation challenges [26]. Therefore, more 
study is needed to evaluate the nonparetic side of a 
hemiplegic patient, and in particular to focus on the 
comparison between the paretic and nonparetic sides. To 
our knowledge, no previous study of sensory and pain 
thresholds exists that specifically applies to the differ- 
ences between the paretic and nonparetic sides of a 
hemiplegic patient. This study aims to evaluate three 
different sensory thresholds (light-touch, electrical sen- 
sory, and pain) in measuring and comparing these dif- 
ferences. 

2. MATERIALS AND METHODS 

2.1. Subjects 

The patients were selected according to the following 
inclusion criteria: left or right hemisphere stroke (unilat- 
eral only); a roughly equivalent number of patients from 
both sexes; ability to communicate and understand in- 
structions (Table 1). 

2.2. Electrical Sensory and Pain Thresholds 

28 patients who were hemiplegic post-stroke (14 men 
and 14 women) participated in the study. Patients were 
comfortably seated on a physical therapy treatment table 
or a wheelchair with their upper extremities positioned 
on a pillow. In each patient, the forearm was stimulated 
using the transcutaneous nerve electrical stimulator 
(HAT2000, Meditens Co. Ltd., Korea) and two surface 
electrodes of the same size (4.5 × 6 cm) for bipolar  

stimulation. The forearm was placed in a pronated posi- 
tion and effectively divided into thirds for the purpose of 
determining electrode position, with one electrode placed 
on the proximal aspect of the forearm at one-third of the 
forearm length, and the other placed at the distal aspect 
at one-third of the length (Figure 1(a)). The electrical 
stimulation doesn’t use the heat of the electrode. The pad 
does get enough water during every treatment procedure. 
The electrical stimulation was used for 10 Hz frequency 
in “mode 1-tapping”. The current intensity was recorded 
as 0% to 100% of the total output, and the sensory thresh- 
old was gradually increased by increasing the intensity. 
The first threshold was measured when the patients per- 
ceived the electrical stimulation without pain. The sti- 
mulus was then continuously increased in intensity until 
the patient felt initial pain. The stimulation was consid- 
ered to be over the sensory threshold for pain when the 
patient felt sick or sore. This method was first performed 
in the paretic and then in the nonparetic side for each 
patient. 

2.3. Light-Touch Threshold 

22 patients who were hemiplegic post-stroke (13 men 
and 9 women) participated in the study. Touch thresholds  
 

 
(a) Sensory & pain threshold 

 
(b) Light touch threshold 

Figure 1. Schematic representation of the experimental 
methods for measuring threshold. 

 
Table 1. Clinical characteristics of patients with after stroke. 

Gender (%) Age (yr) Height (cm) Weight (kg) BMI (kg/m2) Hypertension (%) 

Male 22 (54) 50.2 ± 14.9 164.2 ± 7.8 62.3 ± 10.5 23.1 ± 3.0 26 (63) 

Paretic side 
DM (%) Time after stroke (mo) 

Right (%) Left (%) Female 19 (49) 

4 (9) 3.6 ± 2.0 15 (37) 26 (63) 

BMI, body mass index; DM, diabetes mellitus. 
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were measured using monofilaments. The test kit con-
sisted of 5 different filaments; bending pressure ranges 
for the individual filaments were 2.83 to 0.07 g, 3.61 to 
0.4 g, 4.31 to 2.0 g, 4.56 to 4.0 g, and 6.65 to 300 g. To 
perform the test, the monofilament must be applied (that 
is, be pressed until it bends) perpendicular to the skin and 
held in place for 1 to 1.5 seconds. With the forearm in a 
pronated position, monofilaments were placed on the 
skin between the styloid process of the radius and the 
ulnar in the forearm (Figure 1(b)). Patients were re- 
quired to close their eyes. Placement began through ap- 
plication of the smaller filaments to the skin; placement 
continued to the larger filaments when patients did not 
respond. The point at which patients perceived the con- 
tact of their forearm with the filament was measured. 
Measurements were first obtained from the nonparetic 
side. 

2.4. Statistical Analysis 

We analyzed the data using the Mann-Whitney U test 
to differentiate between the nonparetic and paretic side 
thresholds by gender. The differences in the nonparetic 
and paretic side thresholds were also analyzed with the 
Wilcoxon test in paired comparisons. Correlations be- 
tween the electrical sensory and the light-touch thresh- 
olds were determined using Pearson’s test correlation 
coefficient. The data are expressed as means ± standard 
errors (SE). A P value of <0.05 was considered statisti-
cally significant. SPSS Version 18.0 (International Busi-
ness Machines, Armonk, USA) for Microsoft Windows 
was used for analysis in this study. The protocol for the 
study was approved by the Committee of Ethics in Re-
search of the University of Yongin, in accordance with 
the terms of Resolution 5-1-20, December 2006. 

3. RESULTS 

Upon analysis of the electrical sensory threshold with- 
out distinguishing between the sexes, a significant dif- 
ference existed between the nonparetic side (34.8 ± 4.8) 
and paretic side (50.9 ± 2.2). The electrical sensory 
threshold for the paretic side was also higher than for the 
nonparetic side (P = 0.000) (Figure 2(a1)). A significant 
difference materialized between male (37.5 ± 1.7) and 
female (32.1 ± 0.9) when the electrical sensory threshold 
was measured for the nonparetic side; this threshold was 
significantly higher in male than in female (P = 0.021) 
(Figure 2(a2)). A significant difference between male 
and female for this test also surfaced on the paretic side 
(male, 55.7 ± 2.9; female, 46.1 ± 2.9; P = 0.016) (Figure 
2(a2)). Meanwhile, when the electrical pain threshold 
was analyzed without taking sex into account, a signifi- 
cant difference existed between the nonparetic side (73.2 
± 2.4) and paretic side (86.6 ± 1.9). The electrical pain  

threshold for the paretic side was higher than for the 
nonparetic side (P = 0.000) (Figure 2(b1)). When the 
electrical pain threshold was analyzed by sex, no signify- 
cant difference existed between male (75.4 ± 1.0) and 
female (71.1 ± 3.5) on the nonparetic side. However, the 
electrical pain threshold of male was higher than that for 
female on the nonparetic side (P = 0.051) (Figure 2(b2)). 
When the electrical pain threshold was analyzed by sex, 
no significant differences existed between the male (90.0 
± 2.2) and female (83.3 ± 2.9) on the paretic side. How- 
ever, the electrical pain threshold of male was higher 
than female on the paretic side (P = 0.10) (Figure 2(b2)). 
In an analysis of the light-touch threshold without dif- 
ferentiating for sex, a significant difference existed be- 
tween the nonparetic side (2.9 ± 0.0) and paretic side (4.3 
± 0.4); the light-touch threshold for the paretic side was 
higher than that for the nonparetic side (P = 0.002) (Fig- 
ure 2(c1)). When sex was taken into account for the 
light-touch threshold, no significant difference existed 
between the male (2.8 ± 0.0) and female (2.9 ± 0.1) on 
the nonparetic side, but the light-touch threshold of fe- 
male was higher than that in male for the nonparetic side 
(P = 0.695) (Figure 2(c2)). There was no significant dif- 
ference between the male (4.0 ± 0.4) and female (4.7 ± 
0.6) on the paretic side; however, the light-touch thresh-
old of female was higher than male in paretic side (P = 
0.556) (Figure 2(c2)). The electrical sensory and pain 
threshold were significantly correlated with the light- 
touch threshold in paretic compared with those nonpar- 
etic side, respectively (Figures 2(d1) and (d2)). 

4. DISCUSSION 

The present study demonstrates for the first time that 
differences of sensory threshold exist between the paretic 
and nonparetic sides of hemiplegic patients, including 
the clinically important sensory assessment. Previous 
studies have reported the sensory threshold in healthy 
volunteers [19,21,22]. In our present study, the overall 
thresholds for sensory impairment were higher on the 
nonparetic side compared to the paretic side for hemiple- 
gic patients. Differences according to sex also surfaced. 
Men demonstrated a significantly higher electrical sen- 
sory threshold than did women in both the nonparetic 
and paretic sides. The results of our present study agree 
with the findings of some authors who have found that 
men have a higher sensory threshold than woman [21,22]. 
Likewise, the electrical pain thresholds for both the non- 
paretic and paretic sides were higher for men than for 
women, another result that replicates results reported by 
previous researchers [27,28]. Even if pain is not the ma- 
jor focus of this study, these findings would be of interest 
to those who wish to further evaluate the pain threshold 
of electrical stimulation. Researchers have assumed that 
the higher sensory pain thresholds of men are related to  
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(a1)                      (a2) 

 

 
(b1)                     (b2) 

 
(c1)                      (c2) 

 
(d1)                       (d2) 

Figure 2. Difference in the stimulation-induced sensory thresholds be-
tween paretic and nonparetic sides of patients with after stroke. 

 
the variety or type of stimulation [29], hair distribution 
and shaving [30], epidermal nerve fiber density [31], 
skin temperature, and skinfold thickness [22]. Previous 
studies using other types of stimulation methods sug-
gested differences in sensory thresholds between genders 
associated with differences in epidermal nerve fiber den-
sity and skinfold thickness [22,32,33]. Cadaver and skin 
biopsy studies have reported that women have higher 
epidermal nerve fiber density than men [34,35]. In 
women, therefore, the greater sensitivity to transcutane-

ous electrical stimulation could be analyzed by gender 
differences in the morphology and/or density of epider- 
mal nerve fibers, although gender-related differences in 
hormone concentrations (progesterone in particular) 
cannot be excluded [34,36]. Interestingly, the lower 
thresholds reported were correlated with greater subcu- 
taneous fat tissue thickness in participants (more likely to 
be women), therefore indicating that the individual sen- 
sory response can be forecast from subcutaneous fat tis- 
sue thickness [22]. Previous studies have had results in 
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accordance with our findings that the light-touch thresh- 
old for the paretic side was higher than for the non-pa- 
retic side, and there was no significant difference accor- 
ding to sex [21]. This general association between lesion 
size on imaging and tactile impairment has been discov- 
ered in studies of other cerebral defects [37,38]. Addi- 
tionally, the density of sensory receptors can vary be- 
tween individual studies, and between different ages of 
individuals in specific studies [39,40]. Meissner’s cor- 
puscles are located on various areas of the skin [41]. It is 
sensitive to light touch [42]. Meissner’s corpuscles also 
exhibit structural modifications and general decline in 
amount and cross-sectional area with aging [43]. Ac- 
cording to our results, no correlation existed between the 
electrical sensory threshold and the light-touch threshold. 
This can be explained by the fact that the sensory quality 
of light-touch is most related to superficial touch, while 
electric sensory testing is related more to subcutaneous 
touch. There are some limitations to this study. Data are 
not provided related to differences between a patient 
group and healthy groups for sensory and pain thresholds. 
However, a previous study of 30 hemiplegic patients 
reported a higher light-touch threshold for nonparetic 
hands in patients than was reported in the hands of nor- 
mal subjects [20]. This study is significant because, for 
the first time, these tests were applied to both the paretic 
and nonparetic sides of hemiplegic patients. The results 
obtained in this study extend our previous findings and 
further suggest that not only electrical stimulation but 
also other stimulation is needed for further study of and 
assessment in patients after stroke. In conclusion, this 
study will help in the evaluation of sensory and pain 
thresholds for rehabilitation in hemiplegic patients. 
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