
Journal of Software Engineering and Applications, 2012, 5, 894-902
http://dx.doi.org/10.4236/jsea.2012.531104 Published Online November 2012 (http://www.SciRP.org/journal/jsea)

Mapping High-Level Application Requirements onto
Low-Level Cloud Resources

Yih Leong Sun, Terence Harmer, Alan Stewart

School of Electronics, Electrical and Computer Science, The Queen’s University of Belfast, Belfast, UK.
Email: ysun05@qub.ac.uk, t.harmer@qub.ac.uk, a.stewart@qub.ac.uk

Received October 13th, 2012; revised November 11th, 2012; accepted November 20th, 2012

ABSTRACT

Cloud computing has created a paradigm shift that affects the way in which business applications are developed. Many
business organizations use cloud infrastructures as platforms on which to deploy business applications. Increasing
numbers of vendors are supplying the cloud marketplace with a wide range of cloud products. Different vendors offer
cloud products in different formats. The cost structures for consuming cloud products can be complex. Finding a suit-
able set of cloud products that meets an application’s requirements and budget can be a challenging task. In this paper,
an ontology-based resource mapping mechanism is proposed. Domain-specific ontologies are used to specify high-level
application’s requirements. These are then translated into high-level infrastructure ontologies which then can be mapped
onto low-level descriptions of cloud resources. Cost ontologies are proposed for cloud resources. An exemplar media
transcoding and delivery service is studied in order to illustrate how high-level requirements can be modeled and
mapped onto cloud resources within a budget constraint. The proposed ontologies provide an application-centric
mechanism for specifying cloud requirements which can then be used for searching for suitable resources in a multi-
provider cloud environment.

Keywords: Cloud Computing; Resource Mapping; Cloud Ontology; Cost Model

1. Introduction

Cloud computing provides many potential benefits to
business organizations. It provides access to scalable on-
demand computing resources based on a pay-as-you-use
pricing model. Many organizations currently use the cloud
as an alternative platform for executing business applica-
tions. However, increasing number of cloud providers
supply the cloud marketplace with a wide range of cloud
resources. Different providers offer cloud resources in
different formats using different pricing structures. Given
the wide range of products available and the complexity
of the cost structure for consuming cloud resources, it
can be difficult to estimate the cost of running an appli-
cation in the cloud. Searching for a suitable set of cloud
resources that meet an application’s requirement and
budget is a challenging task. For many applications, a
high degree of business continuity and service availabil-
ity are of paramount importance. Many business organi-
zations demand high availability of resources and require
a solution that can deliver a highly resilient business ser-
vice. In the event of service interruptions, caused by a
provider’s resource malfunctioning, such as the AWS in-
cidents [1], organizations should have the option to mi-
grate their applications elsewhere.

From the application developer’s point of view, it is
desirable to have a programming model for constructing
cloud-based infrastructures on which to deploy business
applications. This model should provide an application-
centric mechanism for specifying high-level application
requirements and a means of translating them onto the
low-level cloud resources offered by different cloud pro-
viders in the marketplace. Many frameworks have been
proposed for managing cloud resources [2,3]. However,
these frameworks do not provide a mechanism for com-
paring and selecting cloud resources according to appli-
cation’s constraints. Papers [4-6] propose different ap-
proaches for describing cloud resources, but require-
ments are typically analyzed from the provider’s per-
spective which is usually based on the resource capabili-
ties offered by the providers. Currently there are no suit-
able mechanisms for describing high-level requirements
from the application’s point of view

The pricing structure for consuming cloud resources
varies across cloud providers. Some providers, such as
Amazon Web Services, offer compute resources in mul-
tiple geographical areas and charge different prices for
each area. Certain provider uses a rate-tier structure for
data transfer usage (or bandwidth) whereas others use a

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 895

flat rate structure. For example, HP Cloud charges $0.12
per GB per month for usage up to the first 10 TB, $0.09
for the next 40 TB, $0.07 for the next 100 TB and so on;
In contrast, Rackspace charges a flat rate of $0.18 per
GB. It is difficult to compare the costs of using cloud
resources for running applications in a multi-provider
cloud environment.

This paper proposes an application-centric, multi-layer
ontological approach for specifying requirements. The
ontologies enable application developers to formulate high-
level domain-specific requirements and subsequently
apply these descriptions to search for the most suitable
set of resources in a multi-provider cloud environment.
Cost ontologies are proposed to model the costs of cloud
resources; these can be used for estimating and compar-
ing the costs of running applications in the cloud.

This paper is organized as follow. Section 2 describes
an ontology-based resource mapping model. Section 3
defines ontologies for specifying cloud requirements and
resources. A use case example is given in Section 4. Sec-
tion 5 discusses related research and conclusions are
drawn in Section 6.

2. A Resource Mapping Model: An
Ontological Approach

An ontology provides a means of modelling a domain of
knowledge. It provides formal descriptions of a set of
entities and the relationships between them. In this paper,
we propose a mechanism for mapping high-level applica-
tion’s requirements onto low-level cloud resources us-
ing an ontological approach (see Figure 1).

In the proposed model, high-level application re-
quirements are expressed using domain-specific ontolo-
gies. These ontologies provide a semantic mechanism for
capturing high-level requirements in a language or ter-
minology familiar from a user’s application domain. Do-
main-specific ontologies focus on user’s needs. Once the
high-level domain-specific ontologies are constructed, it
is up to developers to translate these domain-specific on-
tologies onto infrastructure deployment ontologies. Know-
ledge databases or historical databases can be used to
facilitate the translation process by providing applica-
tion-specific performance and stability data. For example,
in [7] several tasks are run simultaneously on a multi-
core and high memory resource in order to meet a deliv-
ery deadline.

The infrastructure deployment ontologies provide con-
straints for resource selection. For example, in [8], a high
availability and high resilience constraint results in an
application being deployed on mirror infrastructures that
are located at different locations. This ontological layer is
resource-agnostic and gives an abstract view of infra-
structure requirements from the application’s perspective.

Figure 1. An ontology-based resource mapping model.

In the proposed model, infrastructure deployment on-
tologies are then used to search for the most appropriate
set of resources from the resource layer.

The resource layer contains a pool of cloud resources
offered by various providers. Resource ontologies, such
as [5,6], are used to describe the features or capabilities
of resources offered by cloud providers. Cost ontologies
are proposed for specifying the costs of resources. The
choices of cloud resources (or provider) depend on the
user’s preferences. Multiple cloud providers can be used
as long as appropriate financial constraints are satisfied.

A two-phase resources discovery approach is used for
selecting the most appropriate set of resources for a given
application [9]. In the first phase, possible resources
which meet an application’s requirements are identified.
In the second phase, suitable heuristics, such as cost or
performance, are used for filtering the initial sets of re-
sources. Once the best set of resources is identified, the
resources can be instantiated and managed using a cloud
management API, such as [10,11].

3. Cloud Ontologies

In this section, we describe an ontological approach for
specifying cloud application requirements. OWL 2 [12]
is used to specify ontologies.

3.1. Domain-Specific Ontology

A domain-specific ontology defines the high level requi-
rements that are needed (or desired) for an application.
These ontologies are application-specific and expressed
using the terminology familiar in the user’s application
domain. An example of a domain-specific ontology is
given below.

Media Transcoding and Distribution Services
Media transcoding is the process of converting media

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 896

files from one format to another; media distribution is the
process of distributing media contents (using streaming
media technology) to many online users (viewers or
listeners) simultaneously over the internet. Media trans-
coding and distribution services require high CPU, high
memory, large storage space and fast bandwidth. Con-
sider a company that is offering an online training service.
It needs to broadcast a series of training videos simul-
taneously to 500 users in UK and to 500 users in Singa-
pore. These videos use avi format and are made available
5 hours before the broadcast schedule. In order to pro-
vide a good viewing experience and achieve high user
satisfaction, these videos need to be transcoded into high
quality formats in different screen sizes for different de-
vices (such as PC, iPad, iPhone). In addition, there is a
budget constraint of £5 per user. These requirements may
be specified in high-level notations as follows:

Video sources: avii;
Video quality: high definition;
Playback devices: PC, iPhone, iPad;
Broadcast schedule: 9 am next morning;
Simultaneous users: 500 (UK) and 500 (SG);
Budget: £5 per user.
We have used this example and other examples of

transcoding to devise a generic ontology for specifying
media transcoding and distribution requirements. The on-
tology includes:
 Budget requirements which specify monetary cons-

traints on leasing the infrastructure. These can be ex-
pressed as the maximum cost per day, per hour, or per
user.

 Format requirements which specify the container for-
mat of the media. For example, transcoding a video
from avi format to high quality windows media for-
mat.

 Device requirements which specify the destination
devices (i.e. viewer’s devices) that the media will be
played on; for example, iPad or iPhone.

 Delivery time requirements specify the time when the
transcoded media will be ready for broadcast.

 Capacity requirements estimate the number of users
that will use the service simultaneously.

 Location requirements specify the geographical loca-
tion of users that will use the service.

The ontology adopts media terminology. Many media
users would be familiar with such high-level specifica-
tions rather than the details of low-level infrastructure
resources (hardware or software) which support the me-
dia service. By using the proposed model, media users
can specify media services’ requirements using appro-
priate terminology. Application developers could utilize
knowledge databases, such as historical records, CPU
benchmarks of transcoding tasks or performance
benchmarks of media servers, to map high-level domain-

specific ontologies onto infrastructure deployment onto-
logies.

3.2. Infrastructure Deployment Ontology

The next layer in our programming model provides a
means of specifying a generic infrastructure which can
support the high-level user requirements. The generic
infrastructure model should have the potential to be in-
stantiated using a wide range of cloud products, supplied
from the multi-provider marketplace.

In the proposed ontology, infrastructure requirements
define the capabilities, features or qualities that are ne-
cessary (or desired) for an infrastructure on which to exe-
cute the application. In general, infrastructure require-
ments are divided into the following categories (see Fig-
ure 2):
 Cost requirements specify the budget for deploying

cloud infrastructure.
 Performance requirements refer to quality and per-

formance of the infrastructure. These can be further
categorized as:

1) Network latency performance, which indicates the
de- lay incurred in the processing of data across the net-
work;

2) Bandwidth performance, which indicates the speed
of the network bandwidths including incoming and out-
going bandwidths.
 Resource requirements describe the specifications of

resources, such as hardware, software and operating
system. Three categories are identified:

1) Hosting environment defines the operating system
requirements of the host, such as Windows 7 or Ubuntu
Maverick;

2) Hardware capability defines the hardware compo-
nents, such as CPU core, CPU architecture, RAM, stor-
age space;

3) Software stack indicates the list of software or ser-
vices that need to be installed on a resource.
 Geographical requirements refer to the location of

resources, including data. For example, data must be
processed and stored within UK.

 Compliance code requirements refer to the name or
code of regulatory, industry or security standard that
the infrastructure must comply with, such as HIPAA
or ISO27002.

An infrastructure requirement can be either hard or
soft. A hard requirement is compulsory and remains
invariant over the application’s lifecycle; for example,
legislation regulations are compulsory; a soft requi-
rement is desirable and can change or be re-prioritized;
for example, budget or performance characteristics may
have a degree of flexibility. Each requirement has a
priority level, which indicates how importance the

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 897

Figure 2. Categories of infrastructure requirements.

requirement is. This can be used during the requirements
prioritization and resources filtering phases. Require-
ments may be inter-dependent. For example, the UK
Data Protection Act (a compliance requirement) indicates
that no data can be processed or stored outside the UK.
This translates to a dependency relationship on geogra-
phical requirement. Figure 3 provides an overview of the
ontology for infrastructure requirements.

A class restriction is defined to identify the relevant
conditions or constraints associated with a requirement
(see Figure 3). Each requirement is constrained by at
least one restriction. The detailed ontology relationships
between infrastructure requirements and restrictions are
given below:
 A cost requirement is constrained by cost restrictions.

A cost restriction can be a total cost or it can be sub-
divided into compute costs, software costs, storage
costs, or bandwidth costs. Each cost restriction is as-
sociated with cost frequency (per hour, per day) and
financial cost (amount and currency).

 A performance requirement is constrained by per-
formance related restrictions. Network latency perfor-
mance is constrained by latency restrictions. Incom-
ing and outgoing bandwidth performances are cons-
trained by bandwidth restrictions. Bandwidth restri-
ction indicates the minimum amount of bandwidth
required.

 A resource requirement is constrained by resource-
related restrictions.

1) The hosting environment is constrained by
operating system restriction which specifies the operating
sys- tem types.

2) The hardware capability is constrained by various
hardware restrictions, such as minimum number of CPU
cores, CPU speed, CPU architecture type, RAM, and
storage space restriction.

3) The software stack is constrained by software res-
trictions which specify the list of software or services
that need to be installed on the resource.
 Geographical requirement is constrained by location

restrictions. Location restriction indicates the location
of resource or data processing.

 Compliance code requirement is constrained by com-
pliance restrictions, which can be industry’s standard
restriction or regulatory restriction.

Deployment specifications are expressed using layers:
domain, site, group, and node (see Figure 4). A domain
represents the top-layer of the infrastructure deployment
layout and has at least one site. A site is composed of one
or more groups. A group contains a set of nodes which
provide same functionality, such as web servers or data-
bases. A node is a specific type of resource such as a
computational unit or storage. The ontologies include
requirements which apply to many different layers of the
deployment structure. For example, if a location require-
ment is applied at the domain layer, all sites, groups and
nodes within the domain must fulfil the same location
constraint; hardware requirements, such as CPU and
memory, can be applied at group level or at individual
node level.

Once the infrastructure deployment specification is
defined, it is then used to search for resources in the low-
level resource pool.

3.3. Resource Ontology

The resource ontology defines the properties of the
resources offered by cloud providers. This layer has been
widely investigated elsewhere [5,6]. In the proposed
model, we adopt a similar approach as [6] (using the
concept of resource capabilities) for describing cloud re-
sources.

A cloud resource is associated with different resource
capabilities, which can be storage capability, compute
capability, memory capability, software capability and
host capability. Storage capability consists of amount of
storage space and various storage types, such as local

Figure 3. Overview of infrastructure requirements ontol-
ogy.

Figure 4. Ontology for infrastructure deployment.

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 898

storage or SAN storage; compute capability consists of
CPU core, CPU architecture type, CPU speed; memory
capability consist of memory size; software capability
consist of software name, version, maker and features;
host capability consist of operating system type and ver-
sion. Cloud resource also has other properties such as
location and vendor name. An overview of cloud re-
source ontology is illustrated in Figure 5.

Every cloud resource has a price structure which
represents the resource consumption cost. Estimating
costs of using cloud resources is a challenging task. Dif-
ferent providers have different means of charging cloud
resources. In this paper, we consider normal pay-as-you-
use pricing model. Discounted prices, such as Amazon
Web Services’ reserved instances or free-tier offers are
not considered. We analyse the pricing structures of
various providers and propose a simplified ontological
pricing model. The cost ontology is shown in Figure 6.

Figure 5. Overview of resource ontology.

Figure 6. Cost ontology.

In general, prices of consuming cloud resources can be
categorized as follows:
 Resource prices refer to the cost of allocating the re-

sources and keeping the resources switched on (i.e.
keep-alive). These include machine cost and storage
cost.

 Bandwidth prices refer to the cost of data transfer in
to and out from the resource. These include data
transfer within local network, regional network or in-
ternet network.

 Disk prices refer to the cost of disk operations. For
example, disk read request and disk write request.

 Miscellaneous prices refer to other costs not included
in the above categories, such as the price of allocating
additional IP addresses.

The proposed resource and cost ontologies provides a
semantic mechanism for annotating cloud resources of-
fered by different providers.

4. A Media Transcoding and Distribution
Example

In this section, a media example is used to illustrate how
a domain-specific ontology can be translated to a set of
infrastructure deployment constraints which are in turn
mapped onto actual cloud resources. Media developers
need to provision an infrastructure which fulfils tran-
scoding and distribution requirements as well as satisfy-
ing cost and delivery time constraints.

4.1. Specifying High-Level Requirements Using
Domain-Specific Ontology

Based on the example given in previous section, high-
level media requirements are represented using the pro-
posed domain-specific ontology:
 Converting avi to high definition Windows Media

format is a type of Format requirement.
 Supporting playback devices, such as PC, iPad and

iPhone, is a type of Device requirement.
 Serving 500 users in UK and 500 users in Singapore

are types of Capacity and Location requirement.
 Making the media available before 9 am next morn-

ing is a type of Delivery Time requirement.
 Having a budget constraint of £5 per user is a Budget

requirement.
Table 1 summarizes the representation of high-level

media requirements using domain-specific ontology.

4.2. Translating Domain-Specific Ontology onto
Infrastructure Deployment Ontology

After the domain-specific ontology is identified, it is then
mapped onto middle layer infrastructure deployment
ontology. Knowledge databases such as historical records

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 899

Table 1. Specifying high-level requirements using domain-
specific ontology.

High-level requirements Domain-specific ontology

500 users in UK Capacity/Location

500 users in Singapore Capacity/Location

Convert AVI to HD Windows
Media

Format

PC, iPad, iPhone Device

9am next morning Delivery Time

£5 per user Budget

and performance benchmark reports are used to facilitate
the translation process.

Transcoding requirements, such as format and device,
indicate the features or capabilities of transcoding soft-
ware that need to provide. Particular software, such as
FFmpeg, Rhozet, or Microsoft Expression Encoder, can
be used to perform the transcoding task. These domain-
specific requirements are translated onto software stack
requirements at the infrastructure layer. However, dif-
ferent software has different system requirements. For
example, Microsoft Expression Encoder must be run on
Windows operating system, whereas FFmpeg can be run
on Linux. In the proposed ontology, these infer a de-
pendency requirement on hosting environment.

Media distribution requirements, such as high quality
high-definition format and capacity of simultaneous us-
ers, indicate the hardware constraints (CPU, memory,
bandwidth, number of servers) for the media distribution
servers. For example, a high-definition video (windows
media, 720 p) requires a bit-rate of 2 mbps. In order to
serve 500 users simultaneously, at least 30 Windows
Media Servers would be required to service this demand
(based on the streaming server benchmark [13]). In ad-
dition, tight delivery deadline and high quality require-
ments may necessitate the use of multi-core, high-CPU
or high-memory resources. Multiple country distribution
channels indicate the needs of deploying media servers at
different locations. These media distribution require-
ments are translated onto infrastructure requirements-per-
formance, hardware and geographical (see Table 2). Ba-
sed on the media requirements, the infrastructure de-
ployment specification is formed as follow:
 Transcoding domain is provisioned as a single site

containing a group of transcoder resources. An in-
coming bandwidth requirement of 2 mbps is required
for receiving the video source. A minimum outgoing
bandwidth of 4 mbps is required for sending the
transcoded media to the distribution domain (with
two different sites).

 Distribution domain is provisioned as two different
sites (one in UK and another in Singapore). Each site
contains a group of 30 media servers and requires an
incoming bandwidth of 2 mbps to each site. In order
to serve 500 simultaneous users, a minimum outgoing
bandwidth of 1000 mbps (500 × 2 mbps) is required
on each site, split among 30 media severs.

Another high-level requirement is the budget con-
straints of £5 per user. This budget includes the cost of
uploading video source, provisioning resources in tran-
scoding domain and distribution domain and cost of data
transfer to serve 500 UK users and 500 Singapore users.
This is formulated in Equation (1) and used in the re-
source filtering and selection process at the later stage.

t up da upa da

db upb db s u

B R D R D S

R D S D D

 (1)

where

 budget 5 500 500 5000;

compute cost in transcoding domain;

cost for uploading video source;

compute cost in UK distribution domain;

storage cost in UK distribution domain;

cost for

t

up

da

da

upa

B

R

D

R

S

D

£ £

uploading transcoded video to UK site;

compute cost in SG distribution domain;

storage cost in SG distribution domain;

cost for uploading transcoded video to SG site;

data transfer cost to

db

db

upb

s

R

S

D

D

 SG users;

data transfer cost to UK users.uD

4.3. Specifying Cloud Resources Using Resource
Ontology

In the proposed model, developers generate a pool of
infrastructure resources as an integral part of the deve-
lopment process. Although this incur additional develop-
ment effort but it simplifies and automates the process of
selecting resources in a multi-provider environment. In
the experiment, Amazon AWS EC2 is chosen as the in-
frastructure provider. It is being considered as a few sub-
providers (US Northern Virginia, US Oregon, US Nor-
thern California, EU Ireland, AP Singapore, AP Tokyo
and SA Sao Paulo) because it offers resources across
multiple geographical regions. About half a million of
resources are generated (by combining different AWS
instance types with different AMI images in different
regions) and annotated using the proposed resource on-
tology. Table 3 illustrates an example on how an AWS
esource is annotated with the resource ontology. r

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources

Copyright © 2012 SciRes. JSEA

900

Table 2. Mapping domain-specific ontology onto infrastructure requirements ontology.

Domain-specific ontology Infrastructure ontology
Infrastructure ontology

(inferred)

Format (avi-HD wmv) Software Stack (MS Expression)
Hosting Environment

(Windows)

Device (PC, iPad, iPhone) Software Stack (MS Expression)
Hosting Environment

(Windows)

Hardware-Transcoder (8 cpu, 3 GHz, 8 GB RAM)
Format (high quality)

Bandwidth (2 mbps-in/4 mbps-out)

Hardware-Media Server (2 cpu, 3 Ghz, 4 GM RAM),

Bandwidth (2 mbps × 500-out) Capacity/Location (500 SG/500 UK users)

Geographical (UK, SG)

Delivery Time (9 am) Hardware (high cpu, high memory)

Storage Cost (UK, SG)

Resource Cost (UK, SG) Budget (£5 per user)
Total Cost

(£5 × 1000)

Data Transfer Cost (UK, SG)

Table 3. Annotate AWS resource using resource ontology.

AMI Instance Region
Resource
ontology

Compute
Capability

(4 cores, ×86_64)

Memory
Capability
(15 GB)

Storage Capability
(1690 GB)

Host Capability
(Windows Server 2008

R2 SP1, ×86_64)

Software
Capability

(Windows Media
Streaming)

Location (Ireland)

Vendor
(AWS EU Ireland)

Resource Price
($0.92/hour)

Microsoft
Windows

Server 2008,
64 bit

m1.xlarge
(normal)

EU Ireland

Bandwidth Price
($0.12/GB/out)

4.4. Selecting Cloud Resources

Once the infrastructure deployment ontology is defined,
eligible cloud resources are selected from the resource
pool using a two-phase resource discovery approach [9].
In the first phase of the selection process, sets of pos-
sible resources which meet all the hard requirements

(such as location) are identified. In the second phase,
performance and cost heuristics are used to filter re-
sources from the initial set.

In this example, hardware constraints, such as CPU
and memory, is applied as soft requirements to the trans-
coding domain. This allows the system to compare the
performance and cost of either using GPU resource or
standard resource. For example, the transcoding tasks
took 45 minutes to complete if an AWS Standard Extra-
Large resource is used, however, it took 30 minutes to
complete if an AWS Cluster GPU Quadruple-Extra-
Large resource is used. Although there is a significant
performance improvement when GPU resource is used,
the standard resource costs $0.92 per hour but GPU re-
source costs $2.6 per hour (any partial hour consumed
will be billed as a full hour). Using the standard resource
is a cheaper solution while delivery deadline constraint is
still enforced.

Two groups of compute resources are selected for the
UK distribution domain and Singapore distribution do-
main. The cost of the whole infrastructure is calculated
by taking into the consideration of the compute cost,
storage cost, and data transfer cost as defined in Equation
(1). Figure 7 illustrates how the media transcoding and
distribution requirements are mapped onto low-level cloud
resources.

5. Related Work

The Mosaic project [5] uses ontologies for annotating
cloud resources with a set of functional and non-func-
tional properties. Bernstein et al. [6] propose an ontology-
based catalogue which descr bes features and capabilities i

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 901

Figure 7. Example-media transcoding and distribution.

of resources offered by cloud providers, such as CPU,
storage, security, and compliance capabilities. However,
cost factors are not discussed in [5,6]. The RESERVOIR
project proposes a service specification mechanism [4],
by extending DMTF’s OVF standard, which includes
VM details, application settings and deployment settings.
LoM2HiS [14] proposes a framework for mapping low-
level resource metrics to high-level SLA parameters.

Although the SLA parameters are high-level entities,
LoM2HiS focuses on hardware and network attributes.
Truong and Dustdar [15] propose various cost models
which can be composed to determine the costs for exe-
cuting application. In the resource ontology layer, we
combine the approach in [6,15] and enhance the model
by including cost details. Most of the frameworks are
resource-centric and investigated from cloud provide’s

Copyright © 2012 SciRes. JSEA

Mapping High-Level Application Requirements onto Low-Level Cloud Resources 902

perspective. This paper proposes application-centric multi-
layer ontologies that focus on the requirements of ap-
plications rather than just the cloud resources available in
the market.

6. Conclusions and Future Work

Cloud computing provides highly flexible and cost-effec-
tive platform for deploying business applications. The
cloud marketplace comprises a dynamic environment of
providers and products. Searching for suitable resources
in such a dynamic environment within a given budget is
challenging. Little attention has been paid to describe a
cloud application’s requirements at an appropriate level
of abstraction. In this paper, an application-centric,
multi-layer ontology for describing cloud application re-
quirements is proposed. This ontology provides a seman-
tic mechanism for capturing application needs in a langu-
age familiar from users’ application domains. A cost on-
tology for specifying the costs of consuming cloud re-
sources is introduced. A two-phase resource mapping
mechanism is also considered. A media application is
used to illustrate how application requirements can be
formulated and mapped onto low-level cloud resources.

We hope to extend the requirement ontologies by in-
vestigating other application domains. We believe that
the proposed ontological approach provides an effective
mechanism for specifying cloud requirements semanti-
cally, which can be utilized in the resource selection pro-
cess in a multi-provider cloud environment.

REFERENCES
[1] Amazon, “Summary of AWS Service Event in the US

East Region.” http://aws.amazon.com/message/67457/

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff and D. Zagorodnov, “The Eucalyptus
Open-Source Cloud-Computing System,” Proceedings of
the 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID 2009, Shanghai, 18-
21 May 2009, pp. 124-131.
doi:10.1109/CCGRID.2009.93

[3] R. S. Montero, “Open NEbula: The Open Source Virtual
Machine Manager for Cluster Computing,” Open Source
Grid and Cluster Conference, Oakland, 13-15 May 2008.

[4] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Na-
gin, I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Cáceres, M. Ben-Yehuda, W. Emmerich and F. Galán,
“The Reservoir Model and Architecture for Open Feder-
ated Cloud Computing,” IBM Journal of Research and
Development, Vol. 53, No. 4, 2009, pp. 535-545.

[5] F. Moscato, R. Aversa, B. D. Martino, T. Fortis, V. Mun-
teanu, “An Analysis of mOSAIC Ontology for Cloud Re-
sources Annotation,” Proceedings of 2011 Federated Co-
nference on Computer Science and Information Systems
(FedCSIS), Szczecin, 18-21 September 2011, pp. 973-
980.

[6] D. Bernstein and D. Vij, “Intercloud Directory and Ex-
change Protocol Detail Using XMPP and RDF,” Pro-
ceedings of the 6th World Congress on Services (SER-
VICES-1), Miami, 5-10 July 2010, pp. 431-438.
doi:10.1109/SERVICES.2010.131

[7] T. Harmer, P. Wright, C. Cunningham, J. Hawkins and R.
Perrott, “An Application-Centric Model for Cloud Man-
agement,” Proceedings of the 6th World Congress on Ser-
vices (SERVICES-1), Miami, 5-10 July 2010, pp. 439-
446. doi:10.1109/SERVICES.2010.132

[8] Y. L. Sun, R. Perrott, T. Harmer, C. Cunningham and P.
Wright, “An SLA Focused Financial Services Infrastruc-
ture,” Proceedings of the 1st International Conference on
Cloud Computing Virtualization (CCV 2010), Singapore,
2010. doi:10.5176/978-981-08-5837-7_189

[9] P. Wright, Y. L. Sun, T. Harmer, A. Keenan, A. Stewart
and R. Perrott, “A Constraints-Based Resource Discovery
Model for Multi-Provider Cloud Environments,” Journal
of Cloud Computing: Advances, Systems and Applications,
Vol. 1, 2012, p. 6. doi:10.1186/2192-113X-1-6

[10] T. Harmer, P. Wright, C. Cunningham and R. Perrott, “Pro-
vider-Independent Use of the Cloud,” Proceedings of the
15th International Euro-Par Conference on Parallel Pro-
cessing (Euro-Par 2009), Delft, 25-28 August 2009, pp.
454-465. doi:10.1007/978-3-642-03869-3_44

[11] A. Edmonds, T. Metsch and A. Papaspyrou, “Open Cloud
Computing Interface in Data Management-Related Set-
ups,” In: S. Fiore and G. Aloisio, Eds., Grid and Cloud
Database Management, Springer, Berlin, 2011, pp. 23-48.
doi:10.1007/978-3-642-20045-8_2

[12] W3C, “The OWL 2 Web Ontology Language.”
http://www.w3.org/TR/owl2-overview

[13] Microsoft, “Calculating Required Server Capacity.”
http://technet.microsoft.com/en-us/library/cc772121(v=w
s.10)

[14] V. C. Emeakaroha, I. Brandic, M. Maurer and S. Dustdar,
“Low Level Metrics to High Level SLAs-LoM2HiS Fra-
mework: Bridging the Gap between Monitored Metrics
and SLA Parameters in Cloud Environments,” Proceed-
ings of 2010 International Conference on High Perform-
ance Computing and Simulation (HPCS), Caen, 28 June-
2 July 2010, pp. 48-54. doi:10.1109/HPCS.2010.5547150

[15] H. L. Truong and S. Dustdar, “Composable Cost Estima-
tion and Monitoring for Computational Applications in
Cloud Computing Environments,” Procedia Computer
Science, Vol. 1, No. 1, 2010, pp. 2175-2184.
doi:10.1016/j.procs.2010.04.243

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1109/SERVICES.2010.131
http://dx.doi.org/10.1109/SERVICES.2010.132
http://dx.doi.org/10.5176/978-981-08-5837-7_189
http://dx.doi.org/10.1186/2192-113X-1-6
http://dx.doi.org/10.1007/978-3-642-03869-3_44
http://dx.doi.org/10.1007/978-3-642-20045-8_2
http://dx.doi.org/10.1109/HPCS.2010.5547150
http://dx.doi.org/10.1016/j.procs.2010.04.243

