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ABSTRACT 

Overtime, reduction in the amount of heat generated in engineering systems in operations have been of great concern 
and have continuously been under study. It is in line with the above that this research work developed a mathematical 
model of an evaporative cooling pad using sintered Nigerian clay. A physical model of the evaporative cooling phe- 
nomenon was developed followed by the derivation of the governing equations describing the energy and mass transfer 
for the clay model from the laws of conservation of continuum mechanics. A set of reasonable and appropriate assump- 
tions were imposed upon the physical model. Constitutive relationships were also developed for further analysis of the 
developed equations. The finite element model of numerical methods was used to analyse the energy transfer governing 
equations which resulted in the determination of the temperature of the exposed boundary surface at any given time, t2 
after the commencement of the evaporative cooling processes. In this paper, it was found out that surface temperature 
differences could be as much as 6˚C in the first cycle of evaporative cooling with the potential of further reduction. 
Further, an equation for the prediction of the effectiveness of an evaporative cooling system using clay modeled cool- 
ing pads was developed. The findings in this research work can be applied in the design, construction and maintenance 
of evaporative coolers used to dissipate waste heat when a large amount of natural water is not readily available or if for 
environmental and safety reasons the large water body can no longer absorb waste heat. 
 
Keywords: Evaporative Cooling; Nigerian Clay; Finite Difference Model; Energy Transfer; Cooling Pad; Moulded 

Clay Material; Heat Transfer; Refrigeration; Temperature 

1. Introduction 

It is general knowledge that from ancient practice, moul- 
ded clay materials keep the contents cold. This research 
work sought to identify to what extent it does this under 
specified conditions and the scientific proof to that effect. 
The work went further to do an in-depth analysis of eva- 
porative cooling on sintered clay sample materials and 
the information obtained by experiment was used to mo- 
del an evaporative cooling pad. 

Evaporative cooling is deemed to be an appropriate 
alternative cooling mechanism for the cooling of engi- 
neering systems in operation due to its simplicity, power 
saving characteristics as well as its attendant success as a 
cooling mechanism in other relevant applications. In 
principle there are two types of evaporative air cooling 
systems [1-4]. 
 Direct Evaporative Cooling (DEC)  
 Indirect Evaporative Cooling (IEC) 

In a Direct Evaporative Air Cooling (DEC) system, air 
is taken in through porous wetted media or through a 
spray of water. In the process sensible heat of air evapo- 

rates some water. The heat and mass transferred between 
the air and water lowers the dry-bulb temperature of air 
and increases the humidity at a constant wet-bulb tem- 
perature. The dry-bulb temperature of the nearly satu- 
rated air approaches the ambient air wet-bulb tempera- 
ture. The process is an adiabatic saturation one. The wet 
bulb temperature of the entering airstream limits direct 
evaporative cooling. This is so because the Dry Bulb 
Temperature (DBT) of the outgoing airstream can at most 
be brought to the Wet Bulb Temperature (WBT) of the 
incoming airstream. 

In Indirect Evaporative Air Cooling (IEC) heat transfer 
between primary and secondary airstreams takes place. 
The air supplied from outside air to the conditioned space 
is termed as primary air. The primary air is cooled by 
secondary air with the help of heat transfer. Secondary 
air evaporates some of the water which reduces the tem- 
perature of secondary air and water. Theoretically tem- 
perature of secondary air and water can be reduced to the 
secondary air wet bulb temperature. Heat transfer takes 
place from the primary air to the secondary air through 
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the wall of the heat exchanger. While constant wet bulb 
temperature cooling takes place in the path of secondary 
air and sensible cooling takes place in the path of pri- 
mary air. 

Evaporative cooling of liquid water occurs when the 
surface of a body of water or moist object is exposed to 
an open environment which is commonly air. Under these 
conditions the water will begin to evaporate. The cause 
of this is explained by [5,6], to be the natural tendency of 
liquid water seeking to achieve phase equilibrium with 
the moisture content of the surrounding environment. 

As water evaporates, the latent heat of the vaporized 
water, or heat of vaporization, is absorbed from the body 
and the surrounding environment. In the absence of other 
mechanisms of heat transfer (i.e., convection and radia- 
tion), a net cooling effect of the body’s surface is ex- 
perienced. In tropical climates, the air in the atmosphere 
is usually very hot, dry and with a very low relative hu- 
midity. Rather than pass air through a refrigerated cool- 
ing section, which is quite expensive, it is very much 
possible to take advantage of the low relative humidity to 
achieve cooling. This is accomplished by passing air 
through a water-spray section of the water to be cooled. 

Owing to the low relative humidity, part of the li- 
quid—water stream evaporates. The water is cooled sim- 
ply because of the energy provided by the airstream. The 
overall effect is a cooling and humidification of the air- 
stream and the process is called Evaporative Cooling, [6]. 
Evaporative cooling is comparably less expensive and 
specially suited for climates where the air is hot and hu- 
midity is low. It is very important to note that evapora- 
tive cooling differs from air conditioning by refrigeration 
and absorptive refrigeration which use vapour-compres- 
sion or absorption refrigeration cycles. 

2. Methodology 

In this section, an attempt was made to highlight in clear 
terms the procedure adopted in accomplishing the set 
objectives of this research work. They are stated thus: 
 Derivation of the governing differential equations de- 

scribing the energy and mass transfer for the simpli- 
fied model from the conservation laws of continuum 
mechanics; 

 Simplifying the governing equations through reason- 
able and appropriate assumptions and the develop- 
ment of constitutive relationships; 

 Development of an explicit equation that describes 
the relationship between the convective heat transfer 
coefficient hc and mass transfer coefficient hm as ap- 
plied to the evaporative system; 

 Seeking numerical methods solutions to the resulting 
equations by the finite element/difference method ap- 
proach on application of the initial and boundary 
conditions; and 

 Presentation and discussions of the findings of the re- 
search work.  

3. Development of Governing Equations 

3.1. Physical Model 

To adequately examine and study the potential of evapo- 
rative cooling in the selected sintered clay material, it 
was first necessary to develop a physical model of the 
phenomena and the corresponding governing equations 
associated with that model on application of relevant 
physical laws and principles. In the interest of computa- 
tional time it was convenient to develop a model which 
was as simple as possible yet complex enough to accu- 
rately assess the potential of evaporative cooling for the 
selected clay sample. Since subsequent experimental re- 
search may also be performed to assess the feasibility of 
the present study it was also important to produce a mo- 
del whose predictions may be compared with experi- 
mental data obtainable from the clay sample material. 

The model chosen for the present study is a flat sample 
of clay material of dimensions (LP × LP × L). In analysis 
of this nature, heat conduction and mass transfer are in- 
evitable. They occur intermittently due to the tempera- 
ture and concentration gradient experienced between the 
water in the sample and its environs. The heat transfer 
process involves latent heat transfer owing to vaporiza- 
tion of a small portion of the water and the sensible heat 
transfer owing to the difference in temperature of water 
and air. The heat and mass transfer account for the cool- 
ing of the water in the sample below the inlet tempera- 
ture [7,8]. 

The clay material fired to a temperature range of 
1000˚C possesses a measurable level of porosity for 
evaporation of water. The level of porosity at different 
temperatures is highest for this sample with a value of 
24.72%. This sample is also widely and generally known 
as earthenware and was used as the model for the analy- 
sis in this research work. 

An illustration of this model is presented in Figure 1 
and Figure 2. The sample material plate possesses a uni- 
form initial temperature and molecular moisture content. 
At a given time, t = 0, the surface of the plate is exposed 
to streams of air containing known free stream tempera- 
tures (ambient temperature) [9] and moisture contents 
(ambient humidity). As a result, heat and moisture will 
begin to transfer through the plate. 

3.2. Assumptions 

In order to significantly succeed in modelling the sample 
material in line with the objectives of the work, it was 
necessary to impose a set of reasonable and appropriate 
assumptions upon the physical model. This was to sim- 
plify the mathematical equations that were formulated in  
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Figure 1. A model of thin flat plate (where L<<<LP). 
 

 

Figure 2. Directions of Heat and moisture transport in the 
clay sample material. 
 
the course of the work. The overall effect of these as 
sumptions on the behaviour of the sample clay material 
was considered to be negligible in the analysis. The as-
sumptions were as follows: 
 The moisture bearing clay sample material is iso- 

tropic, (i.e. having the same physical properties in all 
directions). This allowed for the use of Fourier’s law 
of heat conduction; 

 The convective heat and mass transfer coefficients on 
both sides of the plate are uniform. Thus at any loca- 
tion along the y-axis within the plate and for all va- 
lues of time, t, the temperature and molecular mois- 
ture content will be uniform in the x and z directions 
(i.e., independent of x or z). This reduced the gover- 
ning equations to one dimensional form; 

 Heat transfer at the plate surfaces due to radiation is 
negligible [7,10]. Diffusion of molecular moisture 
within the clay sample plate may then be conveniently 
described by Fick’s Law of Diffusion; 

 The rate of evaporation is small and does not signify- 
cantly affect the boundary layer of the air flowing 
over the plate. As a result the convective heat and 
mass transfer coefficients are considered to be inde- 
pendent of the rate of mass transfer; 

 The temperature of the free stream air is less than 
100˚C, such that the moisture content of the sample 
does not boil; 

 Evaporation is assumed to occur at the plate surface 
and not within the plate; 

 The thickness of the plate (y-direction) is unaffected 

by changes in molecular moisture content; and 
 Surface tension, stress tensor components as well as 

capillary forces are to a large extent considered negli- 
gible (i.e., zero). 

With the preceding physical model and seemingly 
imposed assumptions from above, it became very much 
possible to derive the equations governing the behaviour 
of the clay sample plate depicted in Figure 1 from the 
basic laws and principles of Engineering. In formulating 
the governing equations as it concerns evaporative cool- 
ing in the model of the sample material selected, it was 
necessary to consider two fundamental laws. These are 
the law of conservation of energy and the law of conser- 
vation of mass. 

3.3. Finite Element Analysis of a Heat  
Conducting Clay Slab 

3.3.1. Theoretical Formulation 
The geometry of field quantities or continuum may be a 
problem to close form solution of field functions en- 
countered in engineering and science that appropriate 
algorithm becomes necessary to obtain optimum solution. 
It is then equally important to employ the “calculus of 
variation” principles to obtain optimum continuum field 
functions whose boundary conditions are specified. About 
all quasi-harmonic phenomena are represented by either 
the partial derivatives of the function or by the well- 
known Laplace and Poisson equation. In calculus of 
variation, instead of attempting to locate the maxima/ 
minima points of one or more variables that extremize 
quantities called functional (x), the function of the func- 
tions that extremizes the functional is found [11-14]. 

The general equation governing quasi-harmonic and 
time dependent field functions as [4]; 

0x y zk k k Q c
x x y y z z t

             
                 

 (1) 

While the Euler’s theorem presented by [6] states that 
if the integral 

  , , , , , , d d dI f x y z x y z
x y z

   
   

     
    

is to be minimized, then the necessary and sufficient con- 
dition for the minimum to be reached is that the unknown 
function  , ,x y z  should satisfy the following differ- 
ential equation; 

   

 
0

f f

x x y y

f f

z z

 

 

     



  

       


     
   

   
      


       (2) 

Within the same region provided that   satisfies the 
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same boundary condition in both cases. From the on- 
going, it can be shown that the equivalent formulation to 
that of Equation (1) is the requirement that the volume 
integral given below and taken over the whole region, 
should be minimized.  

22 2
1

2 x y zk k k
x y z

Q c dxdydz
t

  

 

                         
       


    (3) 

Subject to   obeying the same boundary condition 
and however, t   is an invariant. In a typical case of 
one-dimensional ‘heat and mass’ flow through an iso- 
tropic clay surface subjected to a specific boundary con- 
dition and devoid of external force (i.e. rate of heat ge- 
neration Q = 0), the equivalent functional to be mini- 
mized reduces to; 

2
1

d
2 yk c

y t

 
              

 y



       (4) 

Assuming no accumulation of matter within the sin- 
tered clay then χ can be relaxed for optimization of heat 
conduction through the thickness of a clay sample. This 
assumption would be appropriate in a low temperature 
process displaying free convention without external heat 
addition. For the particular case of the steady state heat 
conduction we may identify the functions, , andx yk k kz  
as isotropic conductivity coefficients, the function Q as 
the rate of heat generation, the unknown field function as 
the temperature , and  T t   is due to accumulation 
of heat at various locations (provided the co-ordinates 
coincide with the principal axis of the material). The last 
term of Equation (3) can be considered as a prescribed 
function of position only. Hence we may re-write Equa- 
tion (4) in corresponding heat flow terms as; 

2
1

d
2 y

T T
k c T

y t


               
 y



N

       (5) 

The finite element procedure is implemented further 
by assuming that for the one-dimensional case, heat ex- 
change is executed in a region defined by a straight line 
(whose length corresponds to the thickness of the plate w) 
discretized into a finite number of line elements de- 
scribed uniquely by two nodal points, while the nodes 
correspond to equivalent isotherms overlaid in a regular 
fashion across the entire surface as illustrated in Figure 3 
below. 

The minimization of the integral (functional) given in 
Equation (5) gives each element’s contribution to the 
solution of the continuum problem when the assembly 
system is solved. Consider a typical element of the re- 
gion identified by the 2-nodes in a local co-ordinate sys- 

tem (i, j). In general, if within the element; 

 e
;

i
i j

j

T
T N N

T

        
            (6) 

Hence; 

  e

i i j jT N T N T N T            (7) 

Similarly; 

 
e

T
N

t t

    
  

T
              (8) 

Equation (7) is the shape function and N is the interpo- 
lating function. It has been shown as in (8), (10), (11) 
and (12) that; 

,j i
i j

j i j

y y y y
N N

y y y yi

 
 

 
         (9) 

With the nodal values of T now defining uniquely and 
continuously the function throughout the region the 
“functional” χ can be minimized with respect to these 
values. This process is best accomplished by evaluating 
first the contributions to each differential such as 

iT   from a typical element, then adding all such 
contributions and equating to zero. Only the elements 
adjacent to the node i, will contribute to iT   just as 
only such elements contributed in plane elasticity of the 
equilibrium equation of such node. 

3.3.2. Formulation of Element Equation 
If the value of  associated with an element is designated 
with e  (implying integration limited to the length of 
the element) then we can write by differentiating Equa- 
tion (5); 

 
e

y
i i

T T T T
k c N

T y T y t T



i

dy
       

          
      (10) 

With T given as the “shape function” defined by Equa- 
tion (5); evaluating the partial derivatives contained in 
Equation (8) we can write; 

   

   

2

2

1

( )

j j

i i

j

i

y y ee

y i j i
i y y

y e
y

i j i
y

T
k T T dy c N N d

T tL

k T
T T c N N dy

tL

        

     
 

 



   (11) 
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Figure 3. Finite element model of 2-dimensional slab. 
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Similarly; 

    2

j

i

y ee
y

j i j
j y

k T
T T c N N dy

T L

      
   t

    (12) 

     0
i

T
H T P

T t

       
        (18) 

In which  H  is the ‘stiffness matrix’ of the whole 
assembly [9] and  P  is a matrix assembled by pre- 
cisely the same rule as the stiffness matrix from the 
components of . ijp

Combining Equations (11) and (12) gives a typical ele- 
ment equation of the general form [15,16]; 

 1 1

1 1

ee
iy

jij

Tk T
p

TT L t

                    




    (13) 3.3.4. Development/Computation of Final Assembly 
Equation  

where; j iL y y   is the mesh size. 

 

 2 2 3 3
2

[ ]

2 1

3

j

i

y

T
i

y

i j j i j i

p p j c N N dy

c
y y y y y y I

L

    

   









   (14) 

The generation of the final assembly equation for a typi- 
cal heat conduction surface formulated above may be 
accomplished in the following synthesized procedures. 
Suppose we consider a slab of thickness , ther- 
mal conductivity, k = 0.72 W/m˚C, specific heat capacity, 
Cp = 920 J/kg˚C and density  that is 
initially at a temperature of 30˚C. Say at time t = 0, one 
side of the slab is brought in contact with water at Tw = 
40˚C at all times, while the other side is subjected to con- 
vection to the environment at T∞ = 30˚C discretized into 
five (5) similar elements of length L composed of a total 
of six (6) nodal points. The co-ordinates of these points in 
the universal system may be described as shown in Figure 
4. Comparing Equations (13) and (14) shows that p

w = 1 cm

3780 kg/m1 

c C  
if the accumulation of mass in the slab due to evaporation 
of water is sufficiently small to guarantee constant density. 
This assumption is valid in low temperature operation 
where matter transport is considered negligible. 

where  is an identity matrix [15]. 
1 0

0 1
I


 
 

Evidently the first product   TN N   is a scalar, 
hence the value of  p  in computed by multiplying the 
value of the integral by unit vector to achieve a balanced 
degree of freedom with the vector  h  

Hence, the element equation can be expressed in a 
more concise form as; 

e
j

ij j ij

T
h T p

T t

     
  

          (15) 

ij  and ijh  are evaluated separately for every indi- 
vidual element in global coordinate system and the as- 
sembly follows the method suggested in Section 3.1 
obeying consistent element topology and the resulting mi- 
nimization equation of the global system is expressed in 
matrix form as follows; 

p

3.3.3. Assembly Equation 
The final equation of minimization procedure requires 
the assembly of all the differentials of   and equating 
the result to zero. Typically; 

0
e

i iT T

  


 
 

              (16) 

The summation is taken over all the elements. Hence 
in the light of Equations (15) and (16) we may write; 

0j
ij j ij

i

T
h T p

T t

 
 

   


       (17) 
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Figure 4. Finite element model of a sintered clay slab sub- 
jected to heat exchange with the surrounding. or; 
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              (20) 

 
Equation (20) the global heat diffusion equation from 

which the time histories of the temperature distribution 
of the idealized system may be studied if the boundary 
condition is known or specified. 

Substitution of 5 p y
wL and c C and k k    re-

duces the assembly equation to the following set of linear 
first-order equation 

3.3.5. Application of Boundary Conditions/Initial 
Values 

Equation (20) may not have a definite solution if the va- 
lues of the objective function (temperature) at the borders 
and in the beginning of the process are not specified or 
known. Such specification is usually referred to as Boun- 
dary Condition (BC) and initial value respectively. Con- 
sidering the particular case where the slab is initially at a 
temperature of 30˚C (say) at time t = 0 while one of its 
ends is brought in contact with water reservoir at Tw 
=40˚C at all times and the other side is subjected to con-
vection to an environment at T∞ = 30˚C. 

This poses a boundary value problem in T (t) whose 
solution would emerge from the substitution; 

61
1 640, 30, 0w

t t

TTT T T T t t
        

In Equation (20), to obtain the following reduced 
equation 
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     (21) 

The resulting set of linear first order differential Equa- 
tion (19) is now solved subject to 

       2 3 4 50 0 0 0 T T T T    30  

as an Initial Value Problem (IVP) with the expediency of 

MATLAB “dissolve” command to arrive at the following 
exponential series; 
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40 40

2 3

9 3
40 40
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40 40
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40 40
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220 5 159 9 4

110 5 53 3

100 5 53 3

230 5 159 9 4
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t t
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t t
t

T e e t

e e

T e e

T e e t

   

  

  

   

T

    (22) 

4. Discussion and Conclusions 

The solution of the interior mesh points presented above 
with the boundary conditions and the initial values pre- 
dict completely the time histories of temperature dis- 
tributionacross the isotherms overlaid through the thick- 
ness of the slab (see Figures 5 (a) - (d) below). 

The result shows that during the conduction process 
when “t” probably take value >0 the instantaneous nodal 
temperatures  assume peak and minimum values 
between adjacent nodes of a typical element which suf- 
fices to say that the diffusion of heat at the nodes closer 
to heat source for any given element is accompanied by 
certain degree of heat addition at the adjacent node con- 
firming the quasi-harmonic nature of heat flow across the 
region while as time approaches infinity the parameter 
everywhere converges progressively and exponentially to 
the value fixed at the low temperature reservoir. This as 
well shows that the excess heat transmitted to the sub- 
surfaces due to the hot interface diffused rapidly into the 
low temperature reservoir via the oscillation of heat 
across the thickness of the slab which characterize the 
conduction process and the associated surface convection, 
maintaining low temperature zones within the entire re- 
gion over a long period of time. The heat diffusion pro- 
cess in the sintered clay is partially controlled by its po- 
rosity and permeability which allows for interaction of 
gaseous molecules from the bounding heat reservoirs and 
the relative heat loss by convection, leading to the so- 
called evaporative cooling effects. By and large, the low 
temperature profile maintained over time across the slab 

( )iT t
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(d) 

Figure 5. (a), (b), (c) and (d). The Instantaneous subsurface temperature profile of the field sintered clay slab within the first 
six (6) hours. 
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Figure 6. The generalized instantaneous subsurface temperature profile. 
 
can also be attributed to the low thermal conductiveity of 
the material observed in the model. This result may not 
however be the same for the case where the size of the 
heat source or sink (purported reservoir) is not large 
enough as to sustain constant temperature at the bounda- 
ries (creating what may be regarded as a conditioned 
space). In such conditions, significant cooling effect is 
identified in space due to removal of sensible heat from 
the conditioned space in the form illustrated by Figure 5 
and Figure 6 but only to normalize on attaining the wet 
bulb temperature of the surrounding medium. Thisobser- 
vation justifies the evaporative cooling potential of the 
Afikpo clay sample analysed. Other important applica- 
tion may include thermal insulation in high frequency 
power transmission line, heat sink in electronic gadgets 
which may not otherwise operate for long in elevated 
temperatures and other similar processes. 
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