
Int. J. Communications, Network and System Sciences, 2012, 5, 715-719
http://dx.doi.org/10.4236/ijcns.2012.511074 Published Online November 2012 (http://www.SciRP.org/journal/ijcns)

Deterministic Algorithm Computing All Generators:
Application in Cryptographic Systems Design

Boris S. Verkhovsky
Computer Science Department, New Jersey Institute of Technology,

University Heights, Newark, USA
Email: verb73@gmail.com

Received September 27, 2012; revised November 4, 2012; accepted November 8, 2012

ABSTRACT

Primitive elements play important roles in the Diffie-Hellman protocol for establishment of secret communication keys,
in the design of the ElGamal cryptographic system and as generators of pseudo-random numbers. In general, a determi-
nistic algorithm that searches for primitive elements is currently unknown. In information-hiding schemes, where a pri-
mitive element is the key factor, there is the freedom in selection of a modulus. This paper provides a fast deterministic
algorithm, which computes every primitive element in modular arithmetic with special moduli. The algorithm requires

at most digital operations for computation of a generator. In addition, the accelerated-descend algorithm

that computes small generators is described in this paper. Several numeric examples and tables illustrate the algorithms
and their properties.

 2log p

1 1h p  

modx

Keywords: Diffie-Hellman Key Exchange; ElGamal Cryptosystem; Generator; Generator of Pseudo-Random Numbers;

Information Hiding; Primitive Element; Safe Prime

1. Introduction and Basic Definitions

To ensure a high level of crypto-immunity of some
cryptographic systems, it is necessary to select a system
parameter g (called a primitive element) that satisfies
certain conditions.

The primitive elements are used in the Diffie-Hellman
secret key establishment (DHKE) protocol [1] and in the
ElGamal algorithm [2] for secure exchange of informa-
tion via open channels. They are also used in the design
of generators of pseudo-random numbers [3].

In modular arithmetic, a primitive element g modulo p
is an integer having the property that every integer h co-
prime with p can be expressed as a power of g modulo p.

Therefore, powers of g generate all non-zero elements
of the multiplicative group of integers modulo p.

Definition 1.1: If an integer g has a property that for
every integer there exists a corresponding
integer x such that

g p h , (1.1)

then g is called a primitive element (generator, in short)
and x is called the discrete logarithm of h to the base g
modulo p.

For every prime p there exist several generators. For
instance, if p = 31, then g = 3, 11, 12, 13, 17, 21, 22 and
24 are generators.

Leonhard Euler discovered the primitive elements, and
Carl F. Gauss described their properties in [4]. A mathe-
matically-oriented reader can find further results in [5,6].

The elliptic curve cryptography (ECC), initially de-
scribed in [7,8], is an analogue of the ElGamal protocol.
As a result, the ECC also requires selection of a point G
on the elliptic curve, which is an analogue of the genera-
tors in cyclic groups based on real integers. However, an
efficient algorithm that computes G is an open problem.

2. Verification Procedure

In order to verify whether g is a generator for prime p,
consider all factors of 1p  .

Proposition 2.1: Suppose

1 2
1 21 mee e

mp f f f  

2kf  1ke 

 

; (2.1)

where every integer and every integer ; if

1 mod 1kp fg p 

1, 2, ,k m

; (2.2)

holds for every  

1 70 2 5 7p

, then g is a generator [9].
Example 2.1: Suppose p = 71; let us find a generator.

Since     
35 mod 71 1;g

, then g is a generator if and
only if 

14 mod 71 1;g  and (2.3) 10 mod 71 1.g 

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 716

Table 1 shows values of mod 71.ng

1p 



 
Since g = 7 satisfies every condition in (2.3), therefore,

after fifteen exponentiations we find that it is the genera-
tor for p = 71.

Although the conditions (2.2) are straight-forward to
verify, if m is large, then (2.2) requires factorization of

 [10] and m exponentiations for each potential can-
didate. Also, if at least one of these conditions does not
hold, it is necessary to consider the next candidate. In
general, non-deterministic algorithms are typical for var-
ious problems in modular arithmetic.

3. Two Deterministic Algorithms

In information-hiding schemes, where a primitive ele-
ment is necessary, there are alternatives for selecting a
prime modulus.

Definition 3.1: If both p and 1 2p 



 are primes,
then p is called a safe prime [9].

Example 3.1: Integers 5, 7, 11, 23, 47, 59, 83, 107, 167,
179, 227, 263, 347, 863, 9839, 6935459, 8331923 and
9522167 are examples of safe primes. Although the
search for safe primes is not the goal of this paper, the
following properties of safe primes eliminate numerous
false candidates: p mod 20 = 3 or 7 or 19, otherwise

1 2p 

7p 

 is not a prime.
A non-deterministic algorithm for the selection of safe

primes is provided in [9] {see 4.86 Algorithm}.
Proposition 3.1: If is a safe prime, then

2
:1g p p     ; (3.1)

is a generator.
Remark 3.1: Although (3.1) does not always compute

the smallest generator, its value is small in comparison

with p:  1
= 2g O p .

Indeed, 12 2  2 3g p   

 7, 23,47,167

. (3.2)

Moreover, if , then p 

 3 3,7,11, 23 .

 11,83, 227

1 2.g 

7p 

1 2 2g p    

If , then for every p p 

Proposition 3.2: If is a safe prime, then

2 3 1 4g p  ; is a generator. (3.3)

Proofs of both propositions are provided in the next
section.

Table 2 provides fifteen examples of safe primes and
three corresponding generators for each of them. For
every safe prime, the procedures (3.1), (3.3) as well as
(6.4), described in the sixth section, are deterministic and
require at most one integer multiplication. As a result, in
the ElGamal algorithm, the generator can be periodically
renewed for enhancement of communication security.
Notice that in Table 2 for p = 11, 23, 47, 59, 167, 179
and 347  1g ;g m and for the rest of these primes it
is otherwise, i.e.,  1 .g g m

7p 

2 2z p

4. Algorithm Computing All Generators

Both Propositions 3.1 and 3.2 are special cases of more
general proposition.

Proposition 4.1: Let be a safe prime; then for
every integer z that satisfies the inequalities

   ; (4.1)

 2 modg p z p 

1 2p q

; (4.2)

is a generator.
Proof: Definition 3.1 implies that for a safe prime

; (4.3)  

where q is an odd prime. Therefore, g is a generator be-
cause by Fermat’s Little Theorem [3,4]

     2 11 1 mod
q qq pg p z z p     

   
22 2 4 mo1 dg z z pp   

 (4.4)

and . (4.5)

Table 1. Choice of generator for p = 71.

g\n n = 10 n = 14 n = 35

g = 2 30 54 1

g = 3 48 54 1

g = 5 1 57 1

g = 6 20 5 1

g = 7 45 54 70

Table 2. Safe primes and corresponding generators.

p 11 23 47 59 83 107 167 179 227 263 347 863 983 2063 9839

1g 2 7 11 10 2 7 23 10 2 7 23 22 22 38 38

 0g

 

 8 17 35 44 62 80 125 134 170 197 260 647 737 1547 7379

g m 2 5 5 2 6 8 15 2 14 15 20 47 35 65 69

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 717

Suppose that (4.5) does not hold, i.e., there exists at

least one , for which z   4 1 modZ Z p

 2 mod1 .1 0p 

 mo ;1 d p 

.

Therefore, it implies that

   4 1 1Z Z Z Z     (4.6)

However, none of three factors in (4.6) are congruent
with zero modulo p: the first two are excluded by the
constraints in (4.1); and the case

2Z (4.7)

is also infeasible, since by Euler’s criterion of quadratic
residuosity [4,9]

    1 2
1 1

  mod 1
p q

p  

1



; (4.8)

which implies that does not have a square root
modulo p. In other words, z in (4.7) has no real integer
solution. Q.E.D.

Proof of Proposition 3.2: It is easy to verify that (3.3)
is a special case of (4.2) for z = q. Indeed, consider

  
     

4

4 modp p

 


 
 

 23 mod 4 0 

 23 mod 0p 

   1p q 

2 2

2

2 1

3 1 3

p q p p p

p p

    

   
 (4.9)

Since for every safe prime p mod 4 = 3 holds, then

p p . (4.10)

In addition,

p p . (4.11)

Because the last term in (4.9) is an integer, therefore,
(4.9)-(4.11) imply (3.3). Q.E.D.

Table 3 lists all generators for p = 47 as functions of
parameter z {see (4.2)}.

Since every safe prime p has

  ; (4.12)

distinct generators, {here  x

  mod

 is Euler’stotient func-
tion [4]}, the function g(z) generates each of them if z is
changing on the interval [2, q]; {see (4.1) and Table 3}.
In addition, (4.2) implies that

 g p z  g z p

 

. (4.13)

gFor an illustration of (4.13), compare z

7p 
0,1, , 1k q

 in Table

3 for z = 23 and 24; or for z = 22 and 25.

Proposition 4.2: If is a safe prime, then for
every 

 

 

 3 3 1 4 1 4 mod ;
k

g p p p        

7p 

 (4.14)

is a generator.

5. Algorithm for a “Small” Generator

This algorith m computes a small generator for every safe
prime .

Step 5.1: Compute

   0 : 3 1 4g p 

 

; (5.1)

Step 5.2: Compute

: 0 2 1 2 ;m g    (5.2)  

Step 5.3: Compute the generator

       : 0 1 modg m g m m p     (5.3)

6. Validation of Algorithm (5.1)-(5.3)

Let us consider a sequence of acceleratingly decreasing
generators.

   Let 20 : 3 1 4g g p   (3.3);

 Consider 3 2z p  ; (6.1)

and let

      2 21 : 10 9 4 mod ,g p z p p p     (6.2)

where every term in (6.2) is an integer. Hence (4.10),
(4.11) and (6.2) imply that

     g 1 10 9 3 4 7 9 4 mod .p p p p    

Proposition 6.1: For every safe prime p there exists a
subset S of generators      0 , 1 , ,g g g m

1,2, ,k m

such that for

 holds 

   1 2g k g k k   . (6.3)

Table 3. p = 47 and corresponding generators g(z).

z 2 3 4 5 6 7 8 9 10 11 12 13

g(z) 43 38 31 22 11 45 30 13 41 20 44 19

z 14 15 16 17 18 19 20 21 22 23 24 25

g(z) 39 10 26 40 5 15 23 29 33 35 35 33

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 718

For instance, if p = 83, then g(0) = 62; g(1) = 60; g(2)

= 56; g(3) = 50; g(4) = 42; g(5) = 32; g(6) = 20; g(7) = 6.
Therefore, (6.3) implies that for 1, 2, ,k m 

  0 1 mod .    g k g k  k p  (6.4)

As a result, we derive a monotone decreasing sequence
of generators

       10 1g g g   m g m 


; (6.5)

where an optimal m minimizes g k

   1 0 2g

, {see (6.4)}, under
the constraints

  2g k  k k and    . (6.6)

Remark 6.1: In the worst case

   3 2p 

11g 

2g 

g m . (6.7)

Example 6.1: Let p = 47; then g(0) = 35 and from (6.6)
m = 5. Hence g(m) = 5, which is the smallest generator.
Yet, (3.1). 1

Example 6.2: Let p = 83; then g(0) = 62 and m = 7.
Therefore, g(7) = 6, which is the third smallest one after
the generators 2 and 5.

Yet, (3.1), is the smallest generator. 1

Example 6.3: Let now p = 9522167; then g(0) =
7141625; and from (5.2) m = 2671. Therefore, g(2671) =
4713. Yet, g1 = 4942.

The procedure described above finds small generators.
In some cases, it even provides the smallest generators;
{as in Example 6.1}. However, it does not find the smal-
lest generator for every safe prime p. In that case select

 1in ,: mg g g m    . (6.8)

7. Results of Computer Experiments

Several hundred computer experiments with the safe
prime p randomly-selected on interval (107, 1010) confirm
that for every p there exists a monotone-decreasing sub-
set S of generators g(0), g(1), g(2), ···, g(m) that satisfy
the inequalities (6.3).

For instance, if p = 9622580663, then the number m of
generators in the subset S is equal 84952. The experi-
ments also indicate that  1g g m f with frequency 1 
0.382 and   1g m  g 0.618 with frequency . It

implies that, if only one algorithm is used to compute a
“small” generator, then

2f

 g m should be computed, be-
cause  g 1m g with probability close to 62%. 

Remark 6.2: Notice that 2 1
2f f , i.e., these frequen-

cies satisfy the golden ratio equality.

8. Acknowledgements

I express my appreciation to W. Gruver and R. Rubino
for their helpful suggestions for improvement of the ma-
nuscript. I am also grateful to E. Gerda and Y. Polyakov
for their assistance in computer experiments.

REFERENCES
[1] W. Diffie and M. E. Hellman, “New Directions in Cryp-

tography”, IEEE Transactions on Information Theory,
Vol. 22, No. 6, 1976, pp. 644-654.
doi:10.1109/TIT.1976.1055638

[2] T. ElGamal, “A Public Key Crypto-System and a Signa-
ture Scheme Based on Discrete Logarithms”, IEEE Trans-
actions on Information Theory, Vol. 31, No. 4, 1985, pp.
469-472. doi:10.1109/TIT.1985.1057074

[3] D. Knuth, “The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms”, 3rd Edition, Addison-Wesley,
Reading, 1998, pp. 18-21.

[4] C. F. Gauss, “Disquisitiones Arithmeticae”, 2nd Edition,
Springer, New York, 1986.

[5] P. Ribenboim, “The New Book of Prime Number Re-
cords”, Springer, New York, 1996.
doi:10.1007/978-1-4612-0759-7

[6] E. Bach and J. Shallit, “Algorithmic Number Theory: Vol.
1: Efficient Algorithms”, MIT Press, Cambridge, 1996.

[7] V. S. Miller, “Use of Elliptic Curves in Cryptography”,
Advances in Cryptography-CRYPTO (LNCS 218), 1986,
pp. 417-426.

[8] N. Koblitz, “Elliptic Curve Crypto-Systems”, Mathemat-
ics of Computation, Vol. 48, No. 20, 1987, pp. 203-209.
doi:10.1090/S0025-5718-1987-0866109-5

[9] A. Menezes, P. van Oorschot and S. Vanstone, “Hand-
book of Applied Cryptography”, CRC Press, Boca Raton,
1997, pp. 162-164.

[10] B. Verkhovsky, “Integer Factorization of Semi-Primes
Based on Analysis of a Sequence of Modular Elliptic Eq-
uations”, Int. J. of Communications, Network and System
Sciences, Vol. 4, No. 10, 2011, pp. 609-615.

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 719

Appendix

Alternative Search for Small Generators

Consider a safe prime ; 11p 

 : 5 2;z p 

 

and let

   
 4 mod .p

 11 mod 4 ;p p

2

2

2 :

14 25

h p z

p p

 

  
 (A.1)

Since every term in (A.1) is an integer, therefore now,
2  (A.2)

and

 2 11 mod 0p p p . (A.3)  

   Hence  3 25 4 mo2 dph p  .

 : 2 1 2z p m  In general, for ; (A.4)   

       2
4 5 2 1 4 mod .h m m p m p      (A.5)

Thus,

     2 1 6 mod .h m h m m p      (A.6)

  Since 2 6 0h g  , therefore (A.6) and (6.4) pro-
vide the same results.

Copyright © 2012 SciRes. IJCNS

