
Journal of Software Engineering and Applications, 2012, 5, 841-849 
http://dx.doi.org/10.4236/jsea.2012.511097 Published Online November 2012 (http://www.SciRP.org/journal/jsea) 

841

Testability Estimation of Framework Based Applications 

Noopur Goel, Manjari Gupta 
 

Department of Computer Science, Banaras Hindu University, Varanasi, India. 
Email: noopurt11@gmail.com, manjari_gupta@rediffmail.com 
 
Received August 29th, 2012; revised September 28th, 2012; accepted October 7th, 2012 

ABSTRACT 

Quality of software systems is highly demanded in today’s scenario. Highly testable system enhances the reliability also. 
More than 50% of test effort-time and cost are used to produce a highly testable system. Thus, design-for-testability is 
needed to reduce the test effort. In order to enhance the quality, productivity and reduced cost of the software organiza-
tions are promoting to produce the reuse-oriented products. Incorporating reuse technology in both aspects-software 
development process and test process may payoff many folds. Keeping this view, our study focus the testability of the 
object-oriented framework based software systems and identify that flexibility at the variable points of the object-ori- 
ented framework, chosen for framework instantiation, greatly affects the testability of object-oriented framework based 
software at each level of testing. In the current paper, we propose a testability model considering the flexible aspect of 
the variable point to estimate testability in the early phase, requirement analysis phase, of development process of the 
framework based software. The proposed model helps to improve the testability of the software before the implementa-
tion starts thus reducing the overall development cost. 
 
Keywords: Reuse-Technology; Variation-Points; Object-Oriented Framework Based Software; Basic Test Cases; 

Framework Interface Classes; Other Application Classes 

1. Introduction 

Quality assurance is highly demanded in any software 
industry. Researchers and practitioners are aspiring to 
achieve the goal with many techniques. Software reuse 
and software testing are the two promising techniques to 
enhance the quality of the software applications.  

Framework is one of the promising technologies fos-
tering reuse. A framework is the reusable design (the 
context) of a system or a subsystem stated by means of  
a set of abstract classes and the ways the objects of (sub-
classes of) those classes collaborates [1]. Being a reus-
able pre-implemented architecture, a framework is de-
signed “abstract” and “incomplete” and is designed with 
predefined points of variability, known as hotspots, to be 
customized later at the time of framework reuse [2]. A 
hotspot contains default and empty interfaces, known as 
hook methods, to be implemented during customization. 
While preserving the original design, parts of the frame-
work are extended or customized to build applications 
using frameworks. A hook is a point in the framework 
that is meant to be adapted in some way such as by fill-
ing in parameters or by creating subclasses [3]. Hook 
description [3] is used for many possible implementa-
tions of the Framework Interface Classes (FIC), shown in 
Figure 1, for developing applications in the application 
engineering stage [4]. 

Software testing is effective if it detects faults in the 
early life cycle of the project development. Software 
testing is performed with the intent of finding faults and 
is a vital and indispensable part of the software develop-
ment process which itself is a highly time consuming and 
costly affair. Testing of framework based applications is 
not a trivial task as the frameworks are inherently com-
plex in structure. The resources for testing are limited [6], 
hence to achieve effective testing, the applications are 
considered to be designed for testability. The testability 
of software is an important quality attribute, since it 
determines the effectiveness of testing, and hence the  
 

 

Figure 1. Framework Application Classes (hooks, frame-
work interface classes, other application classes) [5]. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 842 

probable correctness of the software. Testability is the 
external quality of the software [7] used to estimate the 
complexity and test effort. Bach et al. [8] define testabi- 
lity as effort needed for testing. Effort is the vital quality 
characteristic of the software and claims that the most 
important software characteristic contributing to testabi- 
lity is the number of test cases needed for satisfying a 
given test strategy.  

Researchers have opined about software testability 
from many different aspects. In IEEE glossary [9], test- 
ability is defined as: 1) the degree to which the system or 
component facilitates the establishment of test criteria 
and performance of tests to determine whether those cri- 
teria have been met; 2) the degree to which a requirement 
is stated in terms that permit establishment of test criteria 
and performance of tests to determine whether those cri- 
teria have been met. ISO defines testability as the attrib- 
utes of software that bear on the effort needed to validate 
the software product [10]. 

Flexibility provided at the hotspots of the framework 
promotes the reusability of framework. Flexibility is one 
of the internal quality attribute [6] associated to frame-
works in addition to other software quality attributes: 
correctness, ease of use, efficiency, and portability. In-
creasing the flexibility of the framework not only in-
creases the reuse opportunities of the framework, at the 
same time it increases the complexity also [11]. In this 
paper, we are investigating about “how flexibility affects 
the testability of the framework based application?”  

In spite of the increasing practice of development of 
applications based on OO frameworks, as per our knowl-
edge, no study is found in literature on the testability of 
applications based on OO frameworks. This paper identi-
fies flexibility, the internal quality factor, affecting the 
testability of framework based application at all level of 
testing and proposes the testability model that considers 
the level of flexibility of hooks and test effort to reuse the 
basic test cases as-is, customize and/or generate new test 
cases to test the applications at application engineering 
stage. 

The paper is organized in five sections. Although, as 
per our literature survey, no study is found on testability 
of OO frameworks based applications, related work on 
testability of OO software and OO frameworks, and test-
ing of framework based application is discussed in Sec-
tion 2. Section 3 describes motivations and objectives of 
testability study of OO frameworks based applications 
and contributions of the current paper. Background of 
our work is explained in Section 4. In Section 5, our pro-
posed work is detailed. A case study to support the level 
of testing needed for various level of support of hook is 
performed in Section 6. Conclusion and future work is 
specified in Section 7. 

2. Related Work 

2.1. Software Testability Paradigm 

Software testability has been defined and analyzed from 
different point of views by many researchers. Fenton [7] 
defines testability as an external attribute of the software. 
Binder [6] defines testability as the relative ease and ex-
pense of revealing software faults. According to him, a 
more testable system promotes high reliability of the 
software for a limited testing resource. Resources can be 
cost and time. He identifies six factors contributing to the 
design for testability: Characteristics of the representa-
tion, characteristics of the implementation, built-in-test 
capabilities, the test-suite, the test support environment 
and the software process in which testing is conducted. 
Design for testability and planning for test reduces the 
cost and difficulty of testing OO systems. Freedman [12] 
defines domain testability as the ease of modifying a 
program so that it is observable and controllable. It does 
not exhibit any test input-output inconsistencies. He 
identifies that a software component that is easily test-
able has the desirable attributes: test sets are small, test 
sets are non-redundant, test outputs are easily interpreted 
and software faults are easily locatable. [12,13] addressed 
testability using the concept of observability (ease of 
determining if specified inputs affect the outputs) and 
controllability (ease of producing a specified output from 
the specified input). Voas [13] defines testability as a 
probability that a test case will fail if a program has a 
fault. Testability metric based on input and output, and 
PIE (propagation, investigation and execution) approach 
to analyze software testability was proposed by Voas et 
al. [14,15]. Different from Voas et al.’s view [13-15], 
Bertolino et al. [16] proposed the program testability as 
the probability that a test of a program on an input drawn 
from a specified probability distribution of the given in-
puts is rejected, given a specified oracle and given that 
the program is faulty. Using testability they estimate, 
from test results: 1) the probability of program correct-
ness; and 2) the probability of failures, and derives the 
probability of program correctness using the Bayesian 
inference procedure. Bruntnik et al. [17] estimated the 
testability of the class by distinguishing two categories of 
the source code: factors affecting the number of test 
cases needed to test it and factors affecting the effort 
required to develop each test case. Opposite to Bruntnik 
et al. [17] approach of unit testing of class, Jungmayr [18] 
estimated the testability in integration testing of the ob-
ject oriented systems by providing the idea of the effect 
of static dependencies. The average component depen- 
dency metrics was taken into account to show how de-
pendency between components can greatly affect the test 
effort of components integration and hence the testability 
of the system. Baudry et al. [19] proposes the methodo- 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 843

logy to improve the design testability by the UML class 
diagram of the system. They provide a model to capture 
the class interactions and identify classes that causes the 
interactions. Similar to concept of Baudry et al. [19], 
Mouchawrab et al. [20] also address the issues of ob-
ject-oriented software testability at the design level i.e. 
before the implementation phase. Design attributes that 
affect testability for each testing activities are defined to 
provide the guidance for the testability analysis in the 
different testing phases. 

2.2. Framework Testability Paradigm 

Wang et al. [21] propose an approach of built-in-test 
(BIT) in object oriented framework which besides ex-
tending the reusability of frameworks from architecture 
to design to code to test improves the testability and 
maintainability of the frameworks. Similar to Wang et al. 
[21] approach, Jeon et al. [2] describes an approach to 
observe and control the process of framework testing, 
without making any changes to the framework design 
and code, whenever faults are incurred during the cus-
tomization of the framework. A test support code is en-
capsulated as BIT component and embedded into the 
hook classes of the framework, increases the observabi- 
lity and controllability and hence testability of the frame- 
work. Jeon et al. [2] identifies four factors that have di-
rect influence upon framework testability are: controlla-
bility, sensitivity, observability and oracle availability. 
Ranjan et al. propose various testability models based on 
abstractness/variability and design related aspects of the 
framework [22,23]. Ranjan et al. also carried an experi-
mental analysis and found that study of testability of 
framework decreases with the increase in variability of 
the framework [24].  

2.3. Framework Based Application Testing  
Paradigm 

Framework testing at the framework engineering stage is 
important because the errors left in the framework during 
testing the framework during the domain engineering is 
propagated in the framework instantiation developed 
during application engineering stage. Several techniques 
have been proposed to test frameworks during the frame- 
work development stage (e.g., [25-33]). In [25,26] testing 
techniques, different possible framework use cases and 
input data are exercised. Tevanlinna et al. [33] observed 
that framework testing is hard during domain engineering 
stage. Some of the input data and use cases which are not 
covered at the time of framework testing in domain en-
gineering stage and used in the framework instantiation, 
causes the instantiation to function improperly, must be 
located and tested during the application engineering 
stage. Dallal et al. [34] resolves the problems discussed 

in [33] by identifying the input data and use case not co- 
vered during the framework testing stage and proposing a 
test case reusing technique to test the uncovered input 
data and use cases thus reducing the testing effort. Kaup-
pinen et al. [35] proposes hook and template based co- 
verage criteria to test framework based applications.   

2.4. Framework Based Application Testability  
Paradigm 

As per our literature survey, no work on testability of 
framework based applications has been done. Although, 
there is much talk about increasing the quality and pro-
ductivity while reducing the time-to-market of the soft-
ware and software reuse practice is also prevalent but no 
study is found on the testability of framework based ap-
plications. 

3. Motivations, Objectives and Contributions 

Few obvious reasons for the need of testability study of 
applications based on OO frameworks which motivated 
us are discussed as follows: 

1) Applications developed using reuse technology 
must be more testable in comparison to the development 
of application from the scratch. It must ensure low test-
ing cost and hence low development cost of the OO 
frameworks based applications. 

2) Reliability of the application increases with the in-
crease in testability of the application. 

3) Testability is important for maintainability of the 
application [ISO 9126]. 

The objective of the current paper is to deal with the 
issues mentioned above by identifying how flexibility 
affects the testability of the framework based application 
at each level of testing. Reuse of basic test cases to use 
as-is, customize and/or generate new test cases by the 
hook method specifications at the application engineer-
ing stage are considered as the effort taking test activi-
ties. 

Our contributions to the current paper are: 
1) Identification of flexibility as the important internal 

quality factor of the software affecting the testability of 
framework based application at each level of test. 

2) Flexibility based testability model for the estimation 
of testability of framework based software before the 
implementation of software. 

4. Background 

In this section, we present the overview of the structure 
of testability models and then identify different levels of 
testing required for different level of support of the hooks. 
This forms the basis for the testability models proposed 
in this paper. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 844 

4.1. Test Techniques 

Test techniques used to generate test cases from the 
specification of the software are known as specification 
based testing techniques. FIC specification in the hook 
description is used to derive test cases to test the OO 
frameworks. The test cases generated during the frame-
work development stage are basic test cases. The basic 
test cases are reused to test the application developed 
using the OO framework during the application deve- 
lopment stage rather than deriving test cases each time 
from the scratch. Thus, during the implementation of the 
FICs, application developers deal with the specifications 
of FICs described by the hooks in three ways [4]:  

1) By using them as defined.  
2) By ignoring the specifications for the behaviors that 

are not needed in implementing application requirements.  
3) By adding new specifications for the added behaviors 

to meet application requirements.  
Similarly, test cases generated using the hook method 

specifications are reused for developing the correspond-
ing hook implementation in the following ways respec-
tively:  

1) By reusing them as-is.  
2) By ignoring or modifying some of the reusable test 

cases.  
3) By adding some more test cases or building new 

test cases from the scratch.  

4.2. Levels of Testing 

Object-oriented applications have three levels of testing: 
class testing, cluster testing and system testing. Class 
testing is almost same as unit testing and cluster testing is 
somewhat different but comparable to the level of inte-
gration testing of procedural approach. System testing is 
comparable in both approaches.  

1) Class testing: Class testing is the first level of inte-
gration testing. The intra-class method interactions and 
super class/subclass interactions are carefully examined 
during the class testing level.  

2) Cluster testing: The interclass collaborations and 
interactions between the system classes are performed at 
the cluster testing level. Interclass method interactions 
are taken into account. A cluster corresponds to a se- 
cond level of integration. Cluster testing in framework 
based application is described in three ways—interaction 
of FICs with framework classes, interaction between the 
FICs and interaction of FICs with other application 
classes. 

3) System testing: Generally, the complete integrated 
system is tested based on acceptance testing requirements 
at the system testing level. All use cases defined at the 
analysis phase of the application engineering stage de- 
cides for the system testing of the application. 

The object oriented application testing at method and 
system testing level is the same as traditional application 
software testing.  

The specification based test cases for a class are pro-
duced by stating the specifications of each method and a 
class invariant. Verification of fulfillment to stated pre- 
conditions and post-conditions is performed by executing 
each method at least once. Other test cases may be de-
rived based on the class invariants, if needed. Test cases 
for the intra and inter-class method interaction levels are 
derived for each pair of methods interacting with each 
other to detect which pair is responsible for producing 
faults. Functional test cases for system testing can be 
derived from the use cases and other system require-
ments.  

4.3. Effort Related Test Activities  

Test effort in case of framework based applications in-
curs due do the following activities: 

1) Test units identification in framework based appli-
cations. 

2) Organization and implementation of stubs and dri- 
vers for various units. 

3) Identification of order of integration of units. 
4) Finding and implementing test oracles. 
5) Identification of reusable test cases and customiza-

tion and generation of new test cases for the framework 
based applications for unit, integration and system testing 
at the application engineering stage. 

6) Test case execution, analysis and debugging. 
Test activities which needs intensive effort in context 

of our proposed approach is the identification of reusable 
test cases and customization and generation of new test 
cases for the framework based applications at the appli-
cation engineering stage. Test cases for the framework 
based systems are constructed in two ways—either by 
reusing and customizing the baseline test cases or creat-
ing new test cases from the scratch by studying the re-
quired product. 

4.4. Test Case Generation Techniques 

1) Functional test cases are constructed by considering 
the specifications provided for implementing hook methods 
of the hotspots (abstract classes). State-based models are 
used to validate the post-conditions of the methods de- 
fined in the class.  

2) Structural test cases are constructed by considering 
the implementation of each method. 

3) Contracts [36] form the basis for the construction of 
interaction test cases as they are used for defining the 
interactions of classes within the cluster and thus act as 
oracles. Oracles are used to evaluate the actual results of 
the test cases as pass or fail. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 845

5. Proposed Work 

Frameworks are complex architectural skeleton and 
hence they also affect the testability of framework based 
systems. Because of the reusable nature of a framework, 
it must be made flexible to conform to its objective. 
Flexibility brings with itself complexity also. We identify 
that the variability existing at the hotspot of the frame-
work are also of different level of flexibility. The differ-
ent levels of flexibility are named as option, supported 
pattern and open hooks by Froehlich et al. [37]. Test ef-
fort to reuse basic test cases as, customize and/or gener-
ate new test cases from scratch at all levels of test at ap-
plication engineering stage is studied and analyzed. 

5.1. Level of Test to Be Conducted with Respect  
to Various Level of Support of Hooks for  
Framework Based Applications  

There are various approaches of testing—testing product 
by product, incremental testing of product families and 
division of responsibilities [33]. For a hook documented 
framework, we have identified different levels of test 
already conducted during the framework engineering 
stage and required at the application engineering stage 
based on the level of support of hook. For each level of 
support depicted in the Figures 2-4, the gray area shows 
that the respective level of testing of the artifact is al- 
ready conducted during the framework engineering stage 
and need no repetitions during the application engineer- 
ing stage. If there exist other application classes, unit 
testing of them is needed and if there exist any interac- 
tion between the FIC and other application classes then 
integration testing is also needed. Only the trivial case of 
FIC consisting of hook with only one level of support i.e. 
either option or supported pattern or open hook is con- 
sidered and depicted here. 

Option Hook: Since the options are available within 
the framework, option hooks are already unit tested. 
However, when implementing option hooks, its imple-
mentations need unit testing during the application engi-
neering stage. Further, interactions between option hooks 
as well as interaction between option hook and frame-
work classes, if any, are also tested during framework 
engineering stage. Thus, integration testing is also not 
required in this case [37]. System testing of the applica-
tion is required be conducted during the application en-
gineering stage to test whether all functional require-
ments are fulfilled.  

Supported Pattern Hook: Test cases can be gener-
ated which cover the range of parameters that the 
framework developers supply, are then adapted to test the 
applications. The templates should not be able to violate 
invariants on the framework, so no verification is needed 
[37]. Since the template pattern hooks should not violate 

 

Figure 2. Various levels of test for FIC implementing option 
hook. 
 

 
(a) 

 
(b) 

Figure 3. (a) Various levels of test for FIC implementing 
supported pattern hook when parameter is in the form of 
variable or component and stated as option hook; (b) 
Various levels of test for FIC implementing supported 
pattern hook when parameter is in the form of variable or 
component are not stated as option hook or new subclasses 
are created or methods are overridden or specialized. 
 

 

Figure 4. Various levels of test for FIC implementing open 
hook. 
 
the FIC method specifications defined in the hook de-
scription, the cluster testing i.e. the inter-class interac-
tions, need not be performed at the time of application 
testing. The user is given some flexibility, so various 
cases may exist. In case (a) since the parameter is in the 
form of variable, method or component class which is 
already defined as option hook, so the class and cluster 
level testing is not required to be performed and only 
system testing is required to be performed during the 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 846 

application testing, as depicted in Figure 3(a). Another 
case 3(b) is when FIC implementing pattern hook whose 
parameters are not defined as the option hooks and/or 
creation of new subclasses, or methods to be overridden 
or specialized, then the unit testing of the respective FIC 
and system testing is need to be conducted. The integra-
tion testing of the respective FIC with framework classes 
need not to be tested as depicted in Figure 3(b). 

Open Hook: Automated testing is not possible, and 
verification is considered necessary, maybe using model 
checking, to guarantee that the developers do not break 
conditions placed upon the framework or try to avoid or 
break the architecture of the framework [37]. New 
classes which are not subclasses, the new operations to 
classes and often the removal or replacement of code are 
made besides what is performed in the pattern hook. 

The framework classes are already unit tested before 
the deployment of the framework. The framework inter-
face class, FIC, having open ended hook are required to 
be unit tested, cluster testing is desired to be performed 
among the framework classes and FIC having open 
hooks, and system testing is also desired to be performed 
against the specified requirements of the application 
during the application testing. 

Note: The gray area in the Figures 2-4 how’s the level 
of test already accomplished at the framework engineer- 
ing stage and the white area shows the level of test re- 
quired at the application engineering stage. 

5.2. Comparison of Effort Needed for Various  
Levels of Test with Respect to Each Level of  
Support of Hooks 

The flexibility to reuse as-is or customize basic test cases 
or generate new test cases from scratch during the appli- 
cation engineering stage increases from option hook to 
supported pattern hook to open hook [38]. It is obvious 
from the Figures 2-4 that the effort needed for unit, inte- 
gration and system testing is minimum with option hooks 
while it is maximum for open hooks. Thus, with the in- 
crease in flexibility of hooks test effort increases while 
the testability reduces as shown in Table 1.  

5.3. Testability Model Considering the Flexibility  
of Hooks  

The application developer chooses those hooks which 
satisfies the requirements of the specific application. The 
various levels of support of hooks are categorized on the 
basis of level of flexibility provided to the framework re- 
user to customize the framework. Requirements specified 
at the hook methods form the basis for the construction 
of test cases which can be reused during application test-
ing. Thus test effort will depend on different level of 
support of hooks of a framework and hence on flexibility 

Table 1. Comparative study of effort needed for various 
levels of testing with respect to each level of support of 
hooks. 

   Level of support 
       of hooks 

Level of testing 

Option 
hook 

Supported 
pattern hook 

Open 
hook 

Class testing 
May not 

be needed 
May/may not 

be needed 
May be 
needed 

Cluster testing 
May not 

be needed 
May not be 

needed 
May be 
needed 

System testing 
May be 
needed 

May be  
needed 

May be 
needed 

 
Effort in test activity at each level of testing increases with the increase in 
flexibility of hooks. 

 
provided by hooks. 

 ATE FLA                    (1) 

Equation (1) is further refined below. 
In case of option hooks, since all requirements are met, 

least or no flexibility is provided to the application de-
veloper to customize the requirements. Thus, flexibility 
provided by option hooks, FLOH, at the variation point is 
least and proportional to the total number of option hook, 
NOH, chosen by the application developer, i.e. 

 OH OHFL N                (2a) 

Further, the components are developed, tested and de-
livered with the framework, so least or negligible amount 
of test effort is desired to be performed. Hence, test effort 
for the option hooks, TEOH, depends on the flexibility 
provided by option hooks, FLOH. Thus, 

1

 
FICN

OHOH
i

TE FL

              (2b) 

In case of supported pattern hook, application deve- 
lopers are given the flexibility, FLSPH, to reuse the speci-
fications of the supported hook as-is or customize them. 
Flexibility provided by supported pattern hooks, FLSPH, 
at the variation point is greater than FLOH and is propor-
tional to the total number of supported pattern hook, NSPH, 
chosen by the application developer, i.e., 

 SPH SPHFL N               (3a) 

Further, the test effort depends on the number of basic 
test cases are reused as-is or customized as per the re-
quirements specified at hook method are met or custo- 
mized. Test effort for the supported pattern hooks, TESPH, 
depends on the flexibility, FLSPH, of supported hook in a 
FIC. Thus, 

1
  

FICN

S SPH
i

PT FLE 

 H            (3b) 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 847

In case of open hooks, application developers are 
given the highest flexibility to reuse the specifications of 
the open hook as-is or customize or generate new speci-
fications from scratch. Flexibility provided by open 
hooks, FLOPH, at the variation point/hotspot is highest 
and is proportional to the total number of open hooks, 
NOPH, chosen by the application developer, i.e., 

 OPH OPHFL N                (4a) 

Further, test effort depends on the number of basic test 
cases reused as-is, customized or new test cases are con-
structed from scratch as per the requirement specified at 
hook are met, customized or specified by the application 
developer. Test effort for the open hooks depends on the 
flexibility of open hooks, FLOPH, in a FIC. Thus, 

1

FIC

H OP

N

OP
i

TE HFL

             (4b) 

Thus, total flexibility, FLA, chosen by the application 
developer provided at the variation point/hotspot of the 
framework is represented as  

   A OH SPH OPFL FL FL FL   H        (5a) 

Since a FIC consists of option, supported pattern and 
open hooks, test effort for a FIC, TEFIC, is proportional to 
the summation of the test effort of option, supported pat-
tern and open hooks in a FIC, i.e. TEOH, TESPH and TEOPH 
respectively, or test effort for all FICs is represented as 

1 1 1 1

FIC FIC FIC FICN N N N

FIC OH SPH OPH
i i i i

TE TE TE TE
   

        (5b) 

Using Equations (2b), (3b) and (4b), Equation (5b) 
becomes 

1

   
FICN

F OH SPH O
i

PHIC FLTE FL FL


     (5c) 

Using Equuation (5a), Equation (5c) becomes 

1

 
FICN

C AFI
i

TE FL

              (5d) 

Test effort required to test the framework based appli-
cation, TEA, is dependent on the total test effort for total 
number of FICs, NFIC, containing hook(s) with various 
level of support and total test effort the total number of 
other application classes (NOAC). Thus,   

1 0

FIC OACN N

FIC OAC
i

A
i

TE TE TE
 

              (6) 

So, replacing  by the constant c, we have 
0

OACN

OAC
i

TE



1

FIC

A

N

FIC
i

TE TE

                (7) 

Using Equation (5d), Equuation (7) becomes 

 ATE FLA                  (8) 

And using Equation (5b), Equation (7) is equivalent to 

1 1 1

FIC FIC FICN N N

OH SPH OPH
i

A
i i

TE TE TTE E
  

          (9) 

Factually, the testability of application, TbA is in-
versely proportional to test effort, TEA. Thus, 

1 1 1

1
FIC FIC FICN N N

OH SPH OPHi i

A

i
N N N

Tb 
  

   
  (10) 

The Equation (1) shows that test effort of a framework 
based application is directly proportional to the flexibility 
provided by the framework developer and chosen and 
implemented by the framework reuser as the specific 
needs. Equation (10) is the testability model of the 
framework based application dependent on the number of 
various level of support of hooks implemented in the 
total FICs. 

6. Case Study 

A case study is performed for various levels of testing 
with respect to each level of support of hooks to explain 
the concept discussed in Subsection 5.1 by considering 
the hook examples of HotDraw framework discussed in 
[37]. First, the case of option hooks is considered. Select 
Existing Tools is a multi-option hook which application 
developer selects from the set of pre-built components as 
per the needs. Such components are already unit tested. 
The interactions of such components are also already 
tested with the framework classes. What one needs to 
perform is the system testing during the application en-
gineering stage to verify that all functional requirements 
are met as desired. Second, the case of supported pattern 
hooks is considered. Incorporate Tools is a supported 
pattern hook. The changes section of the hook describes 
the steps needed to perform the task. Subclass New-
DrawingEditor of framework class DrawingEditor is 
created and NewDrawingEditor.defaultTools overrides 
DrawingEditor.defaultTools features. The unit testing of 
NewDrawingEditor subclass is needed, interaction test-
ing of subclass NewDrawingEditor with framework class 
DrawingEditor is not required to be conducted as the 
subclass NewDrawingEditor is created according to the 
contracts specified by DrawingEditor class. System test-
ing is needed to be performed in this case during the ap-
plication engineering stage to verify that all functional 
requirements are met as desired. Third, the case of open 
hooks is considered. The Animating Figures hook is an 

Copyright © 2012 SciRes.                                                                                 JSEA 



Testability Estimation of Framework Based Applications 848 

open hook and the changes section describes that Anim-
Drawing and AnimFigure are subclasses of Drawing and 
Figure. AnimDrawing overrides the existing step method 
of Drawing. These subclasses must be unit tested during 
the application engineering stage. The interaction of 
these subclasses AnimDrawing and AnimFigure must be 
tested with the framework classes Drawing and Figure. 
System testing is needed to be performed in this case 
during the application engineering stage to verify that all 
functional requirements are met as desired.  

7. Conclusions 

Our work, in the current paper, focus on identifying the 
internal software quality factor—flexibility affecting the 
testability of framework based software at all levels of 
testing. The level of flexibility provided at the variation 
point of the framework and chosen by the reuser of the 
framework as per the requirements affects the testability 
of the framework based systems. Moreover, we also 
propose a testability model considering the flexible as-
pect of the variable point to estimate testability in the 
early phase, requirement analysis phase, of development 
process of the framework based software. The proposed 
model helps to improve the testability of the software 
before the implementation starts thus reducing the overall 
development cost. The limitation of our study is that the 
observations are based on the hook documented frame-
work.  

In future, a number of extensions to our work is plan- 
ned to be done:  

1) An empirical study is needed to be conducted for 
the proposed model.  

2) Modifying and proposing a new UML profile for 
the framework and framework instantiation to model the 
level of support of hooks, so that testability can be esti-
mated directly from it. 

3) Identifying and modeling many more factors af-
fecting the testability of frameworks and framework 
based systems. 

REFERENCES 
[1] K. Beck and R. Johnson, “Patterns Generate Architec- 

tures,” Proceedings of 8th European Conference on Ob-
ject Oriented Programming, Bologna, 1994, pp. 139-149. 

[2] T. Jeon, S. Lee and H. Seung, “Increasing the Testability 
of Object-Oriented Frameworks with Built-In Test,” Lec- 
ture Notes in Computer Science, Vol. 2402, 2002, pp. 
873-881. 

[3] G. Froehlich, H. J. Hoover, L. Liu and P. Sorenson, 
“Hooking into Object-Oriented Application Frame- 
works,” Proceedings of the 19th International Conference 
on Software Engineering, Boston, May 1997, pp. 491- 
501.  

[4] J. Al Dallal, “Class-Based Testing of Object-Oriented 

Framework Interface Classes,” Ph.D. Thesis, Department 
of Computing Science, University of Alberta, 2003.  

[5] J. Al Dallal and P. Sorenson, “Estimating the Coverage of 
the Framework Application Reusable Cluster-Based Test 
Cases,” Information and Software Technology, Vol. 50, 
No. 6, 2008, pp. 595-604.  
doi:10.1016/j.infsof.2007.07.006 

[6] R. V. Binder, “Design for Testability in Object-Oriented 
Systems,” Communications of the ACM, Vol. 37, No. 9, 
1994, pp. 87-101. doi:10.1145/182987.184077 

[7] N. Fenton and S. L. Pfleeger, “Software Metrics: A Ri- 
gorous and Practical Approach,” PWS Publishing Com- 
pany, Boston, 1997.  

[8] R. Bache and M. Mullerburg, “Measure of Testability as a 
Basis for Quality Assurance,” Software Engineering Jour- 
nal, Vol. 5, No. 2, 1990, pp. 86-92.  
doi:10.1049/sej.1990.0011 

[9] IEEE, “IEEE Standard Glossary of Software Engineering 
Terminology,” IEEE CSP, New York, 1990.  

[10] ISO/IEC 9126, “Software Engineering Product Quality,” 
1991.  

[11] W. Pree and H. Sikora, “Design Patterns for Object Ori-
ented Software Development,” ICSE’97, Proceedings of 
the 19th International Conference on Software Engineer-
ing, Boston, 1997, pp. 663-664.  

[12] R. S. Freedman, “Testability of Software Components,” 
IEEE Transactions on Software Engineering, Vol. 17, No. 
6, 1991, pp. 553-564.  

[13] J. M. Voas, “Pie: A Dynamic Failure-Based Technique,” 
IEEE Transactions on Software Engineering, Vol. 18, No. 
8, 1992, pp. 717-727. doi:10.1109/32.153381 

[14] J. Voas and K. W. Miller, “Semantic Metrics for Software 
Testability,” Journal of Systems and Software, Vol. 20, 
No. 3, 1993, pp. 207-216.  
doi:10.1016/0164-1212(93)90064-5 

[15] J. M. Voas and K. W. Miller, “Software Testability: The 
New Verification,” IEEE Software, Vol. 12, No. 3, 1995, 
pp. 17-28. doi:10.1109/52.382180 

[16] A. Bertolino and L. Strigini, “On the Use of Testability 
Measures for Dependability Assessment,” IEEE Transac- 
tions on Software Engineering, Vol. 22, No. 2, 1996, pp. 
97-108. doi:10.1109/32.485220 

[17] M. Bruntink and A. V. Deursen, “Predicting Class Test- 
ability Using Object-Oriented Metrics,” Proceedings of 
IEEE International Workshop on Source Code Analysis 
and Manipulation, Chicago, 15-16 September 2004, pp. 
136-145. doi:10.1109/SCAM.2004.15 

[18] S. Jungmayr, “Identifying Test-Critical Dependencies,” 
Proceedings of IEEE International Conference on Soft- 
ware Maintenance, Montreal, 3-6 October 2002, pp. 404- 
413. 

[19] B. Baudry, Y. L. Tran and G. Sunye, “Measuring Design 
Testability of a UML Class Diagram,” Information and 
Software Technology, Vol. 47, No. 1, 2005, pp. 859-879. 
doi:10.1016/j.infsof.2005.01.006 

[20] S. Mouchawrab, L. C. Briand and Y. Labiche, “A Mea- 
surement Framework for Object-Oriented Software Test-

Copyright © 2012 SciRes.                                                                                 JSEA 

http://dx.doi.org/10.1016/j.infsof.2007.07.006
http://dx.doi.org/10.1145/182987.184077
http://dx.doi.org/10.1049/sej.1990.0011
http://dx.doi.org/10.1109/32.153381
http://dx.doi.org/10.1016/0164-1212(93)90064-5
http://dx.doi.org/10.1109/52.382180
http://dx.doi.org/10.1109/32.485220
http://dx.doi.org/10.1109/SCAM.2004.16
http://dx.doi.org/10.1016/j.infsof.2005.01.006


Testability Estimation of Framework Based Applications 

Copyright © 2012 SciRes.                                                                                 JSEA 

849

ability,” Information and Software Technology, Vol. 47, 
No. 1, 2005, pp. 979-997.  
doi:10.1016/j.infsof.2005.09.003 

[21] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross 
and M. Fayad, “On Built-In Test Reuse in Object-Orien- 
ted Framework Design,” ACM Computing Surveys, Vol. 
32, No. 1, 2000, pp. 7-12. doi:10.1145/351936.351943 

[22] D. Ranjan and A. K. Tripathi, “Variability-Based Models 
for Testability Analysis of Frameworks,” Journal of Soft- 
ware Engineering and Applications, Vol. 3, No. 5, 2010, 
pp. 455-459. doi:10.4236/jsea.2010.35051 

[23] D. Ranjan and A. K. Tripathi, “Testability Models for 
Object-Oriented Frameworks,” Journal of Software En- 
gineering and Applications, Vol. 3, No. 6, 2010, pp. 536- 
540. doi:10.4236/jsea.2010.36061 

[24] D. Ranjan and A. K. Tripathi, “Effect of Variability of a 
Framework upon Its Testing Effort: An Empirical Eva- 
luation,” 5th International Conference on Computer Sci- 
ences and Convergence Information Technology, Seoul, 
30 November-2 December 2010, pp. 146-151.  
doi:10.1109/ICCIT.2010.5711046 

[25] R. V. Binder, “Testing Object-Oriented Systems: Models, 
Patterns, and Tools,” Addison-Wesley Professional, Bos- 
ton, 1999. 

[26] J. Al Dallal and P. Sorenson, “System Testing for Ob- 
ject-Oriented Frameworks Using Hook Technology,” Pro- 
ceedings of the 17th IEEE International Conference on 
Automated Software Engineering, Edinburgh, September 
2002, pp. 231-236.  

[27] M. E. Fayad and D. C. Schmidt, “Object-Oriented Appli- 
cation Frameworks,” Communications of the ACM, Vol. 
40, No. 10, 1997, pp. 32-38. doi:10.1145/262793.262798 

[28] T. Jeon, H. W. Seung and S. Lee, “Embedding Built-In 
Tests in Hot Spots of an Object-Oriented Framework,” 
ACM Sigplan Notices, Vol. 37, No. 8, 2002, pp. 25-34. 
doi:10.1145/596992.597001 

[29] J. Al Dallal and P. Sorenson, “Reusing Class-Based Test 
Cases for Testing Object-Oriented Framework Interface 
Classes,” Journal of Software Maintenance and Evolution: 
Research and Practice, Vol. 17, No. 3, 2005, pp. 169- 

196. doi:10.1002/smr.308 

[30] W. Tsai, Y. Tu, W. Shao and E. Ebner, “Testing Extensi- 
ble Design Patterns in Object-Oriented Frameworks 
through Scenario Templates,” Proceeding of 23rd Annual 
International Computer Software and Applications Con- 
ference, Phoenix, October 1999, pp. 166-171. 

[31] M. E. Fayad, Y. Wang and G. King, “Built-In Test Re- 
use,” In: M. E. Fayad, Ed., The Building Application Frame- 
works, John Wiley and Sons, Chichester, 1999, pp. 488- 
491. 

[32] E. Gamma, R. Helm, R. Johnson and J. M. Vlissides, 
“Design Patterns: Elements of Reusable Object-Oriented 
Software,” Addison-Wesley Professional Computing Se- 
ries, Boston, 1994. 

[33] A. Tevanlinna, J. Taina and R. Kauppinen, “Product Fa- 
mily Testing: A Survey,” ACM Sigsoft Software Enginee- 
ring Notes, Vol. 29, No. 2, 2004, pp. 12-18.  
doi:10.1145/979743.979766 

[34] J. Al Dallal and P. Sorenson, “Testing Software Assets of 
Framework-Based Product Families during Application 
Engineering Stage,” Journal of Software, Vol. 3, No. 5, 
2008, pp. 11-25. 

[35] R. Kauppinen, J. Taina and A. Tevanlinna, “Hook and 
Template Coverage Criteria for Testing Framework- 
Based Software Product Families,” Proceedings of the 
International Workshop on Software Product Line Test- 
ing, Boston, 2004, pp. 7-12. 

[36] B. Meyer, “Applying Design by Contract,” IEEE Com- 
puter, Vol. 25, No. 10, 1992, pp. 40-51.  
doi:10.1109/2.161279 

[37] G. Froehlich, “Hooks: An Aid to the Reuse of Object- 
Oriented Frameworks,” Ph.D. Thesis, University of Al- 
berta, Department of Computing Science, Edmonton 
2002. 

[38] N. Goel, A. K. Tripathi and M. Gupta, “Hook_Test: An 
Aid to the Hook-Driven Test-First Development of Frame- 
work Based Application,” Accepted for Publication in 
International Journal of Computer Science Issues. 

 

 
 

http://dx.doi.org/10.1145/351936.351943
http://dx.doi.org/10.4236/jsea.2010.35051
http://dx.doi.org/10.4236/jsea.2010.36061
http://dx.doi.org/10.1109/ICCIT.2010.5711046
http://dx.doi.org/10.1145/262793.262798
http://dx.doi.org/10.1145/596992.597001
http://dx.doi.org/10.1002/smr.308
http://dx.doi.org/10.1145/979743.979766
http://dx.doi.org/10.1109/2.161279

