
Applied Mathematics, 2012, 3, 1795-1810 
http://dx.doi.org/10.4236/am.2012.331245 Published Online November 2012 (http://www.SciRP.org/journal/am) 

Parallel Binomial American Option Pricing under  
Proportional Transaction Costs 

Nan Zhang1, Alet Roux2, Tomasz Zastawniak2 
1Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China 

2Department of Mathematics, University of York, York, UK 
Email: nan.zhang@xjtlu.edu.cn, alet.roux@york.ac.uk, tomasz.zastawniak@york.ac.uk 

 
Received August 2, 2012; revised September 2, 2012; accepted September 10, 2012 

ABSTRACT 

We present a parallel algorithm that computes the ask and bid prices of an American option when proportional transac-
tion costs apply to trading in the underlying asset. The algorithm computes the prices on recombining binomial trees, 
and is designed for modern multi-core processors. Although parallel option pricing has been well studied, none of the 
existing approaches takes transaction costs into consideration. The algorithm that we propose partitions a binomial tree 
into blocks. In any round of computation a block is further partitioned into regions which are assigned to distinct proc-
essors. To minimise load imbalance the assignment of nodes to processors is dynamically adjusted before each new 
round starts. Synchronisation is required both within a round and between two successive rounds. The parallel speedup 
of the algorithm is proportional to the number of processors used. The parallel algorithm was implemented in C/C++ 
via POSIX Threads, and was tested on a machine with 8 processors. In the pricing of an American put option, the par-
allel speedup against an efficient sequential implementation was 5.26 using 8 processors and 1500 time steps, achieving 
a parallel efficiency of 65.75%. 
 
Keywords: Parallel Algorithm; American Option Pricing; Binomial Tree Model; Transaction Costs 

1. Introduction 

An American call (put) option is a financial derivative 
contract which gives the option holder the right but not 
the obligation to buy (sell) one unit of a certain asset 
(stock) for the exercise price K at any time until a future 
expiration date T. Option pricing is the problem of com-
puting the price of an option, and is crucial to many fi-
nancial practices. Since the classic work on this topic by 
Black, Scholes and Merton [1,2], many new develop-
ments have been introduced. In this paper, we present a 
parallel algorithm and its multi-threaded implementation 
that computes the ask and bid prices of an American op-
tion when proportional transaction costs apply to trading 
in the underlying asset. Previous work on parallel valua-
tion of European and/or American options can be found 
in [3-8]. However, zero transaction costs are assumed in 
all these papers, which is often not the case in practice. 

When the underlying transaction costs are considered, 
the no-arbitrage price of an American option is no longer 
unique, but is confined within an interval. The upper 
bound of this interval is the ask price of the option, and 
the lower bound is the bid price. For an American option 
based on a single underlying asset, its ask price can be 
derived from Algorithm 3.1 in [9], and its bid price from 

Algorithm 3.5. Unlike the previous approaches [10-14] to 
pricing American/European options under transaction 
costs, the applicability of Algorithms 3.1 and 3.5 is not 
confined by the values of certain market and model pa-
rameters, or by the methods of settlement (cash or 
physical delivery of the underlying asset). Besides pric-
ing vanilla options such as puts and calls, the algorithms 
can also be applied to the valuation of options with more 
complex payoffs, such as American bull spreads. 

The parallel algorithm that we present in this paper 
computes the ask and bid prices on recombining bino-
mial trees, and was implemented in C/C++ via POSIX 
Threads. The implementation was tested on a machine 
with 8 processors (2 sockets × quad-core Intel Xeon 
E5405 at 2.0 GHz). Experimental results showed that, for 
example, when the number N of time steps was 1500, the 
parallel speedup in pricing an American put option was 
5.26. Compared to the results obtained in the previous 
work [3,4,6] this multi-threaded approach reduces the 
overhead of parallelisation and gains speedups in prob-
lems of much smaller sizes. 

The contributions of this work are twofold. First, a 
parallel algorithm is designed and implemented which 
computes the ask and bid prices of American options 
under proportional transaction costs, whereas previous 
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work for the same problem did not take transaction costs 
into consideration. Second, a refined generic strategy for 
partitioning a recombining binomial tree is developed. 
Like the previous partition schemes [3,4,6,8], our algo-
rithm divides the whole tree into blocks consisting of 
nodes from multiple levels (where each level in the bi-
nomial tree consists of nodes at a particular time step). 
Each of these blocks is further divided into regions which 
are assigned to distinct processors in each single round of 
the computation. The previous schemes fixed each proc-
essor’s assignment from the start of the computation. 
However, as the computation proceeds towards the root 
of the binomial tree the parallelism that can be exploited 
decreases. So, with a fixed assignment the load imbal-
ance between different processors becomes more severe 
as the computation progresses. However our partition 
scheme re-calculates each processor’s workload before 
the start of each new round so as to minimise the imbal-
ance. The partition scheme is generic in the sense that its 
applicability is not confined by the choice of the pa-
rameter values. Last but not least, the results of this paper 
also serve to demonstrate the efficiency of the sequential 
algorithms (described in Section 3) underlying the paral-
lelisation. 

The parallel binomial algorithm we developed is not 
specific to the particular problem of pricing American 
options under transaction costs. In the appendix we show 
the application of this parallel algorithm in pricing Ame- 
rican options without transaction costs. 

The source code for these two applications of the par-
allel binomial algorithm is freely available via email. 

Organisation of the rest of the paper: Related work is 
reviewed in Section 2. The sequential pricing algorithms 
are briefly explained in Section 3. The parallel algorithm 
and its analysis are presented in Section 4. Experimental 
results are reported in Section 5. Conclusions are drawn 
in Section 6, which also contains a discussion of future 
work. The appendix contains a discussion about applying 
the parallel algorithm to the pricing of American options 
with no transaction costs, and presents the results from 
the performance tests on the same machine. 

2. Related Work 

Previous approaches in parallel option pricing are dis-
cussed in this section. None of this work took transaction 
costs into consideration. 

To exploit data-parallelism on recombining binomial/ 
trinomial trees, a parallel option pricing algorithm must 
partition the whole tree into blocks and assign them to 
distinct processors for parallel processing. Some ap-
proaches [3,4,6,8] divided the binomial/trinomial tree 
into blocks consisting of multiple levels of nodes, and 
processed the blocks using multiple processors. But some 

[7,15] processed nodes of a single level in parallel and 
afterwards moved to the next-highest level in sequential 
order. Compared with the latter method, the former re-
quires more sophisticated synchronisation strategies and 
thus is more complicated to implement. But its advantage 
is that it causes less parallelisation overhead. The parti- 
tion scheme we designed in our algorithm belongs to the 
first class. 

Gerbessiotis [3] presented an architecture-independ- 
ent parallel pricing algorithm for American and Euro-
pean-style options on recombining binomial trees. The 
algorithm partitioned a binomial tree into b b  blocks 
and assigned these blocks to distinct processors in a 
wrapped-mapping manner such that the maximum input 
data imbalance between any two processors is limited by 
b. This assignment (Figure 5 in [3]) was determined from 
the start of the computation according to the number of 
leaf nodes at level N and the number p of processors in-
volved. The computation on the whole binomial tree was 
divided into rounds, where in each round b levels of the 
tree were processed. No load re-balancing was applied 
after each round of the computation. The parallelisation 
was achieved via the Oxford BSP (Bulk Synchronous 
Parallel) [16] Toolset, BSPlib, and another non-BSP 
message passing interface (MPI) LAM-MPI [17]. The 
implementation was tested on a cluster of 16 PC work-
stations, each running a dual-Pentium 350 MHz. Their 
tests showed that when  and b , using 
the BSPlib, the parallel speedup was 2.71 when 

8192N  128
8p   

and 3.19 (Table 1 in [3]) when . When imple-
mented via the LAM-MPI, the speedup was 2.23 and 
2.28 (Table 5 in [3]), respectively. 

16p

Peng et al. [6] presented a parallel option pricing algo-
rithm based on a Backward Stochastic Differential Equa-
tion (BSDE). The computation was performed on bino-
mial trees that model the Brownian dynamic change of 
the underlying asset price. The algorithm assumed the 
number N of time steps and the number p of processors 
to be a power of two. To avoid frequent communication 
they introduced a parameter L such that in each iteration 
of the computation L levels of nodes were processed in 
parallel. Their algorithm assumed that L was a power of 
two plus one and N was divisible by . Each proc-
essor’s assignment (Figure 2 in [6]) was fixed at the start 
of the computation. No load re-balancing was attempted 
afterwards. The algorithm was implemented in C via 
MPI. Tests were made on a cluster of 16 PC nodes, 
where each node ran 2 Intel Xeon DP 2.87 GHz. The 
parallel speedup was 3.15 using 8 processors and 3.33 
(Table 1 in [6]) using 16, when  and 

1L 

9281N  9L  . 
A GPU-based (graphics processing unit) solution [18] 

to the BSDE approach for option pricing was presented 
by the same group of researchers, where they adopted the 
theta method [19] to solve BSDEs (The theta method 
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discretises a continuous BSDE on a time-space grid. At 
each node of the grid Monte Carlo simulations are used 
to approximate the mathematical expectations. The 
whole process requires a large amount of calculations but 
suits the computing architecture of a GPU). The imple-
mentations were tested on a 2.67 GHz Intel Core i7 920 
and an NVIDIA Tesla C1060. When  the run-
time of the sequential code was about 23000 seconds, 
and that of the GPU code was about 99 seconds (Table 1 
in [18]). 

= 128N

Zubair and Mukkamala [8] proposed a cache-friendly 
parallel option pricing algorithm for shared memory 
symmetric multi-processors (SMP). The algorithm gave 
much consideration to the memory hierarchy available in 
modern RISC processors. In order to be cache-efficient 
the algorithm employed techniques such as cache and 
register blocking, and partitioned a binomial tree into 
triangular and quadrangular blocks (Figure 8 in [8]). As 
the computation proceeded towards the root of the tree 
the number of blocks decreased and so did the number of 
processors that could be utilised. The algorithm was im-
plemented in Fortran 95 with parallelisation achieved via 
OpenMP directives [20]. A test of the parallel algorithm 
on 8 Sun UltraSPARC III 1050MHz processors showed 
that when the block size was 128,  the paral-
lel speedup was 4.96 (Table 4 in [8]) using all the 8 pro- 
cessors. A similar serial cache-friendly option pricing 
algorithm was discussed by Savage and Zubair [21]. It 
was based on the binomial and trinomial models without 
parallelisation of any type. 

= 8192N

As a supplement to the latency-tolerant BSP-oriented 
algorithms for option pricing on binomial trees in [3] and 
trinomial trees in [22], Gerbessiotis [4] presented a more 
up-to-date parallel algorithm using the explicit finite 
difference method [23], which is equivalent to computing 
discounted expectations on a trinomial tree. The algo- 
rithm partitioned the nodes of a trinomial tree into rec-
tangular blocks (Figure 4 in [4]) of b levels. As in [3], the 
nodes of a block were further divided into three regions, 
one for nodes for which the discounted expectations have 
already been computed, one for nodes for which the 
computation does not depend on the results from nodes 
in a neighbouring block, and one for nodes for which 
such dependency exists. The algorithm was implemented 
via the Oxford BSP Toolset, the non BSP-specific librar-
ies LAM_MPI and Open MPI [24], and SWARM [25], a 
parallel computing framework for multi-core processors. 
Their tests were done on the same PC cluster as in [10] 
and on two multi-core processors. On the 2.4 GHz Intel 
quad-core Q6600 used in their tests, the parallel speedup 
was 3.63 using BSP and MPI, and 3.13 (Table 11 in [3]) 
using SWARM when N = 8192, b = 129 and p = 4. 

Intel [5] published a white paper where parallel bino-

mial option pricing was implemented in Ct1, a data par-
allel API implemented within a C++-based syntactic 
framework. The parallel code was tested on two 2.33 
GHz Intel Xeon quad-core E5345 processors, and gained 
much speedup over a sequential C++ implementation 
thanks to Ct’s built-in SSE-based implementation for the 
common math functions. 

Solomon et al. [7] presented a GPU-based parallel so-
lution for pricing American lookback options on a re-
combining binomial tree. The algorithm performed back- 
ward computation on the binomial tree with nodes at 
each level being processed in parallel. Initially, the com-
putation was carried out by the GPU, but after a certain 
threshold level was passed the computation was taken 
over by the CPU because the parallelism that could be 
exploited decreased as the calculation proceeded to the 
root of the tree. Their tests were performed on a 3.0 GHz 
Intel Core 2 Duo and a 216-core NVIDIA GTX 260. The 
speedup of the CPU + GPU hybrid implementation 
against un-optimised sequential code was about 20 (Fig-
ure 7 in [7]) when the number of time steps was 5000 
and the threshold was set as 256. The same partition 
scheme was used by the GPU-based parallel binomial 
option pricing implementation discussed by Kolb and 
Pharr [15], where the nodes in each single level of the 
tree were processed in parallel. 

Huang and Thulasiram [26] presented a parallel algo-
rithm for pricing basket American-style Asian options on 
a recombining binomial tree. The number of levels in the 
tree and the number of processors were assumed to be a 
power of two. To partition the tree, initially, all leaf 
nodes were evenly distributed among the processors. The 
computation proceeded to the root of the tree in such a 
way that in a given processor, for every pair of adjacent 
nodes at a certain level i, the processor computed the 
option price for the pair’s parent node at level 1i   
(Figure 3 in [26]). Eventually processor 0 computed the 
option price at level 0. No load re-balancing among the 
processors was attempted during the course of the com-
putation. The implementation of the algorithm was in C 
via MPI. 

Compared with these parallel approaches to binomial 
option pricing, the generic partition scheme in our algo-
rithm makes ample allowance for minimising the load 
imbalance between processors to enhance the efficiency 
of the parallelisation. The multi-threaded implementation 
of the algorithm is lightweight: the parallel speedup on 8 
processors for a tested American put option is 5.26 when 

1500N  . 
Algorithms for parallel option pricing based on models 

other than the binomial/trinomial tree can be found as 
well. These are loosely connected to what we present in 

1After Intel’s merger with RapidMind technologies, Ct became part of 
what is now known as the Intel Array Building Blocks (ArBB). 
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this paper. Fusai et al. [27] published a numerical proce-
dure for pricing exotic path-dependent options when the 
underlying asset price evolves according to a generic 
Lévy process [28]. By geometric randomisation of the 
option expiration, the n-step backward recursion in op-
tion pricing was transformed into an integral equation. 
The option price was then obtained by solving n inde-
pendent integral equations. Because the equations were 
mutually independent they were solved in parallel on a 
grid computing architecture. 

Surkov [29] presented algorithms based on the Fourier 
space time-stepping method to price single- and multi- 
asset European and American options with stock prices 
following exponential Lévy processes. The algorithms 
were implemented on an NVIDIA GeGorce 9800 GX2 
video card with only one of the two GPUs being used. 

Prasain et al. [30] proposed a parallel synchronous op-
tion pricing algorithm to price simple European options 
using particle swarm optimisation: a nature-inspired glo- 
bal search algorithm based on swarm intelligence. 

Sak et al. [31] discussed the application of parallel 
computing in pricing backward-starting fixed strike Asian 
options that are continuously averaged. Through a chan- 
ge of numeraire they transformed the pricing problem 
into solving a one-state-variable partial differential equa- 
tion (PDE) by both explicit and Crank-Nicolson’s im- 
plicit finite-difference methods. The algorithms they de-
signed were implemented via MPI and were tested on a 
Linux PC cluster. 

3. The Sequential Pricing Algorithms 

We first briefly go through the procedure of pricing 
American options when transaction costs are not in-
cluded. Consider an American put option with strike K 
and expiry T, which can be exercised once at any time 

. We use the one-step binomial process ex-
ample in Figure 1(a), where at time t the price of the 
underlying stock of an American put option is t . After 
one time step, the price of the stock can either be t  or 

t . We assume the risk-free return over a single 
time step is 

0,1,2, , N

1
tdS u S

S
uS

 , that is, 1 unit of cash at time t will grow 
to 1r    units at time 1t  . The risk-neutral prob-
ability for the up-move is    p r d u d 



 , and for 
the down-move it is . The payoff of the American 
put at time t is t ; that is, if t

1 p
maxt  P K ,0S S K  

then the owner of the option will exercise his/her right to 
sell one unit of the stock (worth ) at the price K, thus 
making a profit of t

tS
K S , and if t  then exercis-

ing the option is not advantageous. The option is priced 
by backward induction, which gives a unique arbi-
trage-free price  for the option at time t. At the ma-
turity date N the value of the option is the same as its 
payoff, so 

S K

πt

πN NP N. For t  , the value  of the 

option at the node  is the maximum of its discounted  

πt

tS

expected payoff     1 1
1 1π π 1 πu d

t t t tr S r p p 
    1   

at time t and its immediate payoff  if the option is  tP

exercised at t, that is   1π max , πt t t tP S  r . For  

example, p = 0.9454 for the parameter values in Figure 
1(a), which also shows the option payoffs for 130K  . 
Now suppose that the option prices at the nodes at time 

1t   have already been computed and happen to coin-
cide with the corresponding payoffs, 1πu

t 10  and 

1  (that is, in this example both these nodes 
are in the exercise region for the American option). Then 
we can compute 

πd
t  46.67

 max 30,10.17 30πt   . To compute 

0  on a binomial tree of multiple levels, we start from 
the leaf nodes and go all the way back to the root to ob-
tain the price of the option at time 0. 

π

Proportional transaction costs in asset (stock) trading 
are modelled by bid-ask spreads. That is, at time t a unit 
of stock can be bought for the ask price  or sold at 
the bid price . To link this with the friction-free 
model, we shall assume that  and  

a
tS

t tk S

b
tS

1aS  
 1b

t tS k  S , where  0,1k  is the transaction cost 
rate. In the presence of transaction costs, we need to dis-
tinguish between options settled in cash and exercised by 
the physical delivery of a portfolio consisting of cash and 
stock. For the above put option this payoff portfolio is 
 , 1K  . In general, for an American option we have a 
payoff process  ,t t   for . That is, if 
the holder exercises the option at time t, then the seller 
must deliver to the holder a portfolio consisting of 

0,1,2, ,t   N

t  
cash and t  units of the asset (stock). 

Under these conditions the arbitrage-free price of an  
 

 
(a) 

 
(b) 

Figure 1. One-step binomial processes with and without 
transaction costs. (a) Without transaction costs; (b) With 
transaction costs. 

Copyright © 2012 SciRes.                                                                                  AM 



N. ZHANG  ET  AL. 

Copyright © 2012 SciRes.                                                                                  AM 

1799

pretation of t  is that a portfolio z  , x y  at time t al- 
lows the seller to deliver the option without risk if and 
only if  , epi tx y 

t

American option at any time t is no longer unique, but is 
confined within an interval. The upper limit of this inter-
val is the ask price  of the option, and the lower limit 
the bid price . The ask price is the price at which the 
option can be bought on demand. It is also the minimum 
amount of wealth that the seller of the option needs in 
order to hedge his/her position in all circumstances, that 
is, to deliver to the buyer the payoff portfolio 

πa
t

πb
t

 ,t t   at 
any exercise time  chosen by the buyer, 
without having to inject extra wealth. The bid price is the 
price at which the option can be sold on demand. It is 
also the maximum amount of wealth that the buyer can 
borrow against the right to exercise the option. 

0,1,2, ,t 

z . For , we start from the two 
nodes at time 

t T
1 . Suppose that  

       1 1 130 144 1 96 1u u
t tz y u y y y

 
         (2) 

at the up-move node. At the down-move node suppose 
that  

N




       1 1 130 100 1 66.67 1 .d d

t tz y u y y y
 

        (3) 

These are piecewise linear functions, see Figure 2. At 
time t, because the seller must be prepared for the worst 
case scenario, we calculate the maximum of 1

u
tz   and 

1
d
tz  , to obtain  1 1max ,u d

t tw z zt 

b
tS

. Next, since x units of 
cash at time t will grow to xr at time , the function 
wt must be discounted by r. Now we need to account for 
the possibility of rebalancing the portfolio at time t, that 
is, either buying some stock for the ask price  or 
selling some at the bid price . This transforms the 
epigraph of 

1t 

a
tS

tw r  into that of a piecewise linear func-
tion  whose slopes are restricted within the interval 

t

tv
,a

tS bS    , which is  120,

80

80

1y

 in this example. The 
epigraph of t  consists of portfolios covering the option 
seller if the option is exercised at time  or later. 
Now what if the option is exercised at time t? The ex-
pense function  at t is  

t

v

tu
0 1u y

1t

 130 12
      . Again, the seller must 

be prepared for the worst, which corresponds to taking 
the maximum 

To hedge his/her position the seller should hold a port-
folio consisting of cash and the underlying stock. We use 
 ,t tx y  to denote his/her holdings of cash and stock at 
time t. We define the seller’s expense function  at 
time t to be  

tu

      ,a b
t t t t tu y y S y S       t




    (1) 

where  and  
. This is a function of the 

seller’s stock holding at time t. It defines the minimum 
amount of cash that a seller holding y shares of stock 
needs to fulfil his/her obligation if the option is exercised 
at time t. So if the seller wishes to form a self-financing 
strategy to cover his/her position at t, his/her holdings 

  min ,0t ty y    
   max ,0t ty y   

 ,t tx y
 ,

 must belong to the epigraph of t , that is 

t t

u
epi tx y u
 

 (The epigraph of a function f is defined 
as   2epi ,f x y x  f y ). 

      max ,t tz y u y v y t                 (4) Now using the same American put example (with K = 
130) and the one-time step binomial process (Figure 
1(b)), we explain how the option ask price  is com-
puted at any time t. This is done by constructing a se-
quence of piecewise linear functions  by backward 
induction from time step N, when 

πa
t

tz

N Nz  u . The inter-  

     130 120 1 80 1 .tu y y y
        (5) 

These piecewise linear functions are shown in Figure 
2. The option ask price at time t for this example is then 

 π 0 50a
t tz  , because it is the minimum amount of  

 

 

Figure 2. The piecewise linear functions in computing the ask price.  
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cash that enables a seller without a stock holding to 
hedge his/her position without risk at time t. When the 
above computation is carried out on a binomial tree rep-
resenting N time steps, we start from the leaf nodes and 
work backwards to the root node at time 0. The option 
ask price is then .  0 0π 0a z

For the buyer’s case, the buyer’s expense function at 
time t is  

      ,a b
t t t t tu y y S y S        t





    (6) 

because it is he/she who will receive the portfolio 
 ,t t  . The pricing procedure for Nz , t  and t  is 
similar to that for the seller. But when t  is computed 
the minimum of t  and t  is used instead of the 
maximum. The reason for this difference is that at any 
time  the buyer needs to choose between exercis-
ing or waiting (that is, choose a portfolio in  or 

), whereas the seller needs to be prepared for any 
eventuality (i.e. they need a portfolio in ep  and 

). In this example, if it is assumed that  

w
z

v

i tu

t

u v

t 

epi tv

epi tv

N
ep

iu

     1 130 144 1 96 1 ,u
tz y y y

 
        

     1 130 100 1 66.67 1 ,d
tz y y y


       

t



 

then  

     min ,t tz y u y v y                  (7) 

     130 120 1 80 1 .tu y y y
       (8) 

The option bid price  at time t is πb
t  π 0 10b

t tz   , 
because the bid price is the maximum amount of wealth 
that a buyer without any stock holdings can borrow 
against the right to exercise the option. See Figure 3 for 
a plot of the piecewise linear functions in the buyer’s 
case. 

Full details of the procedures for finding bid and ask 
prices under proportional transaction costs can be found 
in Algorithms 3.1 and 3.5 in [9]. 

4. The Parallel Pricing Algorithm 

4.1. Binomial Tree Model 

For an American option whose payoff process and 
physical expiry time are  ,   and T, respectively, let 
N be the number of time intervals that discretise the time 
period from 0 to T. Also let   be the volatility of the 
underlying stock, R the continuously compounded annual 
interest rate and  0,1k  the transaction cost rate. Un-
der such conditions the binomial tree that models the 
dynamics of the stock price will have  levels, cor-
responding to the time steps t . The up- 
move factor u, down-move factor d and cash accumula-  

1N 
, 2, ,0,1 N

tion factor r over one time step are  expu T N , 

 1 expd u T N   , and expr RT N , respec-  

tively. The pricing algorithms in [23] actually add an 
extra time instant 1t N   to the model and set the 
option payoff as  0,0  at all the  nodes in that 
level. The purpose of adding this extra time step is to 
model the possibility that under certain circumstances it 
may be in the best interests of the option holder to leave 
it unexercised. In line with [9] and [14], we assume that 
no transaction costs apply at time 0, that is,  

2N 

0 0
b aS S S0  . 

4.2. The Partition Scheme and the 
Synchronisation Mechanism 

Assume we have p distinct processors in a parallel com-
puter. Because the computation of the u, w, v, z functions 
at different nodes can be performed independently in 
parallel, we can partition a whole binomial tree into 
blocks of nodes and assign these blocks to distinct proc-
essors. The parallel algorithm, like its sequential coun-
terpart, starts off at the leaf nodes where  and 
works backwards towards the root of the tree. The whole  

1t N 

 

 

Figure 3. The piecewise linear functions in computing the bid price. 
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process is accomplished by p threads, denoted by 

0 1 1, , , pp p p  , with each thread being bound explicitly 
to a distinct processor. The whole computation is divided 
into rounds, where in each round the nodes of a block are 
processed by the p threads in parallel. 

In general, if the base level B (whose nodes have been 
processed in the th round) of an ith round is at 
time 

 1i  
 , 1t n n 

ip i

, 1N 
n

, 0,1,

, then the total number of nodes 
in at that level will be . These  nodes will be 
divided among the p threads in such a way that each of 
the threads , gets 

1

, p 

1n 

2 1n   p  nodes 
and the last thread 1pp 

 
 gets  

   1 1n n p   

 

1 p  nodes. We use L to denote 
the maximum number of levels that are processed to-
wards the root in a round, that is, the maximum number 
of levels in a block. However, the number D of levels 
that are actually processed in a round is jointly deter-
mined by L and the number of nodes that each thread 
gets, because this number D cannot exceed  

1 1n p    . So we have   mi 1 1n p  n ,D L   . 
So in a round whose base level B contains 1n   nodes 
all the threads will be assigned a block of  
 1n p D   nodes, except the last thread 1pp   

which only gets a smaller number of nodes. For a thread 
 , 0,p i p 2i , we further divide its  1n p D     

nodes into regions A and B such that the computations 
performed at the nodes in region A do not depend on the 
results from another thread in the same round, but the 
computations at the nodes in region B do need the results 
from thread 1i . Note that the last thread 1p  pp   does 
not have any B nodes in any round of the computation. 

Figure 4 shows such a division among 3 threads in a 
round consisting of 3 ( ) levels of nodes. The 
nodes enclosed by the dashed frame box at time level 

 are the base nodes. For thread 0  to compute the 
u, w, v, z functions at the nodes in its region B, it needs 
results computed by thread 1  at the two nodes in col-
umn 4 enclosed by the thin frame box. Thread 0  can-
not start computing at the nodes in its region B until 
thread 0  finishes at the node (level , column 4) 
enclosed by the bold frame box. In general, thread , 

3L D 

p

3t  p

t

p

p 1
ip

 0, 2i p  , cannot start at the nodes in its region B 
until thread 1ip   finishes at the leftmost node at level 

1B D   in its region A. This scheme of partitioning 
into regions A and B was also adopted in [3,6]. 

The parallel algorithm re-balances the workload of 
each thread after each round of the computation. If the 
current base level is B, the next base level will be B D , 
containing 1B D   nodes, and according to this num-
ber the workload of each thread in the next round will be 
calculated. The parallel algorithm ensures that each 
thread will get minimally two nodes to process in all the 
rounds, which means that the minimum possible value 
that D can get is 1. If at some level of the tree the number 
of nodes is less than , the number of processors used 
will be decreased by 1 until this no-less-than-two-node 
condition is satisfied. A partition based on the above ex-
planation is shown in Figure 5 for , 

2 p

10N  3p   and 
3L  . The figure shows the adjustment of the workload 

after each round and the reduction in the number of 
processors needed as the computation proceeds towards 
the root of the tree. 

To save the intermediate z functions generated during 
the computation, instead of generating the whole tree, the 
parallel algorithm maintains two buffers, each with 
 1L   rows ×  2N   columns. One of these two 
buffers is for computing the ask price, and the other the 
bid price. The mapping between the whole binomial tree 
and the buffers is done in a modular wrapping around 
manner to avoid the cost of extra synchronisation and 
copy back. We use variable U to denote the base level in 
the two buffers in a round of the computation, corre-
sponding to the base level of the tree. Initially, this U is 
set to 0, and after a round whose base level of the tree is 
B and works D levels towards the root, U is updated by 

    1LmodDU U B    . Now suppose the com-
putation is working on the ith,  0,i D , level down 
from level B. The piecewise linear functions will be 
computed and stored in the two buffers at level  
   modU i 1L   according to the piecewise linear 
functions stored at level   1 mod  1U i L   in the 
buffers. 

 

 

Figure 4. Partition into regions A and B. 
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Figure 5. Parallel processing on the binomial tree by three working threads. Note that although N = 10 the algorithm adds an 

As the whole computation is divided into rounds, the 
th

extra time instant to the model. 
 

reads have to be synchronised both within a round and 
between two successive rounds. Within a round, all the 
threads work D levels down the tree in such a way that 
any two adjacent threads have to be synchronised. As 
soon as thread  , 1, 1ip i p   has finished the leftmost 
node (such as th nclosed by the bold frame 
in Figure 5) at level 1B D   (B being the base level 
of the round) in its reg  will send a signal iG  to 
thread 1ip  , so that after thread 1ip   has finished the 
nodes in  region A, upon receiving the signal it can 
proceed to the nodes in its region B. Once thread 



e single node e

ion A, it
 

its

, 1, 1ip i p   has finished processing all its nodes in 
B, it has to wait for the other peer threads 

to finish their work. Only after all the threads have fin-
ished, can the parameters be updated for the next round. 
The flow chart in Figure 6 using thread 

regions d  A an

 , 1, 1ip i p   
as an example shows the synchronisation s

The pseudo code in Algorithm 1 shows the com
cheme. 

puta-
tional steps performed by thread  , 0, 1ip i p  , in-
cluding the synchronisation schem node 
 ,l c  there denotes the node at level l of the tree whose 

n index is c. The nested for-loop that computes the 
functions at the nodes in region B is similar to the one in 

executed by all the threads , 0,1, 2, , 1ip i p  . Be-
cause thread 0p  is the one that computes 0z  at the root 
node at 0t

e. Note that 

colum

region A, so the details are omitted. The pseudo code is 

 , the option ask a urned 
by thread 0p e finally have  0 0π 0a z nd  

nd bid prices are ret
 a. W

 00 0πb z    where 0z  is the seller’s expense function 
at 0t

,
  a  0znd   the buyer’s. 

4.3. Computational Time Analysis 

nomial runAlgorithms 3.1 and 3.5 in [23] have poly time 
 kT O N  for some 2k  . AlthoughS

nodes in a recombining binomial tree is quadratic in N 
ional binom pricing algorithm without 

transaction costs has runtime  2
ST O N  ), the maxi-

mum, minimum and slope restriction operations may 
require slightly more time to fi computation 
proceeds towards the root because the piecewise linear 
functions u, w, v and z may acquire more linear pieces at 
nodes closer to the root. To see the runtime TP of the par-
allel algorithm (Algorithm 1) and the parallel speedup 

 the numb

nish as the 

er of 

(so a tradit ial 

S PS T T  we start by estimating the number of nodes 
processed by thread 0p  on the whole binomial tree. 

ly, in a round whose base level is B and has n 
nodes, all these p threads work in parallel on D levels

General
 of  
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 , 1, 1ip i p Figure 6. The synchronisations on thread . The condition in the first rhombus box is shown at line 15 in Algo-

e tree, from level  to . According to the 

rithm 1. 
 
th 1B  B D

ese Dalgorithm, the nodes within th  levels will be di-
vided into p blocks, and the number of nodes assigned to 
thread 0p  is nD p . The total number of nodes within 
these D els, assuming n is an integral multiple of p, is  

 
 lev

1D D
nD


  Figure 7 for an example). So the 

2
 (see

fraction done by thread  is 0p nD p  divided by 

 1

2

D D
nD


 , which is 

  
2

. For large n  
2 1p D n 

and relatively small D, we can assume that  
 1 0D n  , and, therefore, the fraction p

 approximately 
rocessed by 

thread is0p  1 p . This roughly applies 
to the p of the tree from the leaf level ( 1t N  ) to the 
level where 2 2t p   ( 1p  ), becaus nd this 
level further do  tre  number of processors 
needed will decrease. The total number of nodes in the 
tree from level t = N + 1 (N + 2 nodes) to level t = N +  
2p − 2 ( 2 1p   nodes) is   

art 
e beyo

wn the e the

2 1 2 4 2N p N p    , 
of which t ber processe
  

he num d by thread 0p  is  
2 1 2 4 2N p N p p    . For the l els beev

 

Figure 7. An estimation of the number of nodes processed 
by thread p0. yond  
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Algorithm 1. Computational steps executed by thread 

 , 1, 1p i p  . 

 
i

2 2t p 
 process 

, because thread  will always have 2 nodes 0p
t 

o 
 is 



to except at level 0 , the total number proc-
essed by 0p  will be 4 5p  . Therefore, for the whole 
binomial tree from 0t   t 1t N  , the total number 
of nodes processed by 0  
 

p
2 1 2 4

4 5
2

N p N p
p

p

  
 . If we assume  

, then  



2N p
   22 1 2 4

4 5 2
2 p

e

N p  N p
p N p

 
   . 

To verify the validity of this estimation w  have com-
pared this estimated number with the actual counts ob-
tained from several executions of the parallel algorithm. 
The data are summarised in Table 1. The error rates are 
calculated and reported as well, from which it can be 
seen that the estimation is very close to the actual count 
in all the cases. For a fixed p and L  
(   min , 1 1D L n p     , jointly determined by L, p 
and n), as the number n increases the error rate decreases. 
T nalysis. 

Now since thread 0p  processes about 
his also is in-line with our a

2 2N p nodes, 
and the total number of nodes in a recombining binomial 
tree (from 0t   to 1Nt   ) is  
   23 2 2 2N N N   , so the time required by p0 is 
roughly 1 o  the al runtime. The sequential 
runtim

p  

ST
f

e  is 
sequenti
 k  for some 2k  , and so 

the parallel runtime 
ST O N

PT  is  
   k k

P ST T O N p . The p l speedup 
S is therefore 

p p O N aralle
 PS T T O p  , proportional to the 

e can conclude by this 
analysis that the l algorithm is cost-op- 
timal in that 

S

ors
opo

number rocess  used. So w
 pr sed paralle

p of p

 k
PpT O N  having the same asymptotic 

growth rate as the sequential algorithms. 

5. Experimental Results 

The parallel pricing algorithm
C/C++ via POSIX Threads, and 

 was implemented in 
was tested on a machine 

with dual sockets × quad-core Intel Xeon 2.0 GHz E5405 
running 8 processors in total (Figure 8). The source code 
was compiled by Intel C/C++ compiler icpc 12.0 for 
Linux. The testing machine was running Ubuntu Linux 
10.10 64-bit version. The POSIX thread library used was 
NPTL (native POSIX thread library) 2.12.1. 

To verify the correctness of the parallel algorithm we 
computed the ask and bid prices for the same American 
put option and the American bull spread described in 
Examples 5.1 and 5.2, respectively, in [23]. In the  
 

 

Figure 8. The parallel machine used in the tests. 
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American put example, the parameter values were 
, 

and the parallel speedups when N = 1500 are plotted in 
Figures 10(a) and (b), respectively. The speedup curves 
are very close to straight lines and this supports our 
analysis that the parallel speedup S is proportional to p 
Tests for other values of L were performed in which very 
close results were found. 

0.25T  0.2  , , , 0.1R  0 100S  100K  , N 
d he 

o with 
, and ed 

m-
re-

ported in Tables 1 and 2 in [23]. 
To see the effect that proportional transaction costs 

have on option prices, we computed the prices for t  
same  

varied fr
Am

95K   
to be settled in 
 95
plem

om 20 to 

and a short call with 

 105t tS S 
oduce

1000 an
erican bull spread consists of a l

cash, with payo
 

d exactly

k from

105K 
ff process  

. In all the cases the 
 the same

 0 to 0.02. T
ng call 

is assum

parallel i
 figures as 

 
entation pr

From the speedup ratios we calculated the parallel ef-
ficiency E S p . The analysis indicates that  S O p , 
so    1E S p O p p O   , which means that the 
efficiency of this parallel algorithm should stay the same 
no matter how many processors are used. However, in 
practice, because the synchronisation cost grows as the 
number p increases, we can expect that the efficiency 
will decay as more processors are used. The efficiency 
data are plotted as dashed curves in Figure 10(b), where 
it can be seen that the efficiency diminishes only slightly 
as p increases. 

he
 American put option (with 100K  ) but with 0S  

varying from 90 to 110 under three rates 0 0k  , 
% 2   of the tion 

prices πa
k  and πb

k  are plotted in Figure 9, where it can 
be seen that for any fixed 0S  we have  

1 0 0 1 2
π π π πb b a b a a

k k k k k    at the larger the 
transaction cost rate k the greater the ask-bid spread of 

To test the performance of the parallel algorithm 
against an optimised implementation of the sequential 
al

1 0.25k 

2
π πk 

 and . The c

. 

the option price. 

N varie  to
ups ar

orted in 2 All the

parallel runtim  

0.5%k urves

Note th

op

gorithms we performed two additional sets of tests 
where k was fixed to 0.005 for the American put option 
and to 0.01 for the bull spread, d from 450  
1500, and p from 2 to 8. The runtimes and speed e 
rep  Table .  times were wall-clock times 
measured in milliseconds (ms). 

Moreover, the serial and es when p = 8 

6. Conclusion 

We have presented a parallel algorithm (based on the 
sequential pricing algorithms proposed in [23]) that 
computes the ask and bid prices of American options 
under proportional transaction costs, and a multi- 
threaded implementation of the algorithm. Using p proc-
essors, the algorithm partitions a recombining binomial 
tree into multi-level blocks. The whole computation, 
starting from the leaf nodes and working backwards to 
the root of the tree, is divided into rounds, where in each  

 
s processed by thread p0 when L = 5. The fraction part of 

N = 1350 N = 1500 

Table 1. A comparison between N2/2p and the actual number of node
N2/2p is omitted. 

N = 1200 
p 

Actual N2/2p Error Actual N2/2p Error Actual N2/2p Error 

2 362,999 360,000 −0.83% 458,999 455,625 −0.74% 566,249 562,500 −0.66% 

4 181,198 180,000 −0.66% 229,161 

8 90,311 90,000 −0.34% 114,255 

227,812 −0.59% 282,748 281,250 −0.53% 

113,906 −0.31% 141,008 140,625 −0.27% 

 

 

Figure 9. Ask and bid price curves under different transaction cost rates. 
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Table 2. Runtimes and speedups from the parallel performance tests. 

p|S N = 450 N = 600 N = 750 N = 900 N = 1050 N = 1200 N = 1350 N = 1500 

American put k = 0.5%, K = 100, S0 = 100, T = 0.25, R = 0.1, σ = 0.2, L = 5 

Serial 181.0 325.1 498.6 714.0 979.3 1302.1 1608.4 1983.7 

p = 2 128.7 228.5 348.7 510.1 679.9 892.1 1128.2 1405.5 

S 1.41 1.42 1.43 1.40 1.44 1.46 1.43 1.41 

p = 3 90.4 158.2 241.8 339.4 468.8 617.1 765.0 944.7 

S 2.00 2.06 2.06 2.10 2.09 2.11 2.10 2.10 

p = 4 68.6 121.6 184.0 268.7 355.1 469.7 581.2 724.8 

S 2.64 2. 77 2.74 

p = 5 57.2 466.9 583.7 

p = 6 50.0 398.7 493.2 

American bull spread k = 

67 2.71 2.66 2.76 2.77 2.

96.8 151.7 213.0 286.6 374.7 

S 3.17 3.36 3.29 3.35 3.42 3.47 3.44 3.40 

83.7 132.2 187.2 245.9 313.9 

S 3.62 3.88 3.77 3.81 3.98 4.15 4.03 4.02 

p = 7 43.5 74.4 115.3 165.0 214.7 281.5 363.8 428.3 

S 4.16 4.37 4.33 4.33 4.56 4.63 4.42 4.63 

p = 8 40.4 67.3 102.8 142.7 189.4 248.6 312.5 376.8 

S 4.48 4.83 4.85 5.00 5.17 5.24 5.15 5.26 

1%,   9 105t t tS S5
 

   ,  T = 0.25, R = 0. 2, L = 5 

S 1  1  2005.2 

p = 6 56.2  197.7 419.4 510.0 

1, σ = 0.

erial 185.5 327.9 510.7 731.2 989.7 291.4 625.9

p = 2 133.1 233.9 365.2 522.2 699.5 906.7 1152.1 1422.8 

S 1.39 1.40 1.40 1.40 1.41 1.42 1.41 1.41 

p = 3 95.9 164.6 254.7 360.6 486.2 624.5 781.8 992.2 

S 1.93 1.99 2.01 2.03 2.04 2.07 2.08 2.02 

p = 4 76.3 130.9 203.1 279.7 369.8 474.6 596.3 734.3 

S 2.43 2.50 2.51 2.61 2.68 2.72 2.73 2.73 

p = 5 64.1 106.6 166.5 229.3 305.0 393.0 498.6 622.5 

S 2.89 3.07 3.07 3.19 3.24 3.29 3.26 3.22 

91.4 142.6 261.7 334.6 

S 3.30 3.59 3.58 3.70 3.78 3.86 3.88 3.93 

p = 7 48.2 80.9 124.9 171.7 228.9 291.9 364.5 444.4 

S 3.85 4.05 4.09 4.26 4.32 4.42 4.46 4.51 

p = 8 47.3 79.6 121.5 167.6 215.1 273.6 337.7 403.6 

S 3.92 4.12 4.20 4.36 4.60 4.72 4.81 4.97 

 
of these nodes is further 
and pr essed by ple proc . Before the start of
the n und the workload of process read) is
adjusted according to the number of nodes at the next 
base level. The applicability of partition nd 

synchronisation schem t restricted by 
he valu  the para rs N (nu r of levels of the 

 L um nu of leve essed i und) 
or p (number of processors). The parallel algorithm has 

edup 

rounds, a block of partitioned 
oc multi essors  t

ext ro  each or (th  tree),

 the  method a

the associated e is no
es of mete mbe
(maxim mber ls proc n a ro

theoretical spe  S p  O  and is cost-op l be  tima
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(a) 

 
(b) 

Figure 10. Plots derived from the experimental results. (a) times of the sequential program and the parallel one on 8 
processors; (b) Parallel speedups and efficiencies for N = 1500. 
 
cause 

Run

    k k
PpT O p O N p O N    for some

which has the same asymptotic growth rate as the
runtime . The parallel efficiency E of the al

 2k  , 
 serial 

gorithm is ST
 1E S p 

ple
O . 

The im mentation was tested for its correctn
performance. The results demonstrated reasonable speed- 
ups, e.g., 5.26 when p = 8 and , against an 
optimised sequential program even for problems of small 
sizes. The performance of the implementation was in-line 
with the asymptotic analysis. It showed that, because no 
inter-computer communication was involved, the over- 
head of the parallelisation in the multi-threaded imple- 

es. 

 
e steps may be 

of

u h. But

of time steps are needed the parallel algorithm may have 
to be adapted to more powerful platforms, such as many- 
core general purpose graphics units. We are also aiming 
at developing high-performance parallel algorithms for 
pricing multi-dimensional options under proportional 
transaction costs. Since for such cases a direct imple-
mentation of the maximum, minimum and gradient re-
striction operations on multi-dimensional structures could 
be difficult, we may have to resort to Monte Carlo simu- 
lations, which are easily parallelised, and run them on 
large-scale parallel architectures. 

[1] F. Black and M. Scholes, “The Pricing of Options and 

ess and 

1500N 

mentation was much reduced compared to some previous 
approaches based on message-passing interfaces. The pa- 
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Appendix 

The parallel binomial algorithm we have developed is 
not specific to the problem of pricing American optio

d an extra time step  to the bino-

ns 
under proportional transaction costs. It can be easily 
adapted to other problems, such as the case of pricing 
American options without considering transaction costs. 
In such cases, for an N-step simulation the algorithm 
does not ad 1t N 
mial tree. The other difference is that without transaction 
costs, all the payoffs and the expectations become scalars, 
and so the maximum operations are performed on num-
bers rather than on piecewise linear functions. The run-
time ST  of a sequential binomial American option pric-
ing algorithm with no transaction costs is  2

ST O N . 
So the parallel runtime  2

PT O N p . The parallel 
speed , and 

ng  
the price of an American call option is the same as that 
of a European call option under the same conditions, so 
we consider only the American put option. We tested on 
the 8-processor machine (Figure 8) the performance of 
the parallel algorithm using an American put option with 
strike and a model with parameters 

up 
 1
hou

 S O p
. 
t consideri

the parallel effi

dividends and tra

ciency  

nsaction costs
E O

Wit

100K   
, 0.3

0 = 100S , 
3T     and . In the test the  

of time steps grew from 5000 to 40000, and the number 
p of processors from 2 to 8. All the numeric variables in  

byte double-precision 

. All 

when  and the 

d super-linear speedups in 

0.06R  number N

the program were represented by 8-
floats. The runtimes and the speedups against an opti-
mised sequential program are reported in Table 3
the times were wall-clock times measured in millisec-
onds (ms). The computed price for the American put 
option was 13.906. 

The serial and parallel runtimes 8p 
parallel speedups when 40000N   are plotted in Fig-
ures 11(a) and (b), respectively. The parallel efficiencies 
were calculated from the speedups and plotted in Figure 
11(b) as well. 

From the results we observe
several test cases, e.g., when 30000N  , 3p   and 
the speedup 3.35S  . This was caused partly by the 
caching effect. The serial program
the four L2 caches (Figure 8), but

 can only use one of 
 the parallel program 

uses all the four. Moreover, the parallel program makes 
use of both the two FSBs, whereas the serial program 
uses only one. This also helps to increase the rate at 
which data is transferred between the main memory and 
the processors. 

In all the tests parameter L (the maximum number of 
levels being processed in a round) was set to 50, much 
increased from its value (L = 5) in the tests where trans-
action costs are present. The purpose of increasing its 
value was to reduce the number of times when the 
threads have to be synchronised, and therefore reduce the  

 
Table 3. Runtimes and speedups from the parallel performance tests-without transaction costs. The parameters of the 
American put option were K = 100, S0 = 100, T = 3, R = 0.06, σ = 0.3, L = 50. The time steps in the tests were N × 103. 

p|S N = 5 10 15 20 25 30 35 40 

Serial 38.9 158.8 358.7 638.2 997 1436 1955 2553 

p = 2 21.3 74.4 160.7 279.7 433.4 629.2 927.2 1411.9 

S 1.83 2.13 2.23 2.28 2.30 2.28 2.11 1.81 

p = 3 16.6 54.6 115.1 197.8 302.3 429.2 578.2 756.6 

S 2.34 2.91 3.12 3.23 3.30 3.35 3.38 3.37 

p = 4 16.0 47.1 95.1 159.4 239.7 337.2 451.3 581.9 

S 2.43 3.38 3.77 4.00 4.16 4.26 4.33 4.39 

p = 5 15.1 42.0 82.3 136.4 203.1 284.2 378.8 509.7 

S 2.57 3.79 4.36 4.68 4.91 5.05 5.16 5.01 

p = 6 15.1 41.1 77.1 124.7 182.9 252.1 333.2 436.5 

S 2.57 3.87 4.65 5.12 5.45 5.70 5.87 5.85 

p = 7 15.1 41.1 74.8 117.5 169.6 231.3 302.7 386.3 

S 2.57 3.87 4.80 5.43 5.88 6.21 6.46 6.61 

p = 8 15.1 41.1 74.6 114.3 162.1 217.8 283.0 356.3 

S 2.57 3.87 4.81 5.58 6.15 6.59 6.91 7.17 
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(a) 

 
(b) 

cost nchron  In the tests where nsaction 
costs are considere use the computation time was 
long enough relative to the onisati e, the

performa  was not ensitive to the synchronisation 
overhead

 

Figure 11. Plots derived from the performance tests for an American put option without transaction costs. (a) Runtimes of 
the sequential program and the parallel one on 8 processors; (b) Parallel speedups and efficiencies for N = 40000. 
 

of sy isation.  tra
d, beca

synchr on tim  

nce as s
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