
Applied Mathematics, 2012, 3, 1795-1810
http://dx.doi.org/10.4236/am.2012.331245 Published Online November 2012 (http://www.SciRP.org/journal/am)

Parallel Binomial American Option Pricing under
Proportional Transaction Costs

Nan Zhang1, Alet Roux2, Tomasz Zastawniak2
1Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China

2Department of Mathematics, University of York, York, UK
Email: nan.zhang@xjtlu.edu.cn, alet.roux@york.ac.uk, tomasz.zastawniak@york.ac.uk

Received August 2, 2012; revised September 2, 2012; accepted September 10, 2012

ABSTRACT

We present a parallel algorithm that computes the ask and bid prices of an American option when proportional transac-
tion costs apply to trading in the underlying asset. The algorithm computes the prices on recombining binomial trees,
and is designed for modern multi-core processors. Although parallel option pricing has been well studied, none of the
existing approaches takes transaction costs into consideration. The algorithm that we propose partitions a binomial tree
into blocks. In any round of computation a block is further partitioned into regions which are assigned to distinct proc-
essors. To minimise load imbalance the assignment of nodes to processors is dynamically adjusted before each new
round starts. Synchronisation is required both within a round and between two successive rounds. The parallel speedup
of the algorithm is proportional to the number of processors used. The parallel algorithm was implemented in C/C++
via POSIX Threads, and was tested on a machine with 8 processors. In the pricing of an American put option, the par-
allel speedup against an efficient sequential implementation was 5.26 using 8 processors and 1500 time steps, achieving
a parallel efficiency of 65.75%.

Keywords: Parallel Algorithm; American Option Pricing; Binomial Tree Model; Transaction Costs

1. Introduction

An American call (put) option is a financial derivative
contract which gives the option holder the right but not
the obligation to buy (sell) one unit of a certain asset
(stock) for the exercise price K at any time until a future
expiration date T. Option pricing is the problem of com-
puting the price of an option, and is crucial to many fi-
nancial practices. Since the classic work on this topic by
Black, Scholes and Merton [1,2], many new develop-
ments have been introduced. In this paper, we present a
parallel algorithm and its multi-threaded implementation
that computes the ask and bid prices of an American op-
tion when proportional transaction costs apply to trading
in the underlying asset. Previous work on parallel valua-
tion of European and/or American options can be found
in [3-8]. However, zero transaction costs are assumed in
all these papers, which is often not the case in practice.

When the underlying transaction costs are considered,
the no-arbitrage price of an American option is no longer
unique, but is confined within an interval. The upper
bound of this interval is the ask price of the option, and
the lower bound is the bid price. For an American option
based on a single underlying asset, its ask price can be
derived from Algorithm 3.1 in [9], and its bid price from

Algorithm 3.5. Unlike the previous approaches [10-14] to
pricing American/European options under transaction
costs, the applicability of Algorithms 3.1 and 3.5 is not
confined by the values of certain market and model pa-
rameters, or by the methods of settlement (cash or
physical delivery of the underlying asset). Besides pric-
ing vanilla options such as puts and calls, the algorithms
can also be applied to the valuation of options with more
complex payoffs, such as American bull spreads.

The parallel algorithm that we present in this paper
computes the ask and bid prices on recombining bino-
mial trees, and was implemented in C/C++ via POSIX
Threads. The implementation was tested on a machine
with 8 processors (2 sockets × quad-core Intel Xeon
E5405 at 2.0 GHz). Experimental results showed that, for
example, when the number N of time steps was 1500, the
parallel speedup in pricing an American put option was
5.26. Compared to the results obtained in the previous
work [3,4,6] this multi-threaded approach reduces the
overhead of parallelisation and gains speedups in prob-
lems of much smaller sizes.

The contributions of this work are twofold. First, a
parallel algorithm is designed and implemented which
computes the ask and bid prices of American options
under proportional transaction costs, whereas previous

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1796

work for the same problem did not take transaction costs
into consideration. Second, a refined generic strategy for
partitioning a recombining binomial tree is developed.
Like the previous partition schemes [3,4,6,8], our algo-
rithm divides the whole tree into blocks consisting of
nodes from multiple levels (where each level in the bi-
nomial tree consists of nodes at a particular time step).
Each of these blocks is further divided into regions which
are assigned to distinct processors in each single round of
the computation. The previous schemes fixed each proc-
essor’s assignment from the start of the computation.
However, as the computation proceeds towards the root
of the binomial tree the parallelism that can be exploited
decreases. So, with a fixed assignment the load imbal-
ance between different processors becomes more severe
as the computation progresses. However our partition
scheme re-calculates each processor’s workload before
the start of each new round so as to minimise the imbal-
ance. The partition scheme is generic in the sense that its
applicability is not confined by the choice of the pa-
rameter values. Last but not least, the results of this paper
also serve to demonstrate the efficiency of the sequential
algorithms (described in Section 3) underlying the paral-
lelisation.

The parallel binomial algorithm we developed is not
specific to the particular problem of pricing American
options under transaction costs. In the appendix we show
the application of this parallel algorithm in pricing Ame-
rican options without transaction costs.

The source code for these two applications of the par-
allel binomial algorithm is freely available via email.

Organisation of the rest of the paper: Related work is
reviewed in Section 2. The sequential pricing algorithms
are briefly explained in Section 3. The parallel algorithm
and its analysis are presented in Section 4. Experimental
results are reported in Section 5. Conclusions are drawn
in Section 6, which also contains a discussion of future
work. The appendix contains a discussion about applying
the parallel algorithm to the pricing of American options
with no transaction costs, and presents the results from
the performance tests on the same machine.

2. Related Work

Previous approaches in parallel option pricing are dis-
cussed in this section. None of this work took transaction
costs into consideration.

To exploit data-parallelism on recombining binomial/
trinomial trees, a parallel option pricing algorithm must
partition the whole tree into blocks and assign them to
distinct processors for parallel processing. Some ap-
proaches [3,4,6,8] divided the binomial/trinomial tree
into blocks consisting of multiple levels of nodes, and
processed the blocks using multiple processors. But some

[7,15] processed nodes of a single level in parallel and
afterwards moved to the next-highest level in sequential
order. Compared with the latter method, the former re-
quires more sophisticated synchronisation strategies and
thus is more complicated to implement. But its advantage
is that it causes less parallelisation overhead. The parti-
tion scheme we designed in our algorithm belongs to the
first class.

Gerbessiotis [3] presented an architecture-independ-
ent parallel pricing algorithm for American and Euro-
pean-style options on recombining binomial trees. The
algorithm partitioned a binomial tree into b b blocks
and assigned these blocks to distinct processors in a
wrapped-mapping manner such that the maximum input
data imbalance between any two processors is limited by
b. This assignment (Figure 5 in [3]) was determined from
the start of the computation according to the number of
leaf nodes at level N and the number p of processors in-
volved. The computation on the whole binomial tree was
divided into rounds, where in each round b levels of the
tree were processed. No load re-balancing was applied
after each round of the computation. The parallelisation
was achieved via the Oxford BSP (Bulk Synchronous
Parallel) [16] Toolset, BSPlib, and another non-BSP
message passing interface (MPI) LAM-MPI [17]. The
implementation was tested on a cluster of 16 PC work-
stations, each running a dual-Pentium 350 MHz. Their
tests showed that when and b , using
the BSPlib, the parallel speedup was 2.71 when

8192N  128
8p 

and 3.19 (Table 1 in [3]) when . When imple-
mented via the LAM-MPI, the speedup was 2.23 and
2.28 (Table 5 in [3]), respectively.

16p

Peng et al. [6] presented a parallel option pricing algo-
rithm based on a Backward Stochastic Differential Equa-
tion (BSDE). The computation was performed on bino-
mial trees that model the Brownian dynamic change of
the underlying asset price. The algorithm assumed the
number N of time steps and the number p of processors
to be a power of two. To avoid frequent communication
they introduced a parameter L such that in each iteration
of the computation L levels of nodes were processed in
parallel. Their algorithm assumed that L was a power of
two plus one and N was divisible by . Each proc-
essor’s assignment (Figure 2 in [6]) was fixed at the start
of the computation. No load re-balancing was attempted
afterwards. The algorithm was implemented in C via
MPI. Tests were made on a cluster of 16 PC nodes,
where each node ran 2 Intel Xeon DP 2.87 GHz. The
parallel speedup was 3.15 using 8 processors and 3.33
(Table 1 in [6]) using 16, when and

1L 

9281N  9L  .
A GPU-based (graphics processing unit) solution [18]

to the BSDE approach for option pricing was presented
by the same group of researchers, where they adopted the
theta method [19] to solve BSDEs (The theta method

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1797

discretises a continuous BSDE on a time-space grid. At
each node of the grid Monte Carlo simulations are used
to approximate the mathematical expectations. The
whole process requires a large amount of calculations but
suits the computing architecture of a GPU). The imple-
mentations were tested on a 2.67 GHz Intel Core i7 920
and an NVIDIA Tesla C1060. When the run-
time of the sequential code was about 23000 seconds,
and that of the GPU code was about 99 seconds (Table 1
in [18]).

= 128N

Zubair and Mukkamala [8] proposed a cache-friendly
parallel option pricing algorithm for shared memory
symmetric multi-processors (SMP). The algorithm gave
much consideration to the memory hierarchy available in
modern RISC processors. In order to be cache-efficient
the algorithm employed techniques such as cache and
register blocking, and partitioned a binomial tree into
triangular and quadrangular blocks (Figure 8 in [8]). As
the computation proceeded towards the root of the tree
the number of blocks decreased and so did the number of
processors that could be utilised. The algorithm was im-
plemented in Fortran 95 with parallelisation achieved via
OpenMP directives [20]. A test of the parallel algorithm
on 8 Sun UltraSPARC III 1050MHz processors showed
that when the block size was 128, the paral-
lel speedup was 4.96 (Table 4 in [8]) using all the 8 pro-
cessors. A similar serial cache-friendly option pricing
algorithm was discussed by Savage and Zubair [21]. It
was based on the binomial and trinomial models without
parallelisation of any type.

= 8192N

As a supplement to the latency-tolerant BSP-oriented
algorithms for option pricing on binomial trees in [3] and
trinomial trees in [22], Gerbessiotis [4] presented a more
up-to-date parallel algorithm using the explicit finite
difference method [23], which is equivalent to computing
discounted expectations on a trinomial tree. The algo-
rithm partitioned the nodes of a trinomial tree into rec-
tangular blocks (Figure 4 in [4]) of b levels. As in [3], the
nodes of a block were further divided into three regions,
one for nodes for which the discounted expectations have
already been computed, one for nodes for which the
computation does not depend on the results from nodes
in a neighbouring block, and one for nodes for which
such dependency exists. The algorithm was implemented
via the Oxford BSP Toolset, the non BSP-specific librar-
ies LAM_MPI and Open MPI [24], and SWARM [25], a
parallel computing framework for multi-core processors.
Their tests were done on the same PC cluster as in [10]
and on two multi-core processors. On the 2.4 GHz Intel
quad-core Q6600 used in their tests, the parallel speedup
was 3.63 using BSP and MPI, and 3.13 (Table 11 in [3])
using SWARM when N = 8192, b = 129 and p = 4.

Intel [5] published a white paper where parallel bino-

mial option pricing was implemented in Ct1, a data par-
allel API implemented within a C++-based syntactic
framework. The parallel code was tested on two 2.33
GHz Intel Xeon quad-core E5345 processors, and gained
much speedup over a sequential C++ implementation
thanks to Ct’s built-in SSE-based implementation for the
common math functions.

Solomon et al. [7] presented a GPU-based parallel so-
lution for pricing American lookback options on a re-
combining binomial tree. The algorithm performed back-
ward computation on the binomial tree with nodes at
each level being processed in parallel. Initially, the com-
putation was carried out by the GPU, but after a certain
threshold level was passed the computation was taken
over by the CPU because the parallelism that could be
exploited decreased as the calculation proceeded to the
root of the tree. Their tests were performed on a 3.0 GHz
Intel Core 2 Duo and a 216-core NVIDIA GTX 260. The
speedup of the CPU + GPU hybrid implementation
against un-optimised sequential code was about 20 (Fig-
ure 7 in [7]) when the number of time steps was 5000
and the threshold was set as 256. The same partition
scheme was used by the GPU-based parallel binomial
option pricing implementation discussed by Kolb and
Pharr [15], where the nodes in each single level of the
tree were processed in parallel.

Huang and Thulasiram [26] presented a parallel algo-
rithm for pricing basket American-style Asian options on
a recombining binomial tree. The number of levels in the
tree and the number of processors were assumed to be a
power of two. To partition the tree, initially, all leaf
nodes were evenly distributed among the processors. The
computation proceeded to the root of the tree in such a
way that in a given processor, for every pair of adjacent
nodes at a certain level i, the processor computed the
option price for the pair’s parent node at level 1i 
(Figure 3 in [26]). Eventually processor 0 computed the
option price at level 0. No load re-balancing among the
processors was attempted during the course of the com-
putation. The implementation of the algorithm was in C
via MPI.

Compared with these parallel approaches to binomial
option pricing, the generic partition scheme in our algo-
rithm makes ample allowance for minimising the load
imbalance between processors to enhance the efficiency
of the parallelisation. The multi-threaded implementation
of the algorithm is lightweight: the parallel speedup on 8
processors for a tested American put option is 5.26 when

1500N  .
Algorithms for parallel option pricing based on models

other than the binomial/trinomial tree can be found as
well. These are loosely connected to what we present in

1After Intel’s merger with RapidMind technologies, Ct became part of
what is now known as the Intel Array Building Blocks (ArBB).

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1798

this paper. Fusai et al. [27] published a numerical proce-
dure for pricing exotic path-dependent options when the
underlying asset price evolves according to a generic
Lévy process [28]. By geometric randomisation of the
option expiration, the n-step backward recursion in op-
tion pricing was transformed into an integral equation.
The option price was then obtained by solving n inde-
pendent integral equations. Because the equations were
mutually independent they were solved in parallel on a
grid computing architecture.

Surkov [29] presented algorithms based on the Fourier
space time-stepping method to price single- and multi-
asset European and American options with stock prices
following exponential Lévy processes. The algorithms
were implemented on an NVIDIA GeGorce 9800 GX2
video card with only one of the two GPUs being used.

Prasain et al. [30] proposed a parallel synchronous op-
tion pricing algorithm to price simple European options
using particle swarm optimisation: a nature-inspired glo-
bal search algorithm based on swarm intelligence.

Sak et al. [31] discussed the application of parallel
computing in pricing backward-starting fixed strike Asian
options that are continuously averaged. Through a chan-
ge of numeraire they transformed the pricing problem
into solving a one-state-variable partial differential equa-
tion (PDE) by both explicit and Crank-Nicolson’s im-
plicit finite-difference methods. The algorithms they de-
signed were implemented via MPI and were tested on a
Linux PC cluster.

3. The Sequential Pricing Algorithms

We first briefly go through the procedure of pricing
American options when transaction costs are not in-
cluded. Consider an American put option with strike K
and expiry T, which can be exercised once at any time

. We use the one-step binomial process ex-
ample in Figure 1(a), where at time t the price of the
underlying stock of an American put option is t . After
one time step, the price of the stock can either be t or

t . We assume the risk-free return over a single
time step is

0,1,2, , N

1
tdS u S

S
uS

 , that is, 1 unit of cash at time t will grow
to 1r   units at time 1t  . The risk-neutral prob-
ability for the up-move is    p r d u d 



 , and for
the down-move it is . The payoff of the American
put at time t is t ; that is, if t

1 p
maxt  P K ,0S S K

then the owner of the option will exercise his/her right to
sell one unit of the stock (worth) at the price K, thus
making a profit of t

tS
K S , and if t then exercis-

ing the option is not advantageous. The option is priced
by backward induction, which gives a unique arbi-
trage-free price for the option at time t. At the ma-
turity date N the value of the option is the same as its
payoff, so

S K

πt

πN NP N. For t  , the value of the

option at the node is the maximum of its discounted

πt

tS

expected payoff     1 1
1 1π π 1 πu d

t t t tr S r p p 
    1

at time t and its immediate payoff if the option is tP

exercised at t, that is   1π max , πt t t tP S  r . For

example, p = 0.9454 for the parameter values in Figure
1(a), which also shows the option payoffs for 130K  .
Now suppose that the option prices at the nodes at time

1t  have already been computed and happen to coin-
cide with the corresponding payoffs, 1πu

t 10 and

1 (that is, in this example both these nodes
are in the exercise region for the American option). Then
we can compute

πd
t  46.67

 max 30,10.17 30πt   . To compute

0 on a binomial tree of multiple levels, we start from
the leaf nodes and go all the way back to the root to ob-
tain the price of the option at time 0.

π

Proportional transaction costs in asset (stock) trading
are modelled by bid-ask spreads. That is, at time t a unit
of stock can be bought for the ask price or sold at
the bid price . To link this with the friction-free
model, we shall assume that and

a
tS

t tk S

b
tS

1aS  
 1b

t tS k  S , where  0,1k is the transaction cost
rate. In the presence of transaction costs, we need to dis-
tinguish between options settled in cash and exercised by
the physical delivery of a portfolio consisting of cash and
stock. For the above put option this payoff portfolio is
 , 1K  . In general, for an American option we have a
payoff process  ,t t  for . That is, if
the holder exercises the option at time t, then the seller
must deliver to the holder a portfolio consisting of

0,1,2, ,t   N

t
cash and t units of the asset (stock).

Under these conditions the arbitrage-free price of an

(a)

(b)

Figure 1. One-step binomial processes with and without
transaction costs. (a) Without transaction costs; (b) With
transaction costs.

Copyright © 2012 SciRes. AM

N. ZHANG ET AL.

Copyright © 2012 SciRes. AM

1799

pretation of t is that a portfolio z  , x y at time t al-
lows the seller to deliver the option without risk if and
only if  , epi tx y 

t

American option at any time t is no longer unique, but is
confined within an interval. The upper limit of this inter-
val is the ask price of the option, and the lower limit
the bid price . The ask price is the price at which the
option can be bought on demand. It is also the minimum
amount of wealth that the seller of the option needs in
order to hedge his/her position in all circumstances, that
is, to deliver to the buyer the payoff portfolio

πa
t

πb
t

 ,t t  at
any exercise time chosen by the buyer,
without having to inject extra wealth. The bid price is the
price at which the option can be sold on demand. It is
also the maximum amount of wealth that the buyer can
borrow against the right to exercise the option.

0,1,2, ,t 

z . For , we start from the two
nodes at time

t T
1 . Suppose that

       1 1 130 144 1 96 1u u
t tz y u y y y

 
       (2)

at the up-move node. At the down-move node suppose
that

N




       1 1 130 100 1 66.67 1 .d d

t tz y u y y y
 

       (3)

These are piecewise linear functions, see Figure 2. At
time t, because the seller must be prepared for the worst
case scenario, we calculate the maximum of 1

u
tz  and

1
d
tz  , to obtain  1 1max ,u d

t tw z zt 

b
tS

. Next, since x units of
cash at time t will grow to xr at time , the function
wt must be discounted by r. Now we need to account for
the possibility of rebalancing the portfolio at time t, that
is, either buying some stock for the ask price or
selling some at the bid price . This transforms the
epigraph of

1t 

a
tS

tw r into that of a piecewise linear func-
tion whose slopes are restricted within the interval

t

tv
,a

tS bS    , which is  120,

80

80

1y

 in this example. The
epigraph of t consists of portfolios covering the option
seller if the option is exercised at time or later.
Now what if the option is exercised at time t? The ex-
pense function at t is

t

v

tu
0 1u y

1t

 130 12
      . Again, the seller must

be prepared for the worst, which corresponds to taking
the maximum

To hedge his/her position the seller should hold a port-
folio consisting of cash and the underlying stock. We use
 ,t tx y to denote his/her holdings of cash and stock at
time t. We define the seller’s expense function at
time t to be

tu

      ,a b
t t t t tu y y S y S       t




 (1)

where and
. This is a function of the

seller’s stock holding at time t. It defines the minimum
amount of cash that a seller holding y shares of stock
needs to fulfil his/her obligation if the option is exercised
at time t. So if the seller wishes to form a self-financing
strategy to cover his/her position at t, his/her holdings

  min ,0t ty y    
   max ,0t ty y   

 ,t tx y
 ,

 must belong to the epigraph of t , that is

t t

u
epi tx y u
 

 (The epigraph of a function f is defined
as   2epi ,f x y x  f y).

      max ,t tz y u y v y t (4) Now using the same American put example (with K =
130) and the one-time step binomial process (Figure
1(b)), we explain how the option ask price is com-
puted at any time t. This is done by constructing a se-
quence of piecewise linear functions by backward
induction from time step N, when

πa
t

tz

N Nz  u . The inter-

     130 120 1 80 1 .tu y y y
       (5)

These piecewise linear functions are shown in Figure
2. The option ask price at time t for this example is then

 π 0 50a
t tz  , because it is the minimum amount of

Figure 2. The piecewise linear functions in computing the ask price.

N. ZHANG ET AL. 1800

cash that enables a seller without a stock holding to
hedge his/her position without risk at time t. When the
above computation is carried out on a binomial tree rep-
resenting N time steps, we start from the leaf nodes and
work backwards to the root node at time 0. The option
ask price is then .  0 0π 0a z

For the buyer’s case, the buyer’s expense function at
time t is

      ,a b
t t t t tu y y S y S        t





 (6)

because it is he/she who will receive the portfolio
 ,t t  . The pricing procedure for Nz , t and t is
similar to that for the seller. But when t is computed
the minimum of t and t is used instead of the
maximum. The reason for this difference is that at any
time the buyer needs to choose between exercis-
ing or waiting (that is, choose a portfolio in or

), whereas the seller needs to be prepared for any
eventuality (i.e. they need a portfolio in ep and

). In this example, if it is assumed that

w
z

v

i tu

t

u v

t 

epi tv

epi tv

N
ep

iu

     1 130 144 1 96 1 ,u
tz y y y

 
      

     1 130 100 1 66.67 1 ,d
tz y y y


       

t



then

     min ,t tz y u y v y (7)

     130 120 1 80 1 .tu y y y
       (8)

The option bid price at time t is πb
t  π 0 10b

t tz   ,
because the bid price is the maximum amount of wealth
that a buyer without any stock holdings can borrow
against the right to exercise the option. See Figure 3 for
a plot of the piecewise linear functions in the buyer’s
case.

Full details of the procedures for finding bid and ask
prices under proportional transaction costs can be found
in Algorithms 3.1 and 3.5 in [9].

4. The Parallel Pricing Algorithm

4.1. Binomial Tree Model

For an American option whose payoff process and
physical expiry time are  ,  and T, respectively, let
N be the number of time intervals that discretise the time
period from 0 to T. Also let  be the volatility of the
underlying stock, R the continuously compounded annual
interest rate and  0,1k the transaction cost rate. Un-
der such conditions the binomial tree that models the
dynamics of the stock price will have levels, cor-
responding to the time steps t . The up-
move factor u, down-move factor d and cash accumula-

1N 
, 2, ,0,1 N

tion factor r over one time step are  expu T N ,

 1 expd u T N   , and expr RT N , respec-

tively. The pricing algorithms in [23] actually add an
extra time instant 1t N  to the model and set the
option payoff as  0,0 at all the nodes in that
level. The purpose of adding this extra time step is to
model the possibility that under certain circumstances it
may be in the best interests of the option holder to leave
it unexercised. In line with [9] and [14], we assume that
no transaction costs apply at time 0, that is,

2N 

0 0
b aS S S0  .

4.2. The Partition Scheme and the
Synchronisation Mechanism

Assume we have p distinct processors in a parallel com-
puter. Because the computation of the u, w, v, z functions
at different nodes can be performed independently in
parallel, we can partition a whole binomial tree into
blocks of nodes and assign these blocks to distinct proc-
essors. The parallel algorithm, like its sequential coun-
terpart, starts off at the leaf nodes where and
works backwards towards the root of the tree. The whole

1t N 

Figure 3. The piecewise linear functions in computing the bid price.

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1801

process is accomplished by p threads, denoted by

0 1 1, , , pp p p  , with each thread being bound explicitly
to a distinct processor. The whole computation is divided
into rounds, where in each round the nodes of a block are
processed by the p threads in parallel.

In general, if the base level B (whose nodes have been
processed in the th round) of an ith round is at
time

 1i  
 , 1t n n 

ip i

, 1N 
n

, 0,1,

, then the total number of nodes
in at that level will be . These nodes will be
divided among the p threads in such a way that each of
the threads , gets

1

, p 

1n 

2 1n   p nodes
and the last thread 1pp 

 
 gets

   1 1n n p   

 

1 p nodes. We use L to denote
the maximum number of levels that are processed to-
wards the root in a round, that is, the maximum number
of levels in a block. However, the number D of levels
that are actually processed in a round is jointly deter-
mined by L and the number of nodes that each thread
gets, because this number D cannot exceed

1 1n p    . So we have   mi 1 1n p  n ,D L   .
So in a round whose base level B contains 1n  nodes
all the threads will be assigned a block of
 1n p D  nodes, except the last thread 1pp 

which only gets a smaller number of nodes. For a thread
 , 0,p i p 2i , we further divide its  1n p D   

nodes into regions A and B such that the computations
performed at the nodes in region A do not depend on the
results from another thread in the same round, but the
computations at the nodes in region B do need the results
from thread 1i . Note that the last thread 1p  pp  does
not have any B nodes in any round of the computation.

Figure 4 shows such a division among 3 threads in a
round consisting of 3 () levels of nodes. The
nodes enclosed by the dashed frame box at time level

 are the base nodes. For thread 0 to compute the
u, w, v, z functions at the nodes in its region B, it needs
results computed by thread 1 at the two nodes in col-
umn 4 enclosed by the thin frame box. Thread 0 can-
not start computing at the nodes in its region B until
thread 0 finishes at the node (level , column 4)
enclosed by the bold frame box. In general, thread ,

3L D 

p

3t  p

t

p

p 1
ip

 0, 2i p  , cannot start at the nodes in its region B
until thread 1ip  finishes at the leftmost node at level

1B D  in its region A. This scheme of partitioning
into regions A and B was also adopted in [3,6].

The parallel algorithm re-balances the workload of
each thread after each round of the computation. If the
current base level is B, the next base level will be B D ,
containing 1B D  nodes, and according to this num-
ber the workload of each thread in the next round will be
calculated. The parallel algorithm ensures that each
thread will get minimally two nodes to process in all the
rounds, which means that the minimum possible value
that D can get is 1. If at some level of the tree the number
of nodes is less than , the number of processors used
will be decreased by 1 until this no-less-than-two-node
condition is satisfied. A partition based on the above ex-
planation is shown in Figure 5 for ,

2 p

10N  3p  and
3L  . The figure shows the adjustment of the workload

after each round and the reduction in the number of
processors needed as the computation proceeds towards
the root of the tree.

To save the intermediate z functions generated during
the computation, instead of generating the whole tree, the
parallel algorithm maintains two buffers, each with
 1L  rows ×  2N  columns. One of these two
buffers is for computing the ask price, and the other the
bid price. The mapping between the whole binomial tree
and the buffers is done in a modular wrapping around
manner to avoid the cost of extra synchronisation and
copy back. We use variable U to denote the base level in
the two buffers in a round of the computation, corre-
sponding to the base level of the tree. Initially, this U is
set to 0, and after a round whose base level of the tree is
B and works D levels towards the root, U is updated by

    1LmodDU U B    . Now suppose the com-
putation is working on the ith,  0,i D , level down
from level B. The piecewise linear functions will be
computed and stored in the two buffers at level
   modU i 1L  according to the piecewise linear
functions stored at level   1 mod  1U i L  in the
buffers.

Figure 4. Partition into regions A and B.

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1802

Figure 5. Parallel processing on the binomial tree by three working threads. Note that although N = 10 the algorithm adds an

As the whole computation is divided into rounds, the
th

extra time instant to the model.

reads have to be synchronised both within a round and
between two successive rounds. Within a round, all the
threads work D levels down the tree in such a way that
any two adjacent threads have to be synchronised. As
soon as thread  , 1, 1ip i p  has finished the leftmost
node (such as th nclosed by the bold frame
in Figure 5) at level 1B D  (B being the base level
of the round) in its reg will send a signal iG to
thread 1ip  , so that after thread 1ip  has finished the
nodes in region A, upon receiving the signal it can
proceed to the nodes in its region B. Once thread



e single node e

ion A, it

its

, 1, 1ip i p  has finished processing all its nodes in
B, it has to wait for the other peer threads

to finish their work. Only after all the threads have fin-
ished, can the parameters be updated for the next round.
The flow chart in Figure 6 using thread

regions d A an

 , 1, 1ip i p 
as an example shows the synchronisation s

The pseudo code in Algorithm 1 shows the com
cheme.

puta-
tional steps performed by thread  , 0, 1ip i p  , in-
cluding the synchronisation schem node
 ,l c there denotes the node at level l of the tree whose

n index is c. The nested for-loop that computes the
functions at the nodes in region B is similar to the one in

executed by all the threads , 0,1, 2, , 1ip i p  . Be-
cause thread 0p is the one that computes 0z at the root
node at 0t

e. Note that

colum

region A, so the details are omitted. The pseudo code is

 , the option ask a urned
by thread 0p e finally have  0 0π 0a z nd

nd bid prices are ret
 a. W

 00 0πb z   where 0z is the seller’s expense function
at 0t

,
 a 0znd  the buyer’s.

4.3. Computational Time Analysis

nomial runAlgorithms 3.1 and 3.5 in [23] have poly time
 kT O N for some 2k  . AlthoughS

nodes in a recombining binomial tree is quadratic in N
ional binom pricing algorithm without

transaction costs has runtime  2
ST O N ), the maxi-

mum, minimum and slope restriction operations may
require slightly more time to fi computation
proceeds towards the root because the piecewise linear
functions u, w, v and z may acquire more linear pieces at
nodes closer to the root. To see the runtime TP of the par-
allel algorithm (Algorithm 1) and the parallel speedup

 the numb

nish as the

er of

(so a tradit ial

S PS T T we start by estimating the number of nodes
processed by thread 0p on the whole binomial tree.

ly, in a round whose base level is B and has n
nodes, all these p threads work in parallel on D levels

General
 of

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1803

 , 1, 1ip i p Figure 6. The synchronisations on thread . The condition in the first rhombus box is shown at line 15 in Algo-

e tree, from level to . According to the

rithm 1.

th 1B  B D

ese Dalgorithm, the nodes within th levels will be di-
vided into p blocks, and the number of nodes assigned to
thread 0p is nD p . The total number of nodes within
these D els, assuming n is an integral multiple of p, is

 
 lev

1D D
nD


 Figure 7 for an example). So the

2
 (see

fraction done by thread is 0p nD p divided by

 1

2

D D
nD


 , which is

  
2

. For large n
2 1p D n 

and relatively small D, we can assume that
 1 0D n  , and, therefore, the fraction p

 approximately
rocessed by

thread is0p 1 p . This roughly applies
to the p of the tree from the leaf level (1t N ) to the
level where 2 2t p  (1p ), becaus nd this
level further do tre number of processors
needed will decrease. The total number of nodes in the
tree from level t = N + 1 (N + 2 nodes) to level t = N +
2p − 2 (2 1p  nodes) is   

art
e beyo

wn the e the

2 1 2 4 2N p N p    ,
of which t ber processe
  

he num d by thread 0p is
2 1 2 4 2N p N p p    . For the l els beev

Figure 7. An estimation of the number of nodes processed
by thread p0. yond

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1804

Algorithm 1. Computational steps executed by thread

 , 1, 1p i p  .

i

2 2t p 
 process

, because thread will always have 2 nodes 0p
t 

o
 is



to except at level 0 , the total number proc-
essed by 0p will be 4 5p  . Therefore, for the whole
binomial tree from 0t  t 1t N  , the total number
of nodes processed by 0
 

p
2 1 2 4

4 5
2

N p N p
p

p

  
 . If we assume

, then



2N p
   22 1 2 4

4 5 2
2 p

e

N p  N p
p N p

 
   .

To verify the validity of this estimation w have com-
pared this estimated number with the actual counts ob-
tained from several executions of the parallel algorithm.
The data are summarised in Table 1. The error rates are
calculated and reported as well, from which it can be
seen that the estimation is very close to the actual count
in all the cases. For a fixed p and L
(  min , 1 1D L n p     , jointly determined by L, p
and n), as the number n increases the error rate decreases.
T nalysis.

Now since thread 0p processes about
his also is in-line with our a

2 2N p nodes,
and the total number of nodes in a recombining binomial
tree (from 0t  to 1Nt  ) is
   23 2 2 2N N N   , so the time required by p0 is
roughly 1 o the al runtime. The sequential
runtim

p

ST
f

e is
sequenti
 k for some 2k  , and so

the parallel runtime
ST O N

PT is
   k k

P ST T O N p . The p l speedup
S is therefore

p p O N aralle
 PS T T O p  , proportional to the

e can conclude by this
analysis that the l algorithm is cost-op-
timal in that

S

ors
opo

number rocess used. So w
 pr sed paralle

p of p

 k
PpT O N having the same asymptotic

growth rate as the sequential algorithms.

5. Experimental Results

The parallel pricing algorithm
C/C++ via POSIX Threads, and

 was implemented in
was tested on a machine

with dual sockets × quad-core Intel Xeon 2.0 GHz E5405
running 8 processors in total (Figure 8). The source code
was compiled by Intel C/C++ compiler icpc 12.0 for
Linux. The testing machine was running Ubuntu Linux
10.10 64-bit version. The POSIX thread library used was
NPTL (native POSIX thread library) 2.12.1.

To verify the correctness of the parallel algorithm we
computed the ask and bid prices for the same American
put option and the American bull spread described in
Examples 5.1 and 5.2, respectively, in [23]. In the

Figure 8. The parallel machine used in the tests.

Copyright © 2012 SciRes. AM

N. ZHANG ET AL.

Copyright © 2012 SciRes. AM

1805

American put example, the parameter values were
,

and the parallel speedups when N = 1500 are plotted in
Figures 10(a) and (b), respectively. The speedup curves
are very close to straight lines and this supports our
analysis that the parallel speedup S is proportional to p
Tests for other values of L were performed in which very
close results were found.

0.25T  0.2  , , , 0.1R  0 100S  100K  , N
d he

o with
, and ed

m-
re-

ported in Tables 1 and 2 in [23].
To see the effect that proportional transaction costs

have on option prices, we computed the prices for t
same

varied fr
Am

95K 
to be settled in
 95
plem

om 20 to

and a short call with

 105t tS S 
oduce

1000 an
erican bull spread consists of a l

cash, with payo
 

d exactly

k from

105K 
ff process

. In all the cases the
 the same

 0 to 0.02. T
ng call

is assum

parallel i
 figures as

 
entation pr

From the speedup ratios we calculated the parallel ef-
ficiency E S p . The analysis indicates that  S O p ,
so    1E S p O p p O   , which means that the
efficiency of this parallel algorithm should stay the same
no matter how many processors are used. However, in
practice, because the synchronisation cost grows as the
number p increases, we can expect that the efficiency
will decay as more processors are used. The efficiency
data are plotted as dashed curves in Figure 10(b), where
it can be seen that the efficiency diminishes only slightly
as p increases.

he
 American put option (with 100K ) but with 0S

varying from 90 to 110 under three rates 0 0k  ,
% 2  of the tion

prices πa
k and πb

k are plotted in Figure 9, where it can
be seen that for any fixed 0S we have

1 0 0 1 2
π π π πb b a b a a

k k k k k    at the larger the
transaction cost rate k the greater the ask-bid spread of

To test the performance of the parallel algorithm
against an optimised implementation of the sequential
al

1 0.25k 

2
π πk 

 and . The c

.

the option price.

N varie to
ups ar

orted in 2 All the

parallel runtim

0.5%k urves

Note th

op

gorithms we performed two additional sets of tests
where k was fixed to 0.005 for the American put option
and to 0.01 for the bull spread, d from 450
1500, and p from 2 to 8. The runtimes and speed e
rep Table . times were wall-clock times
measured in milliseconds (ms).

Moreover, the serial and es when p = 8

6. Conclusion

We have presented a parallel algorithm (based on the
sequential pricing algorithms proposed in [23]) that
computes the ask and bid prices of American options
under proportional transaction costs, and a multi-
threaded implementation of the algorithm. Using p proc-
essors, the algorithm partitions a recombining binomial
tree into multi-level blocks. The whole computation,
starting from the leaf nodes and working backwards to
the root of the tree, is divided into rounds, where in each

s processed by thread p0 when L = 5. The fraction part of

N = 1350 N = 1500

Table 1. A comparison between N2/2p and the actual number of node
N2/2p is omitted.

N = 1200
p

Actual N2/2p Error Actual N2/2p Error Actual N2/2p Error

2 362,999 360,000 −0.83% 458,999 455,625 −0.74% 566,249 562,500 −0.66%

4 181,198 180,000 −0.66% 229,161

8 90,311 90,000 −0.34% 114,255

227,812 −0.59% 282,748 281,250 −0.53%

113,906 −0.31% 141,008 140,625 −0.27%

Figure 9. Ask and bid price curves under different transaction cost rates.

N. ZHANG ET AL. 1806

Table 2. Runtimes and speedups from the parallel performance tests.

p|S N = 450 N = 600 N = 750 N = 900 N = 1050 N = 1200 N = 1350 N = 1500

American put k = 0.5%, K = 100, S0 = 100, T = 0.25, R = 0.1, σ = 0.2, L = 5

Serial 181.0 325.1 498.6 714.0 979.3 1302.1 1608.4 1983.7

p = 2 128.7 228.5 348.7 510.1 679.9 892.1 1128.2 1405.5

S 1.41 1.42 1.43 1.40 1.44 1.46 1.43 1.41

p = 3 90.4 158.2 241.8 339.4 468.8 617.1 765.0 944.7

S 2.00 2.06 2.06 2.10 2.09 2.11 2.10 2.10

p = 4 68.6 121.6 184.0 268.7 355.1 469.7 581.2 724.8

S 2.64 2. 77 2.74

p = 5 57.2 466.9 583.7

p = 6 50.0 398.7 493.2

American bull spread k = 

67 2.71 2.66 2.76 2.77 2.

96.8 151.7 213.0 286.6 374.7

S 3.17 3.36 3.29 3.35 3.42 3.47 3.44 3.40

83.7 132.2 187.2 245.9 313.9

S 3.62 3.88 3.77 3.81 3.98 4.15 4.03 4.02

p = 7 43.5 74.4 115.3 165.0 214.7 281.5 363.8 428.3

S 4.16 4.37 4.33 4.33 4.56 4.63 4.42 4.63

p = 8 40.4 67.3 102.8 142.7 189.4 248.6 312.5 376.8

S 4.48 4.83 4.85 5.00 5.17 5.24 5.15 5.26

1%,   9 105t t tS S5
 

   ,  T = 0.25, R = 0. 2, L = 5

S 1 1 2005.2

p = 6 56.2 197.7 419.4 510.0

1, σ = 0.

erial 185.5 327.9 510.7 731.2 989.7 291.4 625.9

p = 2 133.1 233.9 365.2 522.2 699.5 906.7 1152.1 1422.8

S 1.39 1.40 1.40 1.40 1.41 1.42 1.41 1.41

p = 3 95.9 164.6 254.7 360.6 486.2 624.5 781.8 992.2

S 1.93 1.99 2.01 2.03 2.04 2.07 2.08 2.02

p = 4 76.3 130.9 203.1 279.7 369.8 474.6 596.3 734.3

S 2.43 2.50 2.51 2.61 2.68 2.72 2.73 2.73

p = 5 64.1 106.6 166.5 229.3 305.0 393.0 498.6 622.5

S 2.89 3.07 3.07 3.19 3.24 3.29 3.26 3.22

91.4 142.6 261.7 334.6

S 3.30 3.59 3.58 3.70 3.78 3.86 3.88 3.93

p = 7 48.2 80.9 124.9 171.7 228.9 291.9 364.5 444.4

S 3.85 4.05 4.09 4.26 4.32 4.42 4.46 4.51

p = 8 47.3 79.6 121.5 167.6 215.1 273.6 337.7 403.6

S 3.92 4.12 4.20 4.36 4.60 4.72 4.81 4.97

of these nodes is further
and pr essed by ple proc . Before the start of
the n und the workload of process read) is
adjusted according to the number of nodes at the next
base level. The applicability of partition nd

synchronisation schem t restricted by
he valu the para rs N (nu r of levels of the

 L um nu of leve essed i und)
or p (number of processors). The parallel algorithm has

edup

rounds, a block of partitioned
oc multi essors t

ext ro each or (th tree),

 the method a

the associated e is no
es of mete mbe
(maxim mber ls proc n a ro

theoretical spe  S p O and is cost-op l be tima

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1807

(a)

(b)

Figure 10. Plots derived from the experimental results. (a) times of the sequential program and the parallel one on 8
processors; (b) Parallel speedups and efficiencies for N = 1500.

cause

Run

    k k
PpT O p O N p O N    for some

which has the same asymptotic growth rate as the
runtime . The parallel efficiency E of the al

 2k  ,
 serial

gorithm is ST
 1E S p 

ple
O .

The im mentation was tested for its correctn
performance. The results demonstrated reasonable speed-
ups, e.g., 5.26 when p = 8 and , against an
optimised sequential program even for problems of small
sizes. The performance of the implementation was in-line
with the asymptotic analysis. It showed that, because no
inter-computer communication was involved, the over-
head of the parallelisation in the multi-threaded imple-

es.

e steps may be

of

u h. But

of time steps are needed the parallel algorithm may have
to be adapted to more powerful platforms, such as many-
core general purpose graphics units. We are also aiming
at developing high-performance parallel algorithms for
pricing multi-dimensional options under proportional
transaction costs. Since for such cases a direct imple-
mentation of the maximum, minimum and gradient re-
striction operations on multi-dimensional structures could
be difficult, we may have to resort to Monte Carlo simu-
lations, which are easily parallelised, and run them on
large-scale parallel architectures.

[1] F. Black and M. Scholes, “The Pricing of Options and

ess and

1500N 

mentation was much reduced compared to some previous
approaches based on message-passing interfaces. The pa-

llel efficiency in the tests is seen to decay slightly as p

REFERENCES

ra
increas

For options whose lifetime is short (within months) a
relatively small number (usually several thousand) of
tim sufficient to model the price changes

 the underlying asset. To handle such cases the multi-
threaded implementation on main-stream multi-core pro-
cessors will normally be fast eno g for pricing
long-life options (expiring in years) where large numbers

Corporate Liabilities,” The Journal of Political Economy,
Vol. 81, No. 3, 1973, pp. 637-659. doi:10.1086/260062

[2] R. Merton, “Theory of Rational Option Pricing,” Bell
Journal of Economics and Management Science, Vol. 4,
No. 1, 1973, pp. 141-183. doi:10.2307/3003143

[3] A. V. Gerbessiotis, “Architecture Independent Parallel
Binomial Tree Option Price Valuations,” Parallel Com-
puting, Vol. 30, No. 2, 2004, pp. 301-316.
doi:10.1016/j.parco.2003.09.003

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1808

[4] A. V. Gerbessiotis, “Parallel Option Price Valuations
with the Explicit Finite Difference Method,” Interna-
tional Journal of Parallel Programming, Vol. 38, No. 2,
2010. pp. 159-182. doi:10.1007/s10766-009-0126-5

[5] A. Ghuloum, G. Wu, X. Zhou, P. Guo and J. Fang, “Pro-
gramming Option Pricing Financial Models with Ct. Te-
chnical Report,” Intel Corporation, Santa Clara, 2007.

[6] Y. Peng, B. Gong, H. Liu and Y. X. Zhang, “Parallel
Computing for Option Pricing Based on the Backward
Stochastic Differential Equation,” Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 2010, pp. 325-330.

[7] S. Solomon, R. K. Thulasiram and P. Thulasiraman. “Op-
tion Pricing on the GPU,” Proceedings of the 12th IEEE
International Conference on High Performance Comput-
ing and Communications, Melbourne, 1-3 September 2010,
pp. 289-296.

[8] M. Zubair and R. Mukkamala, “High Performance Imple-
mentation of Binomial Option Pricing,” Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2008, pp. 852-
866.

[9] A. Roux and T. Zastawniak, “American Options under
Proportional Transaction Costs: Pricing, Hedging and Stop-
ping Algorithms for Long and Short Positions,” Acta
plicandae Mat . 2, 2009, pp. 199-
228. doi:10.1007

 Ap-

 hematicae, Vol. 106, No
/s10440-008-9290-7

[10] B. Bensaid, J.-P. Lesne and H. Pages, “Derivative Asset
Pricing with Transaction Costs,” Mathematical Finance,
Vol. 2, No. 2, 1992, pp. 63-86.
doi:10.1111/j.1467-9965.1992.tb00039.x

[11] P. P. Boyle and T. Vorst, “Option Replication in Discrete
Time with Transaction Costs,” The Journal of Finance,
Vol. 47, No. 1, 1992, pp. 271-293.
doi:10.1111/j.1540-6261.1992.tb03986.x

[12] S. Perrakis and J. Lefoll, “Derivative Asset
Transaction Costs: An Extension,”

 Pricing with
 Computational Econo-

mics, Vol. 10, No. 4, 1997, pp. 359-376.
doi:10.1023/A:1008693830990

[13] S. Perrakis and J. Lefoll, “Option Pricing and Replication
with Transaction Costs and Dividends,” Journal of Eco-
nomic Dynamics & Control, Vol. 24, No. 11-12, 2000, pp.
1527-1561. doi:10.1016/S0165-1889(99)00086-X

 S. Perrakis and J. Lefoll, “The American Put under Tran[14] s-
actions Costs,” Journal of Economic Dynamics & Control,
Vol. 28, No. 5, 2004, pp. 915-935.
doi:10.1016/S0165-1889(03)00099-X

 C. Kolb and M. Pharr, “Options Pricing on the GPU [15]
Gems 2: Programming Techniques for High Performance
Graphics and General-purpose Computation, Chapter 45,”
Pearson, Upper Saddle River, 2005.

[16] R. H. Bisseling, “Parallel Scientific Computation: A
Structured Approach Using BSP and MPI,” Oxford Uni-
versity Press, Oxford, 2004.

[17] G. Burns, R. Daoud and J. Vaigl, “LAM: An Open Clus-
ter Environment for MPI,” Proceedings of Supercomput-
ing Symposium, Toronto, 6-8 June 1994, pp. 379-386.

[18] B. Dai, Y. Peng and B. Gong, “Parallel Option Pricing
with BSDE Method on GPU,” Proceedings of the 9th In-

ternational Conference on Grid and Cloud Computing,
Melbourne, 17-20 May 2010, pp. 191-195.
doi:10.1109/GCC.2010.47

[19] W. D. Zhao, L. F. Chen and S. G. Peng, “A New Kind of
Accurate Numerical Method fo
Differential Equations,” SIAM Journal on

r Backward Stochastic
Scientific Com-

puting, Vol. 28, No. 4, 2006, pp. 1563-1581.
doi:10.1137/05063341X

[20] R. P. Garg and I. Sharapov, “Techn
Applications: High Performance Compu

iques for Optimizing
tting,” Prentice

 Mathematical
p. 1-30.

Hall PTR, Upper Saddle River, 2001.

[21] J. E. Savage and M. Zubair, “Cache-Optimal Algorithms
for Option Pricing,” ACM Transactions on
Software, Vol. 37, No. 1, 2010, p

[22] A. V. Gerbessiotis, “Trinomial-Tree Based Parallel Op-
tion Price Valuations,” International Journal of Parallel,
Emergent and Distributed Systems, Vol. 18, No. 3, 2003,
pp. 181-196.

[23] E. S. Schwartz, “The Valuation of Warrants: Implement-
ing a New Approach,” Journal of Financial Economics,
Vol. 4, No. 1, 1977, pp. 79-93.
doi:10.1016/0304-405X(77)90037-X

[24] R. L. Graham, T. S. Woodall and J. M. Squyres, “Open
MPI: A Flexible High Performance MPI,” Proceedings of
the 6th Annual International Conference on Parallel Pro-
cessing and Applied Mathematics, Poznan, September

ork for Multi-Core Proc-

5.

2005.

[25] D. A. Bader, V. Kanade and K. Madduri, “SWARM: A
Parallel Programming Framew
essors,” Proceedings of the 1st Workshop on Multithread-
ed Architectures and Applications, Long Beach, 30 March
2007.

[26] K. Huang and R. K. Thulasiram, “Parallel Algorithm for
Pricing American Asian Options with Multi-Dimensional
Assets,” Proceedings of the 19th International Sympo-
sium on High Performance Computing Systems and Ap-
plications, Guelph, 15-18 May 2005, pp. 177-18

[27] G. Fusai, D. Marazzina and M. Marena, “Option Pricing,
Maturity Randomization and Distributed Computing,”
Parallel Computing, Vol. 36, No. 7, 2010, pp. 403-414.
doi:10.1016/j.parco.2010.03.002

[28] W. Schoutens, “Levy Processes in Finance: Pricing Fi-

rocessing Units,”

nancial Derivatives,” Wiley, New York, 2003.

[29] V.Surkov, “Parallel Option Pricing with Fourier Space
Time-Stepping Method on Graphics P
Parallel Computing, Vol. 36, No. 7, 2012, pp. 372-380.
doi:10.1016/j.parco.2010.02.006

[30] H. Prasain, G. K. Jha, P. Thulasiraman and R. K. Thu-
lasiram, “A Parallel Particle Swarm Optimization Algo-
rithm for Option Pricing,” Proceedings of 2010 IEEE In-
ternational Symposium on Parallel and Distributed Pro-
cessing, Workshops and PhD Forum (IPDPSW), Atlanta,
19-23 April 2012, pp. 1-7.

[31] H. Sak, S. Özekici and İ. Boduroglu, “Parallel Comput-
ing in Asian Option Pricing,” Parallel Computing, Vol.
33, No. 2, 2007, pp. 92-108.
doi:10.1016/j.parco.2006.11.002

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.2307/3003143
http://dx.doi.org/10.1016/j.parco.2003.09.003
http://dx.doi.org/10.1016/j.parco.2003.09.003
http://dx.doi.org/10.1016/j.parco.2003.09.003
http://dx.doi.org/10.1007/s10766-009-0126-5
http://dx.doi.org/10.1007/s10766-009-0126-5
http://dx.doi.org/10.1007/s10766-009-0126-5
http://dx.doi.org/10.1111/j.1467-9965.1992.tb00039.x
http://dx.doi.org/10.1111/j.1540-6261.1992.tb03986.x
http://dx.doi.org/10.1111/j.1540-6261.1992.tb03986.x
http://dx.doi.org/10.1111/j.1540-6261.1992.tb03986.x
http://dx.doi.org/10.1016/S0165-1889(03)00099-X
http://dx.doi.org/10.1137/05063341X
http://dx.doi.org/10.1137/05063341X

N. ZHANG ET AL. 1809

Appendix

The parallel binomial algorithm we have developed is
not specific to the problem of pricing American optio

d an extra time step to the bino-

ns
under proportional transaction costs. It can be easily
adapted to other problems, such as the case of pricing
American options without considering transaction costs.
In such cases, for an N-step simulation the algorithm
does not ad 1t N 
mial tree. The other difference is that without transaction
costs, all the payoffs and the expectations become scalars,
and so the maximum operations are performed on num-
bers rather than on piecewise linear functions. The run-
time ST of a sequential binomial American option pric-
ing algorithm with no transaction costs is  2

ST O N .
So the parallel runtime  2

PT O N p . The parallel
speed , and

ng
the price of an American call option is the same as that
of a European call option under the same conditions, so
we consider only the American put option. We tested on
the 8-processor machine (Figure 8) the performance of
the parallel algorithm using an American put option with
strike and a model with parameters

up
 1
hou

 S O p
.
t consideri

the parallel effi

dividends and tra

ciency

nsaction costs
E O

Wit

100K 
, 0.3

0 = 100S ,
3T    and . In the test the

of time steps grew from 5000 to 40000, and the number
p of processors from 2 to 8. All the numeric variables in

byte double-precision

. All

when and the

d super-linear speedups in

0.06R  number N

the program were represented by 8-
floats. The runtimes and the speedups against an opti-
mised sequential program are reported in Table 3
the times were wall-clock times measured in millisec-
onds (ms). The computed price for the American put
option was 13.906.

The serial and parallel runtimes 8p 
parallel speedups when 40000N  are plotted in Fig-
ures 11(a) and (b), respectively. The parallel efficiencies
were calculated from the speedups and plotted in Figure
11(b) as well.

From the results we observe
several test cases, e.g., when 30000N  , 3p  and
the speedup 3.35S  . This was caused partly by the
caching effect. The serial program
the four L2 caches (Figure 8), but

 can only use one of
 the parallel program

uses all the four. Moreover, the parallel program makes
use of both the two FSBs, whereas the serial program
uses only one. This also helps to increase the rate at
which data is transferred between the main memory and
the processors.

In all the tests parameter L (the maximum number of
levels being processed in a round) was set to 50, much
increased from its value (L = 5) in the tests where trans-
action costs are present. The purpose of increasing its
value was to reduce the number of times when the
threads have to be synchronised, and therefore reduce the

Table 3. Runtimes and speedups from the parallel performance tests-without transaction costs. The parameters of the
American put option were K = 100, S0 = 100, T = 3, R = 0.06, σ = 0.3, L = 50. The time steps in the tests were N × 103.

p|S N = 5 10 15 20 25 30 35 40

Serial 38.9 158.8 358.7 638.2 997 1436 1955 2553

p = 2 21.3 74.4 160.7 279.7 433.4 629.2 927.2 1411.9

S 1.83 2.13 2.23 2.28 2.30 2.28 2.11 1.81

p = 3 16.6 54.6 115.1 197.8 302.3 429.2 578.2 756.6

S 2.34 2.91 3.12 3.23 3.30 3.35 3.38 3.37

p = 4 16.0 47.1 95.1 159.4 239.7 337.2 451.3 581.9

S 2.43 3.38 3.77 4.00 4.16 4.26 4.33 4.39

p = 5 15.1 42.0 82.3 136.4 203.1 284.2 378.8 509.7

S 2.57 3.79 4.36 4.68 4.91 5.05 5.16 5.01

p = 6 15.1 41.1 77.1 124.7 182.9 252.1 333.2 436.5

S 2.57 3.87 4.65 5.12 5.45 5.70 5.87 5.85

p = 7 15.1 41.1 74.8 117.5 169.6 231.3 302.7 386.3

S 2.57 3.87 4.80 5.43 5.88 6.21 6.46 6.61

p = 8 15.1 41.1 74.6 114.3 162.1 217.8 283.0 356.3

S 2.57 3.87 4.81 5.58 6.15 6.59 6.91 7.17

Copyright © 2012 SciRes. AM

N. ZHANG ET AL. 1810

(a)

(b)

cost nchron In the tests where nsaction
costs are considere use the computation time was
long enough relative to the onisati e, the

performa was not ensitive to the synchronisation
overhead

Figure 11. Plots derived from the performance tests for an American put option without transaction costs. (a) Runtimes of
the sequential program and the parallel one on 8 processors; (b) Parallel speedups and efficiencies for N = 40000.

of sy isation. tra
d, beca

synchr on tim

nce as s
.

Copyright © 2012 SciRes. AM

