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ABSTRACT 

In computational shape analysis a crucial step consists in extracting meaningful features from digital curves. Dominant 
points are those points with curvature extreme on the curve that can suitably describe the curve both for visual percep- 
tion and for recognition. Many approaches have been developed for detecting dominant points. In this paper we present 
a novel method that combines the dominant point detection and the ant colony optimization search. The method is in- 
spired by the ant colony search (ACS) suggested by Yin in [1] but it results in a much more efficient and effective ap- 
proximation algorithm. The excellent results have been compared both to works using an optimal search approach and 
to works based on exact approximation strategy.  
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1. Introduction 

Computer imaging has developed as an interdisciplinary 
research field whose focus is on the acquisition and pro- 
cessing of visual information by computer and has been 
widely used in object recognition, image matching, target 
tracking, industrial dimensional inspection, monitoring 
tasks, etc. Among all aspects underlying visual informa- 
tion, the shape of the objects plays a special role. In com- 
putational shape analysis an important step is representa- 
tion of the shape in a form suitable for storage and/or 
analysis. Due to their semantically rich nature, contours 
are one of the most commonly used shape descriptors, 
and various methods for representing the contours of 2D 
objects have been proposed, each achieves, more or less 
successfully, the most desirable features of a proper rep- 
resentation, such as data compression, simplicity of cod- 
ing and decoding, scaling and invariance under rigid mo- 
tions, etc. After shape representation, another crucial step 
in shape analysis consists in extracting meaningful fea-
tures from digital curves. Attneave [2] pointed out that 
information on a curve is concentrated at the dominant 
points. Dominant points are those points that have cur-
vature extreme on the curve and they can suitably de- 
scribe the curve for both visual perception and recogni-
tion. Following Attneave’s observation, there are many 
approaches developed for detecting dominant points. 
They can be classified into two main categories: corner 
detection approaches and polygonal approximation ap- 
proaches. The phrases dominant point detection and poly 

gonal approximation are used alternatively by some re- 
searchers in the area of pattern recognition. The polygon- 
nal approximation methods in fact construct polygon by 
connecting the detected dominant points. Although do- 
minant points can constitute an approximating polygon, 
the polygonal approximation is different from the domi- 
nant point detection in concept. The polygonal approxi- 
mation seeks to find a polygon that best fits the given 
digital curve. It can be applied to produce a simplified 
representation for storage purposes or further processing. 
Corner detection approaches aim to detect potential sig-
nificant points, but they cannot represent smooth curve 
appropriately. For dominant point-detection approaches, 
Teh and Chin [3] determined the region of support for 
each point based on its local property to evaluate the 
curvature. The dominant points are then detected by a 
nonmaxima suppression process. Wu and Wang [4] pro-
posed the curvature-based polygonal approximation for 
dominant point detection. It combines the corner detec-
tion and polygonal approximation methods, and it can 
detect the dominant points effectively. Wang et al. [5] 
proposed a simple method that uses the directions of the 
forward and backward vectors to find the bending value 
as the curvature. Held et al. [6] proposed a two-stage 
method. In the first stage, a coarse-to-fine smoothing 
scheme is applied to detect dominant points. Then, in the 
second stage, a hierarchical approximation is produced 
by a criterion of perceptual significance. Carmona et al. 
[7] proposed a new method for corner detection. A nor-
malized measurement is used to compute the estimated 
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curvature and to detect dominant points, and an optimi-
zation procedure is proposed to eliminate collinear points. 
The performance of most dominant point-detection me- 
thods depends on the accuracy of the curvature evalua- 
tion. For polygonal approximation approaches, sequential, 
iterative, and optimal algorithms are commonly used. For 
sequential approaches, Sklansky and Gonzales [8] pro- 
posed a scan-along procedure which starts from a point 
and tries to find the longest line segments sequentially. 
Ray and Ray [9] proposed a method which determines 
the longest possible line segments with the minimum 
possible error. Most of the sequential approaches are 
simple and fast, but the quality of their approximating 
results depends on the location of the point where they 
start the scan-along process and, as a consequence, they 
can miss important features. The family of iterative ap- 
proaches splits and merges curves iteratively until they 
meet the preset allowances. For split-and-merge ap-
proaches, Ramer [10] estimated the distances from the 
points to the line segments of two ending points. The 
segment is partitioned at the point with the maximum 
distance until the maximum distance is not greater than 
an allowable value. Ansari and Delp [11] proposed an- 
other technique which first uses Gaussian smoothing to 
smooth the boundary and then takes the maximal curva-
ture points as break points to which the split-and-merge 
process is applied. Ray and Ray [12] proposed an orien- 
tation-invariant and scale-invariant method by introduc-
ing the use of ranks of points and the normalized dis-
tances. If a poor initial segmentation is used, the appro- 
ximation results of the split-and-merge approaches may- 
be far from the optimal one. The iterative approaches, in 
fact, suffer the sensitivity to the selection of the starting 
points for partitioning curves. The optimal approaches 
tend to find the optimal polygonal approximation based 
on specified criteria and error bound constraints. The 
idea behind is to approximate a given curve by an opti-
mal polygon with the minimal number of line segments 
such that the approximation error between the original 
curve and the corresponding line segments is no more 
than a pre-specified tolerance [1]. All of the local optimal 
methods are very fast but their results maybe very far 
from the optimal one. Unfortunately, an exhaustive search 
for the vertices of the optimal polygon from the given set 
of data points results in an exponential complexity. Dun- 
ham [13] and Sato [14] used dynamic programming to 
find the optimal approximating polygon. But, when the 
starting point is not specified, the method requires a 
worst-case complexity of O(n4) where n is the number of 
data points. Fortunately, there exist some global search 
heuristics which can find solutions very close to the 
global optimal one in a relative short time. Approaches 
based on genetic algorithms [15,16] and tabu search [17] 
have been proposed to solve the polygonal approxima- 

tion problem and they obtain better results than most of 
the local optimal methods. Sun and Huang [15] presented 
a genetic algorithm for polygonal approximation. An op- 
timal solution of dominant points can be found. However, 
it seems to be time consuming. Yin [17] focused in the 
computation efforts and proposed the tabu search tech- 
nique to reduce the computational cost and memory in 
the polygonal approximation. Horng [18] proposed a dy- 
namic programming approach to improve the fitting 
quality of polygonal approximation by combining the 
dominant point detection and the dynamic programming. 
Generally, the quality of the approximation result de-
pends upon the initial condition where the heuristics take 
place and the metric used to measure the curvature. To 
solve complex combinatorial optimization problems me- 
taheuristic techniques have been introduced. Fred Glover 
[19] first coined the term metaheuristic as a strategy that 
guides another heuristic to search beyond the local opti-
mality such that the search will not get trapped in local 
optima. Metaheuristic techniques combine two compo- 
nents, an exploration strategy and an exploitation heuris- 
tic, in a framework. The exploration strategy searches for 
new regions, and once it finds a good region the exploi- 
tation heuristic further intensifies the search for this area. 
In this context, metaheuristics encompass several well- 
known approaches such as genetic algorithm (GA), simu- 
lated annealing, tabu search (TS), scatter search, ant col- 
ony optimization and particle swarm optimization. Most 
of the central metaheuristic methods have been applied to 
the polygonal approximation problems and attained pro- 
mising results.  

In this paper we present a method that combines the 
dominant point detection and the ant colony optimization 
search. The method is inspired by the ant colony search 
suggested by Yin in [1] but it results in a much more 
efficient and effective approximation algorithm. The ex- 
cellent results have been compared both to works using 
an optimal search approach and to works based on exact 
approximation strategy. The ant colony optimization fra- 
mework is presented in Section 2. The proposed method 
for detecting dominant points is illustrated in Section 3. 
In Section 4 the proposed algorithm is applied both on 
real world curves and on four well-known benchmark 
curves. The performance is compared visually and nume- 
rically with many existing methods. Conclusions are pre- 
sented in Section 5.  

2. Ant Colony System Algorithms  

In [20] Dorigo first proposed the Ant Colony System 
(ACS) algorithm as a computational scheme inspired by 
the way in which real ant colonies operate. Ants make 
use of a substance called pheromone to communicate 
information about the shortest paths to reach the food. 
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An ant on the move leaves a certain amount of phero- 
mone on the ground, creating a path formed by a trail of 
this substance. While an isolated ant moves practically at 
random, an ant encounters a trace left above. The ant is 
able to detect it and decide, most likely, to follow it, thus 
reinforcing the trail with its own pheromone. As a result, 
the more ants follow a trail, the more attractive the path 
becomes to follow and the probability with which an ant 
chooses a path increases with the number of ants that 
previously chose the same path (Figure 1 [21]). 

The ACS scheme is inspired by this process. We apply 
it to the problem of the polygonal approximation. The 
method we propose is similar to that described by Yin in 
[1] but it solves the problem in a much more efficient and 
effective way. In the ACS algorithm artificial ants build 
solutions (tours) of a problem moving from one node of a 
graph to another. The algorithm performs max  itera- 
tions. During each iteration m ants construct a tour by 
performing n steps in which it is applied a probabilistic 
decision rule (transition state). In practice, if an ant in 
node i chooses to move to node j, the edge 

N

 i j,  is 
added to the tour in progress. This step is repeated until 
the ant has completed its tour. After all the ants have 
built their tours, each ant deposits some pheromone on 
the pheromone trail associated to the visited edges to 
make them most desirable for future ants. The amount of 
pheromone trail ij  associated with edge  repre- 
sents the desirability of choosing node j from the node i 
and also represents the desirability that the edge 

 ,i j

 ,i j  
belongs to the tour built by an ant. The pheromone trail 
information is changed during solution of the problem to 
reflect the experience acquired by ants during solving the 
problem. Ants deposit an amount of pheromone propor- 
tional to the quality of the solutions they produced: the 
shorter the tour generated by an ant, the greater the 
amount of pheromone deposited on the edge used to 
generate the tour. This choice supports research directed  
 

 

Figure 1. The first ant locates the food source (F), following 
one of the possible ways (a), then comes back to the nest (N), 
leaving behind a pheromone trail (b). Ants follow any way 
at random, but the reinforcement of the beaten path makes 
it more attractive as the shortest route. Ants take preferably 
this way while other paths lose their pheromone trails.  

towards good solutions. A pheromone evaporation is 
introduced to avoid stagnation, that is the situation where 
all ants choose the same tour [22]. Each ant has memory 
of the nodes already visited. The memory (or internal 
state) of each ant, called tabu list, is used to define, for 
each ant k, the set of nodes that an ant lying on the node i, 
has yet to visit. Exploiting the memory then, an ant k can 
build feasible solutions by generating a graph of the state 
space. The probability that an ant k chooses to move 
from node i to node j is defined as:  

   
   
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0 otherwi
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
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
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      (1) 

where ij  is the intensity of pheromone associated with 
edge  ,i j , ij  is the value of visibility of edge  ,i j , 
  and   are control parameters, and  is the set 
of currently inaccessible nodes for the ant k according to 
the problem-domain constraints. The value of visibility is 
determined by a greedy heuristic for the initial problem, 
which considers only the local information on the edge 

tabuk

 i j, , as its length. The role of the parameters   and 
  is the following. If 0  , closer nodes are more 
likely to be chosen: this corresponds to a classical sto- 
chastic greedy algorithm (with multiple starting points 
since ants are initially randomly distributed on the nodes). 
If, however, 0  , the solution depends on the phero- 
mone only: this case will lead to a rapid emergence of a 
stagnation situation with the corresponding generation of 
tours which are strongly sub-optimal. A trade-off be- 
tween the heuristic value of track and intensity is there- 
fore necessary.  

After all ants have completed their tour, each ant  
deposits a quantity of pheromone  on each edge 
which has used:   

k
k
ij

 1
if , tour

tour

0 otherwise

kk
ij k

i j   



         (2) 

where  is the tour done by ant  at current cycle 
and 

tourk k
tour

k
 is its length. The value 

ij
 depends on how 

well the ant has worked: the shorter the tour done, the 
greater the amount of pheromone deposited. At the end of 
every cycle, the intensity of traces of pheromone on each 
edge is updated by the pheromone updating rule:   

k

=1

=
m

k
ij ij ij

k

                  (3) 

where  0,1   is the persistence rate of previous trails, 
k
ij  is the amount of pheromone laid on edge  ,i j  by 

the ant  at the current cycle, and  is the number of 
ants.   

k m
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ACS algorithms have been applied to several discrete 
optimization problems, such as the travelling salesman 
problem and the quadratic assignment problem. Recent 
applications cover problems like vehicle routing, sequen- 
tial ordering, graph coloring, routing in communication 
networks, and so on. In this work we propose the scheme 
of ACS to solve the problem of the polygonal approxi- 
mation.  

3. The ACS-Based Proposed Method 

In this section we describe how we use the ACS algo- 
rithm to solve the problem of polygonal approximation. 
We first define our problem in terms of discrete optimi- 
zation problem and how we represent it in terms of a 
graph. Then, we illustrate the proposed method from the 
initialization phase to the searching and refining the op- 
timal path.  

3.1. Problem Formulation 

Given a digital curve represented by a set of N clock- 
wise-ordered points,  1 2, , , NC c c c   where  1 modi N  
is considered as the succeeding point of , we define  

c 

ic

arc i jc c  as the collection of those points between  

and 

ic

jc , and chord i jc c  as the line segment connecting 

 and ic jc . In approximating the arc  by the chord 
i jc c

ic c j , we make an error, denoted by  ,i j i je c c c c  that  

can be measured by any distance norm; for here, the 2  
norm, i.e., the sum of squared perpendicular distance  

L

from every data point on  to 
i jc c i jc c , is adopted. Thus, 

we have  

 


2,
k i j

i j i j k i j
c c c

e c c c c d c c c


  ,         (4) 

where  ,k i jd c c c   is the perpendicular distance from 

point  to the corresponding chord kc i jc c . The distance 

 ,k ic c jd c  is measured as follows:   

         
   2 2

, =
j i i k i k j i

k i j
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d c c c
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  
 

(5) 

where     , , , , ,k k i i j j x y x y x y
, ,k i jc c c

 are the spatial coordi- 
nates of the points , respectively.  

The objective is to approximate a given curve by an 
optimal polygon with the minimal number of line seg- 
ments such that the approximation error between the 
original curve and the corresponding line segments is 
less than a pre-specified tolerance. Formally, the aim is  

to find the minimal ordered set  

where  and 

 1 2
, , ,

Mp p pT c c c 

T C M N , and the set of M line seg- 

ments  1 2 1 1
, ,

M M Mp p p p p pc c c c c
2 3

, ,p pc c P c  composes  

an approximating polygon to the point set C such that the 
error norm between C and P is no more than a 
pre-specified tolerance,  . The error norm between C 

and P, denoted by  2E C P, , is then defined as the sum 

of the approximation errors between the M arcs  
  1 2 2 3 1 1

, , , ,
M M Mp p p p p p p pc c c c c c c c


  and the correspond- 

ing M line segments  1 2 2 3 1 1
, , , ,

M M Mp p p p p p p pc c c c c c c c


 :   

   12
=1

, ,
i i i i

M

p p p p
i

E C P e c c c c


  1

1

        (6) 

where 
1Mp pc c

  and  1

,
i i i ip p p pe c c c c

 1
 is the ap- 

proximation error between the arc 
1i ip pc c


 and the chord 

1i ip pc c


, as defined in (4). 

3.2. Graph Representation 

In order to apply the ACS algorithm, we need to repre- 
sent our problem in terms of a graph, . For 
the polygonal approximation problem, each point on the 
curve should be represented as a node of the graph, i.e., 

 ,G V E 

V C , where C is the set of points on the given curve. E 
is an ideal edge set that has the desired property that any 
closed circuit which originates and ends at the same node 
represents a feasible solution to the original problem, i.e., 
the approximating polygon consisting of the edges and 
nodes along the closed circuit should satisfy the  - 
bound constraint, 2E  . We construct the edge set by 
penalizing the intensity of pheromone trails on the paths 
to make them less attractive if they don’t satisfy the 
 -bound constraint. The edge set E is thus generated as 
follows. Initially, the set E is created as an empty set. 
Then, new edges are added to it. For every node ic C , 
we examine each of the remaining nodes, jc C , in 
clockwise order. If the approximation error between the  

arc  and the line segment 
i jc c i jc c  is no more than  , 

then the directed edge i jc c


 is added to the edge set E. 

Thus, we have:  

  ,i j i j i jE c c e c c c c . 


          (7) 

The edge is directed to avoid the ants walking back- 
ward. Then, the problem of polygonal approximation is 
equivalent to finding the shortest closed path on the di- 
rected graph ,G V E  such that 2E  . In the fol- 
lowing, the closed path completed by the ant k will be 
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denoted by tourk, the number of nodes visited by the ant k 
in the tourk will be tour

k
 and the approximation error 

between the original curve C and the approximating 
polygon corresponding to tourk will be .   2 , tourkE C

3.3. Starting Node Initialization and Selection 

During each iteration each ant chooses a starting node in 
the graph and sequentially constructs a closed path to 
finish its tour. In order to find the shortest closed tour, it 
is convenient to place the ants at the nodes with a higher 
probability of finding such a tour, instead of a randomly 
distribution. For the selection of the starting nodes we 
propose two alternative strategies, we call Selection_1 
and Selection_2. Let’s describe the two algorithms in 
detail.  

Selection_1 algorithm 
One of the most common shape descriptors is the 

shape signature (or centroidal profile) [23]. A signature is 
one-dimensional functional representation of boundary, 
obtained by computing the distance of the boundary from 
the centroid as a function of angle (a centroidal profile). 
This simple descriptor is useful to understand the com- 
plexity of a shape. The more the extrema (maxima and 
minima) of the signature, the more articulated the object 
is. The number of signature extrema and the boundary 
points corresponding to them help us both to determine 
automatically the number of distributed ants and to select 
the nodes on the graph they choose to start their tour. In 
this algorithm the number m of ants to distribute on the 
graph is equal to the number of the signature extrema. 
Also, the m boundary points correspondent to the ex- 
trema represent the m starting nodes at the beginning of 
the first cycle. If  1 2, , , m s s s  is the list of the boun- 
dary points relative to the extrema of the signature, then 
the ant k starts its first tour from the node sk, 1,k , m 

, N

node

i
oosei

. 
The signature extrema are localized in the boundary 
points near to the most concave or convex portions of the 
curve. In such portions the most significant points (i.e. 
dominant points) of the curve are located. This is the 
reason for choosing the signature extrema as starting 
nodes at the first cycle. In the next cycles, the ants are 
placed at the nodes with higher probability to find the 
shortest closed tour. We thus create a selection list for the 
starting nodes, denoted by . Initially,  , 1, 2,iT i 

1 if  is a starting 

0 otherwisei

i
T


 


         (8) 

The probability with which the node  is chosen as a 
starting node in the next cycles, denoted Ch , is 
estimated as the value  normalized by the sum of all 
values,  

iT

1

Choose i
i N

jj

T

T





               (9) 

At the end of each cycle, the value of , 1, 2, ,iT i N   
is updated. Let’s denote by Start_Nodei  the set of ants 
which start with the node  at the current cycle and by i
Start_Nodei  its size. We update the value i  making a 

trade-off between the average quality of current solutions 
constructed by the ants in  and the value of 

 derived from older cycles. Thus, we let  

T

Start_Nodei

Choosei

Start_Node

1 1
Choose

Start_Node tour

if  is a starting node at current cycle

otherwise.

i
ji ji

i

i

T i

T



 
 






 (10) 

During the process, the ants will tend to choose the 
starting nodes which have more experiences of con- 
structing shorter tours and enforce an exploitation search 
to the neighborhood of better solutions.  

Selection_2 algorithm 
For each node , 1, ,i i N 

15D 

, 1iT i 

 of the graph we evaluate 
the greatest approximation error among all the directed 
edges departing from i. We thus generate a list of the N 
greatest approximation errors sorted in ascending order. 
We select the first D edges, where D is a percentage on N 
(in all the experiments ) and derive the nodes 
where these edges depart from. The list of such nodes, 
after eliminating duplications, represents the set of the 
starting nodes at the beginning of the first cycle and its 
size is the number m of the ants to distribute on the graph. 
As in the previous algorithm, we then create a selection 
list for the starting node , initialized as 
described in Equation (8). In the next iterations, the 
probability with which the node i is chosen as a starting 
node and the updating of the value i  are accomplished 
as in the previous strategy, according to the Equations (9) 
and (10).  

, 2, , N

T

3.4. Node Transition Rule  

As described in Section 2, the probability with which an 
ant k chooses to move from node i to node j is deter- 
mined by the pheromone intensity ij  and the visibility 
value ij  of the corresponding edge. In the proposed 
method, ij  is equally initialized to 1/N (actually, any 
small constant positive value may be fine), and is up- 
dated at the end of each cycle according to the average 
quality of the solutions that involve this edge. The value 
of ij  is determined by a greedy heuristic which guides 
the ants to walk to the farthest accessible node in order to 
construct the longest possible line segment in a hope that 
an approximating polygon with fewer vertices is obtained 
eventually. This can be accomplished by setting  


ij i jc c  , where 

i jc c  is the number of points on 
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
i jc c . The value of ij  is fixed during all the cycles 

since it considers local information only. The transition 
probability from node i to node j through directed edge 

 is defined as   i jc c


for all  from 

= .

i h

ij ij
ij

ih ih
c c ci

p
 

 






max

            (11) 

3.5. Pheromone Updating Rule 

At the end of each cycle we update the intensity of 
pheromone trails of an edge by the average quality of the 
solutions involving this edge by simply applying Equa- 
tions (2) and (3). At the end of each cycle, the phero-  

mone intensity at directed edge  is updated by  i jc c


1

,0
m

k
ij ij ij

k

 


  
 
              (12) 

where  is the quantity of new trails left by the ant k 
and it is computed by  

k
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According to the ACS paradigm, more quantities of 
pheromone trails will be laid at the edges along which 
most ants have constructed shorter feasible tours. As a 
result, the proposed rule will guide the ants to explore 
better tours corresponding to high quality solutions.  

3.6. Refinement of Approximation Polygon  

Once dominant points have been detected we apply an 
enhancement process to refine the point localization ac- 
cording to a minimal distance criterion. Let  

 1 2
, , ,

Mp p pc c  the ordered set of detected domi- 

nant points. Considering the couples 
ipc  and 

2ipc


, 

, the refinement process consists in moving 

the intermediate point  between 

1,i  , M

1ip 
c

ipc  and 
2ipc


 in 

a new point by a local minimization distance. For all the 

points  in the arc kc 
2i ip p 



c c  we evaluate the sum of the 

approximation errors,    ,ki i ip k pc c 
2 2

, ki pc c
 p kce c e c c . 

The new position for the point  is chosen as fol- 

lows:  

1ipc


   1 2
, ,min k ki i i ip p k p k p

ck

c e c c c c e c c c c
 
 

2ip 
     (14) 

The new dominant point  between 
1ipc
 ipc  and 

2ipc


 

is then used in the rest of the process. The refinement 

step is repeated for each pair ,  2
,

i ip pc c


1, ,i M  .  

The refining phase terminates by deleting very close 
dominant points. 

3.7. Summary of the Proposed Method  

We summarize the proposed algorithm, denoted Poly_by_ 
ACS, as follows:  

The Poly_by_ACS Algorithm  
Input:  

 1 2, , , NC c c c  : a set of clockwise ordered points. 
N_max: the maximal number of running cycles. 
1) Inizialization: 
  Construct the directed graph ,G V E  as de-

scribed in 
  Subsection 3.2. 
  Determine the number  of ants as described in  m
  Subsection 3.3. 
  Set 1ij N   for every directed edge .  i j

  Initialize T  for 
c c


i 1, ,i N   as described in  
  Subsection 3.3. 
  Set NC = 1, where NC is the cycle counter. 

  Set  1 2 2 3 1 1best_tour , , , ,N N Nc c c c c c c c
   

 . 

2) For every ant do  
    Select a starting node as described in Subsection      
    3.3. 
    Repeat 
       Move to next node according to the node  
       transition rule using Equation (11). 
    until a closed tour is completed. 
3) Find out the shortest feasible tour, say current_tour,  
  among the m tours obtained in Step 2. 

4) If  current_tour tour_best  or  

  current_tour best_tour  and    

    2 2, current_tour ,best_tourE C E C   

  then best_tour current_tour . 

5) For every directed edge  do i jc c


    Update the pheromone intensity using Equations 
(12) and (13).  

6) For every selection entry  do i

    Update the entry value using Equation (8). 
T

7) If (NC < N_max) NC = NC + 1 and go to Step 2; 
8) Refine the approximation polygon as described in  
  Subsection 3.6. 
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4. Experimental Results and Comparisons 

In this section we present the experimental results of the 
proposed ACS-based approximation algorithm. For all 
the processed curves we have tested both the two node 
selection strategies. From now on, we call Method_1 and 
Method_2 the approximation methods based on Selec- 
tion_1 and Selection_2 algorithms, respectively. The two 
methods have been firstly tested on some real world im- 
ages (fish, aircraft, hand, noisy key), showed in Figure 2. 
For each curve, the initial starting nodes, the polygonal 
approximation before and after refining the detected 
dominant points by applying Method_1 and Method_2 
are showed in Figures 3-6. The performances of our al- 
gorithms have been compared to those of the method 
proposed by Yin [1]. The parameters used for Yin’s 
method have been chosen according to the suggestion of 
the author’s algorithm. In Table 1 we present the com- 
parative performance evaluation between our methods 
and Yin’s one. For each image we have evaluated the 
initial number of points, N, the number of detected 
dominant points, Np, and the approximation error be- 
tween the original curve and the corresponding optimal 
polygon, 2 . For all the images, our methods show a 
much better efficacy in approximating real noisy world 
shapes, both before and after the refining step. In all 
cases we obtain a lower approximation error associated 
to a significant reduction of Np. Also, our algorithms are 
less parameters dependent than Yin’s one. Apart the 

E

 -bound constraint and the number of the maximum 
cycles, Yin’s ACS method uses other five parameters. 
The goodness of the approximating polygon is strongly 
dependent on the chosen parameter values. Our methods  
 

       

Figure 2. Some real world curves: fish, aircraft, hand and 
key. 
 

       
(a)               (b)               (c) 

       
(d)               (e)               (f) 

Figure 3. Fish contour: the initial starting nodes, the po- 
lygonal approximation before and after refining the de- 
tected dominant points by applying Method_1 in (a), (b), (c) 
and by applying Method_2 in (d), (e), (f), respectively.  

       
(a)               (b)               (c) 

       
(d)               (e)               (f) 

Figure 4. F10 contour: the initial starting nodes, the po- 
lygonal approximation before and after refining the de- 
tected dominant points by applying Method_1 in (a), (b), (c) 
and by applying Method_2 in (d), (e), (f), respectively.  
 

       
(a)               (b)               (c) 

       
(d)               (e)               (f) 

Figure 5. Hand contour: the initial starting nodes, the po- 
lygonal approximation before and after refining the de- 
tected dominant points by applying Method_1 in (a), (b), (c) 
and by applying Method_2 in (d), (e), (f), respectively.  
 

       
(a)               (b)               (c) 

       
(d)               (e)               (f) 

Figure 6. Key contour: the initial starting nodes, the po- 
lygonal approximation before and after refining the de- 
tected dominant points by applying Method_1 in (a), (b), (c) 
and by applying Method_2 in (d), (e), (f), respectively.  
 
automatically choose the number of distributed ants and 
do not need any other parameter. We only define the 
maximum number of iterations and the  -bound. More- 
over, since the approach is non deterministic, different 
runs can lead to different solutions. We have approached 
this problem by choosing the initial set of starting nodes 
automatically and by introducing a refinement step to 
reduce the approximation error. Such two aspects are not 
present in Yin’s approach. Finally, the approximation    
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Table 1. The approximation error E2 for the real curves for our methods and Yin’s algorithm (in parentheses the number of 
dominant points).  

Curve N 
Method_1 

before refine 
Method_1 

after refine 
Method_2  

before refine 
Method_2  

after refine 
Yin [1] 

Fish 325 172.45 (25) 112.42 (24) 171.10 (25) 112.23 (24) 176.19 (25) 

F10 399 198.05 (32) 135.52 (32) 192.48 (32) 134.28 (32) 208.02 (32) 

Hand 513 210.63 (31) 189.99 (28) 208.63 (31) 182.10 (29) 218.28 (31) 

Key 257 117.85 (16) 84.35 (16) 121.62 (16) 86.80 (16) 121.25 (16) 

 

      

error levels off after only few iterations of the iterative 
process (in case of F10 curve after 3 iterations we 
achieve the best value 2  and in case of hand 
curve just one iteration is needed to get 2 ). 
This means that our methods are computationally more 
efficient, too. The proposed algorithms have been, also, 
tested on four benchmark curves (leaf, chromosome, 
semicircle and infinite), commonly used in many previ- 
ous approaches. The experimental results have been 
compared to many existing methods for dominant point 
detection. For each proposed approximation algorithm 
we show the number of detected point, Np, the approxi- 
mation error, 2 , the compression ratio, 

192.48E 
208.63E 

E CR N Np , 
the combinations of the compression ratio and the ap- 
proximation error, 2 , E CR 2

2E CR  and 3
2E CR , as 

suggested in [7] and [24]. The compression ratio and the 
approximation error are combined to measure the effi- 
ciency of the dominant point detectors and to compare 
them. The dominant points (circled) detected by our 
methods on benchmark curves (Figure 7) are showed in 
Figure 8 and the comparative results with other methods 
are presented in Table 2. The results can be summarized 
as follows:  

      

Figure 7. The benchmark curves: leaf, chromosome, semi- 
circle, infinite.  
 

      

      

 The number of dominant points detected by our ap- 
proach is an average value of the number detected by 
other algorithms.  

 The values of 2E  and 2E CR  are smaller than all 
the other algorithms, except Carmona [7] in process- 
ing chromosome curve and Horng [18] in processing 
semicircle curve.  

Figure 8. Dominant points (circled) for the benchmark 
curves.  
 

 The values of 2
2E CR  and 3

2E CR  are smaller 
than the values supplied by other algorithms. In some 
cases they are a little bit greater than Marji-Siy [27] 
and Carmona [7] methods. 

By analyzing the comparative results, we can affirm 
that the proposed approach is superior to many existing 
algorithms based on exact search methodology. To dem- 
onstrate the feasibility of our approach we have, also, 
compared it to other methods based on global search 
heuristic, like ACS_Poly method proposed in [1], the 
GA-based method proposed in [16] and the TS-based 
method proposed in [17]. The results presented in Table 
3 confirm the superiority of our method both in effec-  

tiveness (in terms of Np and 2 ) and in efficiency (in 
terms of computational cost) since only few iterations are 
needed to localize the vertices of the approximating 
polygon. Finally, we have compared our approach to 
other methods in order to check how the refining step is 
able to improve the quality of the polygonal approxima- 
tion. We have analyzed the four real world curves, fish, 
F10, hand and key. Each of them has been first processed 
by our methods, Method_1 and Method_2, by Yin’s one 
[1], by Teh-Chin’s one [3] and by Wu’s ones [26,28]. On 
each polygonal approximation we have then applied the 
refining procedure in order to get a better localization of 
dominant points and consequently a lower error, . As  

E

2E  
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Table 2. Comparison with other methods on the benchmark curves. 

Curve Method Np E2 CR = N Np 2E CR  2
2E CR  

3
2E CR  

Teh & Chin [3] 28 15.43 4.286 3.600 0.840 0.196 

Cornic [25] N/A N/A N/A N/A N/A N/A 

Ray & Ray [12] 26 16.43 4.615 3.560 0.771 0.167 

Wu [26] 24 15.93 5.000 3.186 0.637 0.127 

Marji & Siy [27] 17 28.67 7.059 4.062 0.575 0.082 

Carmona [7] 23 15.63 5.217 2.996 0.574 0.110 

Yin [1] 24 13.73 5.000 2.746 0.549 0.110 

Horng [18] 21 14.17 5.710 2.482 0.434 0.076 

Leaf 
N = 120 

Our Methods 24 10.62 5.000 2.124 0.425 0.085 

Teh & Chin [3] 16 6.40 3.750 1.707 0.41 0.121 

Cornic [25] 17 5.54 3.529 1.570 0.445 0.126 

Ray & Ray [12] 14 7.67 4.286 1.790 0.418 0.097 

Wu [26] 16 4.70 3.750 1.253 0.334 0.089 

Marji & Siy [27] 10 10.01 6.000 1.668 0.278 0.046 

Carmona [7] 14 4.93 4.286 1.150 0.268 0.063 

Yin [1] 14 6.41 4.286 1.496 0.349 0.081 

Horng [18] 10 16.99 6.000 2.832 0.472 0.079 

Chromosome 
N = 60 

Our Methods 14 5.39 4.286 1.258 0.293 0.068 

Teh & Chin [3] 22 20.61 4.636 4.445 0.959 0.207 

Cornic [25] 30 9.19 3.400 2.703 0.795 0.234 

Ray & Ray [12] 19 16.33 5.368 3.042 0.567 0.106 

Wu [26] 26 9.04 3.923 2.304 0.587 0.150 

Marji & Siy [27] 15 22.70 6.800 3.338 0.491 0.072 

Carmona [7] 24 9.88 4.250 2.325 0.547 0.129 

Yin [1] 23 10.50 4.435 2.368 0.534 0.120 

Horng [18] 26 4.59 3.920 1.170 0.299 0.076 

Semicircle 
N = 102 

Our Methods 23 6.28 4.435 1.416 0.319 0.072 

Teh & Chin [3] 13 3.46 3.462 1.000 0.289 0.083 

Cornic [25] 10 4.30 4.500 0.956 0.212 0.047 

Ray & Ray [12] 12 3.75 3.750 1.000 0.267 0.071 

Wu [26] 13 5.78 3.462 1.670 0.482 0.139 

Marji & Siy [27] N/A N/A N/A N/A N/A N/A 

Carmona [7] 10 5.56 4.500 1.236 0.275 0.061 

Yin [1] 11 4.44 4.091 1.085 0.265 0.065 

Horng [18] 13 3.58 3.460 1.035 0.299 0.086 

Infinite 
N = 45 

Our Methods 11 3.44 4.091 0.841 0.206 0.050 
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Table 3. Comparison in terms of approximation error, E2, number of dominant points, Np, and CPU time, t in seconds, on the 
benchmark curves.  

Curve E2 GA-based ( t ) TS-based ( t ) ACS_Poly ( t ) Method_1 ( t ) Method_2 ( t ) 

150 17 (5.7) 11 (0.9) 13 (0.7) 9 (0.8) 9 (0.8) 

100 16 (4.5) 14 (0.9) 13 (0.7) 11 (0.8) 11 (0.8) 

90 17 (5.3) 15 (0.9) 14 (0.7) 12 (0.7) 11 (0.7) 

30 21 (4.6) 20 (0.9) 19 (0.7) 17 (0.7) 16 (0.7) 

Leaf 
N = 120 

15 23 (5.4) 23 (0.9) 23 (0.7) 19 (0.7) 19 (0.7) 

30 7 (3.0) 6 (0.5) 6 (0.4) 6 (0.4) 6 (0.4) 

20 8 (3.0) 8 (0.5) 8 (0.4) 7 (0.4) 7 (0.4) 

10 10 (3.1) 11 (0.5) 11 (0.4) 11 (0.3) 9 (0.4) 

8 12 (3.1) 12 (0.5) 11 (0.4) 11 (0.3) 11 (0.3) 

Chromosome 
N = 60 

6 15 (3.3) 14 (0.5) 14 (0.4) 13 (0.3) 12 (0.3) 

60 13 (4.6) 11 (0.9) 10 (0.6) 10 (0.6) 10 (0.6) 

30 14 (4.8) 14 (0.8) 13 (0.6) 12 (0.6) 11 (0.6) 

25 17 (4.3) 15 (0.8) 13 (0.6) 12 (0.6) 12 (0.6) 

20 19 (4.7) 16 (0.8) 16 (0.6) 15 (0.5) 15 (0.5) 

Semicircle 
N = 102 

15 23 (4.4) 18 (0.8) 18 (0.6) 17 (0.5) 16 (0.5) 

30 N/A N/A 6 (0.6) 5 (0.6) 5 (0.6) 

20 N/A N/A 7 (0.6) 6 (0.6) 6 (0.6) 

15 N/A N/A 7 (0.6) 6 (0.6) 6 (0.6) 

10 N/A N/A 7 (0.6) 7 (0.6) 7 (0.6) 

6 N/A N/A 9 (0.6) 8 (0.5) 8 (0.5) 

Infinite 
N = 45 

3 N/A N/A 17 (0.6) 10 (0.4) 10 (0.4) 

 
we can see from the numerical results showed in Table 4, 
the refining procedure is able to improve all the polygon- 
nal approximations. In all the cases we get a lower error, 

2 . However, the best approximations are still achieved 
by applying our method, confirming its superiority as a 
general approach for dominant point detection and po- 
lygonal approximation. Some visual comparisons are 
showed in Figures 9 and 10.  

E

5. Conclusion  

In this work we have presented a novel method for ap- 
proximating a digital curve. The algorithm is inspired by 
the ant colony search suggested by Yin in [1] but it has 
resulted in a much more efficient and effective approxi- 
mation algorithm. The performance of our approach has 
been first compared to that of the method proposed by 
Yin on some real world curves. The experimental results 
have showed a much better efficacy in approximating 
real noisy world shapes, both before and after the refin-  

ing step. Also, our algorithms are less parameters de- 
pendent than Yin’s one. Apart the  -bound constraint 
and the number of the maximum cycles, Yin’s ACS 
method uses other five parameters and the goodness of 
the approximating polygon is strongly dependent on the 
chosen parameter values. On the contrary, our approach 
automatically choose the number of distributed ants. No 
other parameters are used in the whole process. Also, the 
localization of the best dominant points can be obtained 
by the refinement step in a very fast way. Finally, the 
performances of our methods level off after only few 
iterations of the approximating process. This means that 
our methods are computationally more efficient, too. We 
can summarize the differences and the contribution of 
our approach against the one in [1] in four main aspects: 
less parameter dependance, automatic choosing of start- 
ing points and number of distributed ants, updating of the 
best tour during search (Step 4 of the Poly_by_ACS Al- 
gorithm) and refining. First preliminary results of our    
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Table 4. Comparison with other methods, without or with the refinement step, on real world curves. 

 Fish Np E2 F10 Np E2 Hand Np E2 Key Np E2 

Method_1 before refine 25 172.45 32 198.05 31 210.63 16 117.85 

Method_1 after refine 24 112.42 32 135.52 28 189.99 16 84.35 

Method_2 before refine 25 171.10 32 192.48 31 208.63 16 121.62 

Method_2 after refine 24 112.23 32 134.28 31 149.56 16 86.80 

Yin [1] 25 176.19 32 208.02 31 218.28 16 121.25 

Yin [1] with refine 25 107.95 32 146.23 31 159.56 16 89.39 

Teh & Chin [3] 41 971.16 64 1488.60 48 10080.20 35 435.12 

Teh & Chin [3] with refine 41 147.75 64 183.61 48 519.61 35 145.79 

33 834.18 35 1977.36 36 8154.60 21 6160.35 
Wu [26] 

24 1536.60 29 5899.61 30 8165.34 13 16856.29 

33 124.88 35 750.03 36 413.70 21 190.49 
Wu [26] with refine 

24 326.90 29 1064.23 30 482.61 13 2021.33 

Wu [28] 18 20160.08 32 19629.77 31 25912.99 14 6141.48 

Wu [28] with refine 18 2113.43 32 1687.33 31 537.19 14 1189.87 

 

       
(a)                (b)                (c) 

       
(d)                (e)                (f) 

Figure 9. Visual comparisons with other methods on fish 
contour: (a) Method_1; (b) Method_2; (c) Yin’s [1], (d) Teh- 
Chin’s [3], (e) Wu’s [28] and (f) Wu’s [26]. 
 

       
(a)                (b)                (c) 

       
(d)                (e)                (f) 

Figure 10. Visual comparisons with other methods on F10 
contour: (a) Method_1; (b) Method_2; (c) Yin’s [1]; (d) Teh- 
Chin’s [3]; (e) Wu’s [28]; and (f) Wu’s [26]. 
 
approach have been presented in [29]. In the new version 
we have proposed in this paper we have introduced the 
possibility to delete very close dominant points, by ob- 
taining a significant reducing of NP with a negligible in-  

       
(a)                 (b)                 (c) 

       
(d)                 (e)                 (f) 

Figure 11. Visual comparisons with other methods on hand 
contour: (a) Method_1; (b) Method_2; (c) Yin’s [1]; (d) Teh- 
Chin’s [3]; (e) Wu’s [28]; and (f) Wu’s [26]. 
 

         
(a)                (b)                (c) 

         
(d)                (e)                (f) 

Figure 12. Visual comparisons with other methods on key 
contour: (a) Method_1; (b) Method_2; (c) Yin’s [1]; (d) Teh- 
Chin’s [3]; (e) Wu’s [28]; and (f) Wu’s [26]. 
 
creasing of approximation error. We have expanded the 
experimental results by visual comparisons with other 
methods (Figures 9-12). Also, we have tested the impor- 
tance and the effectiveness of refinement step, as showed 
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in Table 4. The performance of our algorithms have been 
tested on four contour commonly used curves (leaf, 
chromosome, semicircle and infinite) in many previous 
approaches. This testing has confirmed that the proposed 
approach is superior to many existing algorithms based 
on exact search methodology. Finally, our approach has 
been compared to other methods based on global search 
heuristic, like ACS_Poly method proposed in [1], the 
GA-based method proposed in [16] and the TS-based 
method proposed in [17]. Again, the excellent results 
have confirmed the superiority of our methods both in 
effectiveness (in terms of Np and 2 ) and in efficiency 
(in terms of computational cost). The two proposed algo- 
rithms, Method_1 and Method_2, have comparable per- 
formances, if applied on very simple curves, as we can 
see from the results shown in Table 2. However, if ap- 
plied on real world curves, Method_2 presents a lower 
approximation error, both before and after the refining 
step, as we can see in Table 1. Finally, we can notice 
another little difference on behalf of Method_2 in Table 
3, where we present the number of detected dominant 
points with a same approximation error.  

E
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