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ABSTRACT 

Primitive elements play important roles in the Diffie-Hellman protocol for establishment of secret communication keys, 
in the design of the ElGamal cryptographic system and as generators of pseudo-random numbers. In general, a determi-
nistic algorithm that searches for primitive elements is currently unknown. In information-hiding schemes, where a pri-
mitive element is the key factor, there is the freedom in selection of a modulus. This paper provides a fast deterministic 
algorithm, which computes every primitive element in modular arithmetic with special moduli. The algorithm requires 

at most  digital operations for computation of a generator. In addition, the accelerated-descend algorithm 

that computes small generators is described in this paper. Several numeric examples and tables illustrate the algorithms 
and their properties. 

 2log p

1 1h p  

modx
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1. Introduction and Basic Definitions 

To ensure a high level of crypto-immunity of some 
cryptographic systems, it is necessary to select a system 
parameter g (called a primitive element) that satisfies 
certain conditions.  

The primitive elements are used in the Diffie-Hellman 
secret key establishment (DHKE) protocol [1] and in the 
ElGamal algorithm [2] for secure exchange of informa-
tion via open channels. They are also used in the design 
of generators of pseudo-random numbers [3]. 

In modular arithmetic, a primitive element g modulo p 
is an integer having the property that every integer h co- 
prime with p can be expressed as a power of g modulo p. 

Therefore, powers of g generate all non-zero elements 
of the multiplicative group of integers modulo p. 

Definition 1.1: If an integer g has a property that for 
every integer  there exists a corresponding 
integer x such that 

g p h ,              (1.1) 

then g is called a primitive element (generator, in short) 
and x is called the discrete logarithm of h to the base g 
modulo p. 

For every prime p there exist several generators. For 
instance, if p = 31, then g = 3, 11, 12, 13, 17, 21, 22 and 
24 are generators. 

Leonhard Euler discovered the primitive elements, and 
Carl F. Gauss described their properties in [4]. A mathe-
matically-oriented reader can find further results in [5,6]. 

The elliptic curve cryptography (ECC), initially de-
scribed in [7,8], is an analogue of the ElGamal protocol. 
As a result, the ECC also requires selection of a point G 
on the elliptic curve, which is an analogue of the genera-
tors in cyclic groups based on real integers. However, an 
efficient algorithm that computes G is an open problem. 

2. Verification Procedure 

In order to verify whether g is a generator for prime p, 
consider all factors of 1p  . 

Proposition 2.1: Suppose 

1 2
1 21 mee e

mp f f f  

2kf  1ke 

 

;           (2.1) 

where every integer  and every integer ; if 

1 mod 1kp fg p 

1, 2, ,k m

;            (2.2) 

holds for every  

1 70 2 5 7p

, then g is a generator [9]. 
Example 2.1: Suppose p = 71; let us find a generator. 

Since     
35 mod 71 1;g

, then g is a generator if and 
only if   

14 mod 71 1;g   and     (2.3) 10 mod 71 1.g 

Copyright © 2012 SciRes.                                                                                IJCNS 



B. VERKHOVSKY 716 

Table 1 shows values of  mod 71.ng

1p 



 
Since g = 7 satisfies every condition in (2.3), therefore, 

after fifteen exponentiations we find that it is the genera-
tor for p = 71. 

Although the conditions (2.2) are straight-forward to 
verify, if m is large, then (2.2) requires factorization of 

 [10] and m exponentiations for each potential can-
didate. Also, if at least one of these conditions does not 
hold, it is necessary to consider the next candidate. In 
general, non-deterministic algorithms are typical for var-
ious problems in modular arithmetic. 

3. Two Deterministic Algorithms 

In information-hiding schemes, where a primitive ele-
ment is necessary, there are alternatives for selecting a 
prime modulus. 

Definition 3.1: If both p and 1 2p 



 are primes, 
then p is called a safe prime [9]. 

Example 3.1: Integers 5, 7, 11, 23, 47, 59, 83, 107, 167, 
179, 227, 263, 347, 863, 9839, 6935459, 8331923 and 
9522167 are examples of safe primes. Although the 
search for safe primes is not the goal of this paper, the 
following properties of safe primes eliminate numerous 
false candidates: p mod 20 = 3 or 7 or 19, otherwise 

1 2p 

7p 

 is not a prime. 
A non-deterministic algorithm for the selection of safe 

primes is provided in [9] {see 4.86 Algorithm}. 
Proposition 3.1: If  is a safe prime, then 

2
:1g p p     ;            (3.1) 

is a generator. 
Remark 3.1: Although (3.1) does not always compute 

the smallest generator, its value is small in comparison  

with p:  1
= 2g O p . 

Indeed, 12 2  2 3g p   

 7, 23,47,167

.               (3.2) 

Moreover, if , then p 

 3 3,7,11, 23 .

 11,83, 227

1 2.g 

7p 

1 2 2g p      

If , then for every p  p 

 

Proposition 3.2: If  is a safe prime, then  

2 3 1 4g p  ; is a generator.                 (3.3) 

Proofs of both propositions are provided in the next 
section. 

Table 2 provides fifteen examples of safe primes and 
three corresponding generators for each of them. For 
every safe prime, the procedures (3.1), (3.3) as well as 
(6.4), described in the sixth section, are deterministic and 
require at most one integer multiplication. As a result, in 
the ElGamal algorithm, the generator can be periodically 
renewed for enhancement of communication security. 
Notice that in Table 2 for p = 11, 23, 47, 59, 167, 179 
and 347  1g ;g m  and for the rest of these primes it 
is otherwise, i.e.,  1 .g g m

7p 

2 2z p

 

4. Algorithm Computing All Generators 

Both Propositions 3.1 and 3.2 are special cases of more 
general proposition. 

Proposition 4.1: Let  be a safe prime; then for 
every integer z that satisfies the inequalities 

   ;               (4.1) 

 2 modg p z p 

1 2p q

;           (4.2) 

is a generator. 
Proof: Definition 3.1 implies that for a safe prime  

;               (4.3)  

where q is an odd prime. Therefore, g is a generator be-
cause by Fermat’s Little Theorem [3,4] 

     2 11 1 mod
q qq pg p z z p     

   
22 2 4 mo1 dg z z pp   

    (4.4) 

and   .          (4.5) 

 
Table 1. Choice of generator for p = 71. 

g\n n = 10 n = 14 n = 35 

g = 2 30 54 1 

g = 3 48 54 1 

g = 5 1 57 1 

g = 6 20 5 1 

g = 7 45 54 70 

 
Table 2. Safe primes and corresponding generators. 

p 11 23 47 59 83 107 167 179 227 263 347 863 983 2063 9839

1g  2 7 11 10 2 7 23 10 2 7 23 22 22 38 38 

 0g

 

 8 17 35 44 62 80 125 134 170 197 260 647 737 1547 7379

g m  2 5 5 2 6 8 15 2 14 15 20 47 35 65 69 
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Suppose that (4.5) does not hold, i.e., there exists at  

least one , for which z   4 1 modZ Z p

 2 mod1 .1 0p 

 mo ;1 d p 

. 

Therefore, it implies that 

   4 1 1Z Z Z Z       (4.6) 

However, none of three factors in (4.6) are congruent 
with zero modulo p: the first two are excluded by the 
constraints in (4.1); and the case  

2Z             (4.7) 

is also infeasible, since by Euler’s criterion of quadratic 
residuosity [4,9] 

    1 2
1 1

  mod 1
p q

p  

1



;      (4.8) 

which implies that  does not have a square root 
modulo p. In other words, z in (4.7) has no real integer 
solution. Q.E.D.  

Proof of Proposition 3.2: It is easy to verify that (3.3) 
is a special case of (4.2) for z = q. Indeed, consider 

  
     

4

4 modp p

 


 
 

 23 mod 4 0 

 23 mod 0p 

   1p q 

2 2

2

2 1

3 1 3

p q p p p

p p

    

   
 (4.9) 

Since for every safe prime p mod 4 = 3 holds, then 

p p .           (4.10) 

In addition, 

p p .           (4.11) 

Because the last term in (4.9) is an integer, therefore, 
(4.9)-(4.11) imply (3.3). Q.E.D. 

Table 3 lists all generators for p = 47 as functions of 
parameter z {see (4.2)}. 

Since every safe prime p has 

  ;            (4.12) 

distinct generators, {here  x

  mod

 is Euler’stotient func-
tion [4]}, the function g(z) generates each of them if z is 
changing on the interval [2, q]; {see (4.1) and Table 3}. 
In addition, (4.2) implies that 

 g p z  g z p

 

.        (4.13) 

gFor an illustration of (4.13), compare z

7p 
0,1, , 1k q

 in Table 

3 for z = 23 and 24; or for z = 22 and 25. 

Proposition 4.2: If  is a safe prime, then for 
every 

 

 

 3 3 1 4 1 4 mod ;
k

g p p p        

7p 

   (4.14) 

is a generator. 

5. Algorithm for a “Small” Generator 

This algorith m computes a small generator for every safe 
prime . 

Step 5.1: Compute  

   0 : 3 1 4g p 

 

;            (5.1) 

Step 5.2: Compute
 

: 0 2 1 2 ;m g              (5.2)  

Step 5.3: Compute the generator 

       : 0 1 modg m g m m p          (5.3) 

6. Validation of Algorithm (5.1)-(5.3) 

Let us consider a sequence of acceleratingly decreasing 
generators. 

   Let 20 : 3 1 4g g p    (3.3);  

 Consider         3 2z p  ;              (6.1) 

and let  

      2 21 : 10 9 4 mod ,g p z p p p       (6.2) 

where every term in (6.2) is an integer. Hence (4.10), 
(4.11) and (6.2) imply that 

     g 1 10 9 3 4 7 9 4 mod .p p p p      

Proposition 6.1: For every safe prime p there exists a 
subset S of generators      0 , 1 , ,g g g m

1,2, ,k m
 
such that for  

  holds 

   1 2g k g k k   .          (6.3) 

 
Table 3. p = 47 and corresponding generators g(z). 

z 2 3 4 5 6 7 8 9 10 11 12 13 

g(z) 43 38 31 22 11 45 30 13 41 20 44 19 

z 14 15 16 17 18 19 20 21 22 23 24 25 

g(z) 39 10 26 40 5 15 23 29 33 35 35 33 
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For instance, if p = 83, then g(0) = 62; g(1) = 60; g(2) 

= 56; g(3) = 50; g(4) = 42; g(5) = 32; g(6) = 20; g(7) = 6. 
Therefore, (6.3) implies that for  1, 2, ,k m 

  0 1 mod .    g k g k  k p       (6.4) 

As a result, we derive a monotone decreasing sequence 
of generators 

       10 1g g g   m g m 


;    (6.5) 

where an optimal m minimizes g k

   1 0 2g

, {see (6.4)}, under 
the constraints 

  2g k  k k and    .     (6.6) 

Remark 6.1: In the worst case 

   3 2p 

11g 

2g 

g m .           (6.7) 

Example 6.1: Let p = 47; then g(0) = 35 and from (6.6) 
m = 5. Hence g(m) = 5, which is the smallest generator. 
Yet,  (3.1). 1

Example 6.2: Let p = 83; then g(0) = 62 and m = 7. 
Therefore, g(7) = 6, which is the third smallest one after 
the generators 2 and 5. 

Yet,  (3.1), is the smallest generator. 1

Example 6.3: Let now p = 9522167; then g(0) = 
7141625; and from (5.2) m = 2671. Therefore, g(2671) = 
4713. Yet, g1 = 4942. 

The procedure described above finds small generators. 
In some cases, it even provides the smallest generators; 
{as in Example 6.1}. However, it does not find the smal-
lest generator for every safe prime p. In that case select 

 1in ,: mg g g m    .            (6.8) 

7. Results of Computer Experiments 

Several hundred computer experiments with the safe 
prime p randomly-selected on interval (107, 1010) confirm 
that for every p there exists a monotone-decreasing sub-
set S of generators g(0), g(1), g(2), ···, g(m) that satisfy 
the inequalities (6.3). 

For instance, if p = 9622580663, then the number m of 
generators in the subset S is equal 84952. The experi-
ments also indicate that  1g g m f with frequency 1  
0.382 and   1g m  g 0.618 with frequency . It 

implies that, if only one algorithm is used to compute a 
“small” generator, then 

2f

 g m  should be computed, be- 
cause  g 1m g  with probability close to 62%. 

Remark 6.2: Notice that 2 1
2f f , i.e., these frequen-

cies satisfy the golden ratio equality. 
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Appendix 

Alternative Search for Small Generators 

Consider a safe prime ; 11p 

 : 5 2;z p 

 

 

and let 

   
 4 mod .p

 11 mod 4 ;p p

2

2

2 :

14 25

h p z

p p

 

  
    (A.1) 

Since every term in (A.1) is an integer, therefore now,  
2             (A.2) 

and 

 2 11 mod 0p p p .          (A.3)  

   Hence  3 25 4 mo2 dph p  .  

 : 2 1 2z p m  In general, for ;         (A.4)   

       2
4 5 2 1 4 mod .h m m p m p       (A.5) 

Thus,  

     2 1 6 mod .h m h m m p        (A.6) 

  Since 2 6 0h g  , therefore (A.6) and (6.4) pro-
vide the same results. 
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