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ABSTRACT

In this paper, we present the fundamental framework of the evaluation problem under which the evaluation operator
satisfying some axioms is linear. Based on the dynamic linear evaluation mechanism of contingent claims, studying this
evaluation rule in the market driven by fractional Brownian motions has led to a dynamic capital asset pricing model. It
is deduced here mainly with the fractional Girsanov theorem and the Clark-Haussmann-Ocone theorem.
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1. Introduction

In the 1960s, Sharpe (1964), Lintner (1965) and Mossin
(1966) established the famous Capital Asset Pricing
Model (CAPM for short). The CAPM has been used and
cited in the literature over the past several decades. Some
efforts have been made to extend this model. Dybvig and
Ingersoll [1] investigated the relationship between the
linear evaluation rule and the CAPM. They proved that
the standard mean-variance separation theorem obtained
in a complete market only if all investors had quadratic
utility. In addition, the familiar CAPM pricing relation
could hold for all assets in a complete market only if ar-
bitrage opportunities existed. A description of the rela-
tionship between the linear evaluation rule and the theory
of Markowitz portfolio choice can be found in [2], which
they derived a general representation for asset prices that
displayed the role of conditioning information. This rep-
resentation was then used to examine restrictions implied
by asset pricing models on the unconditional moments of
asset payoffs and prices. An exhaustive discussion of the
equivalence of these three theories (the linear evaluation
rule, the CAPM and the theory of Markowitz portfolio
choice) was presented in [3]. Shi [4] gave a fundamental
probability model in the two-period security market.
Under some conditions, if the linear evaluation rule holds,
then there would be a stochastic discount factor. If this is
true, all three theories (CAPM, linear evaluation rule and
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Markowitz portfolio choice) are equivalent. They are ma-
inly deduced by the method of Hilbert space and stochas-
tic discount factor. Particularly, CAPM could be deduced
from the linear evaluation rule in the intertemporal mar-
ket.

Since nowadays the market fluctuates promptly and
dealings in securities require extremely high speed, no
discrete-time model could adapt to the market well.
However, the continuous-time model is regarded as a
good approximation to real scenarios. If we assume that
the model is continuous, then it facilitates the use of sto-
chastic differential equations, stochastic analysis, and so
on, to obtain some profound and concise conclusions.
The famous Black-Scholes option pricing model is a
classic issue of continuous-time finance. The fundamen-
tal theorem of asset pricing, the portfolio choice of secu-
rities and the CAPM all have their continuous-time ver-
sion. Zhou and Wu [5] deduced the dynamic CAPM
from the dynamic linear evaluation rule in the market
driven by the Levy processes. They mainly used the pre-
dictable representation property in weak form and the
Girsanov theorem of the Levy processes to obtain the
results.

Ever since the pioneering work of Hurst [6,7] and
Mandelbrot [8], the fractional Brownian motion has
played an increasingly important role in various fields
such as hydrology, economics, and telecommunications
[9-12]. In this paper, we study the dynamic CAPM in the
fractional Brownian motion environment, which repre-
sents a new perspective.

The remaining sections of this article are organized as
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follows: Some preliminaries of fractional Brownian mo-
tion are presented in Section 2. Section 3 presents the
fundamental framework of the evaluation problem under
which the evaluation operator satisfying some axioms is
linear. In Section 4, we investigate the relationship be-
tween the dynamic linear evaluation rule and the dy-
namic CAPM in the market driven by fractional Brow-
nian motions. Section 5 provides the conclusions.

2. Preliminaries of Fractional Brownian
Motion

As preparation, collecting some important results con-
cerning fractional Brownian motion is essential in this
section. Also, it is necessary to introduce notation for
further use.

Recall that if 0 < H < 1, then the fractional Brownian
motion with Hurst parameter H is a Gaussian process

{B[H ;> 0} with mean E[B[H ] =0 and covariance

{|t|2H |S|2H |t—S|2H}

where st>0 and E=E, denotes the expectation
with respect to the probability law for
B" =B" (t,w). Assume that g, is defined on the
a—algebra‘/‘( ) of subsets of Q generated by the
random variables {BIH ,t> 0} . For simplicity we assume
B, (0)=0.

If H=1/2, then B coincides with the standard
Brownian motion W,, which has independent incre-

E[B"B! |=

1
ments. If H >E’ then B has a long-range depend-

ence, in the sense that if we put:

r(n)= coV(B1 (BnH+1 B! )), then > " r(n)=co.

For any H e(0,1) the process B is self-similar in
the sense that B!! has the same law as "B for any
a >0. See [8,12] for more information about fractional

Brownian motion.
Due to these properties, B with Hurst parameter

1 .
He [5,1] has been suggested as a useful tool in many

applications [11], including finance.

Fix a Hurst constant H , %< H <1. Since H is fixed,

the probability measure is denoted by P and the filtration
is denoted by .7 . In this case we have the integral rep-
resentation [13] and the references therein):

B = [ K, (t.S)dW,,

where {W,,s> 0} is a standard Brownian motion (Wiener
process) and
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K (t.s)=Cy [EJH; (t— s)H’%

S

(H——j ju (u-s) 2du},

with C, being a constant such that
[ K (Ls)ds=1.
With this K, (t S) we associate an operator

(Kyh)(t) =] Ky (t.s)h(s)ds, 0<t <o

Recently, stochastic calculus for fractional Brownian
motion has been developed by many researchers [13,14].

2.1. Quasi-Conditional Expectation and
Fractional Girsanov Theorem

The quasi-conditional expectation is important to obtain
the main results. It was initially introduced to find the
hedging strategy in an application to finance [9]. Let f
and g be two continuous functions on [0, T]|, where
Te [0,00] is a fixed time horizon. Define

(f.g), = j;j;¢(u -v) f,g,dudv,

2H-2

where ¢(x)=2H(2H -1 |X|
When f =g, denote: ||f||t =<f,f>t.

Apparently, for any te[0,T],(f,g), isa Hilbert sca-
lar product. Let ®, be the completion of the continuous
functions under this Hilbert norm. The elements in ©,
may be distributions [15].

Forany te(0,T], let 2" denote the set of all real
symmetric functions f, of n variables on [0,t]" such
that

Zn .[ot]Z”H¢
( LA n)

It is known [15] that # is a subspace of ©, and
they are not identical. Let L (Q,. 7, P) denote the set
of Fel’(Q, /,P) such that F has the following chaos
expansion: F=>"1,(f,),

n=0

0| fa(s58,))

ds ---dsdr,---dr, <oo

where f, when restricted to [O,t]n is in H®" for

all0<t<T and
I”(f”):.[ostl,---,tng f”( T “)dB‘ dB‘:

is the multiple stochastic integral (for the multiple inte-
grals and the chaos expansion, [14,16].

Definition 2.1 If F e (Q,./7,P), then the quasi-
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conditional expectation [7] is defined as
E[F| 4]= Z;)|n(fn|[<§j;]),
P

where
I ®n

[0.1] (tl""stn) = I[o,t] (tl ) I[O,t]tn'

The following Lemma 2.1 (resp. Lemma 2.2) is from
[17] Theorem 3.9 (resp. Theorem 3.11).

Lemma 2.1 Let o be continuous such that ||a||t is
an increasing function. Denote & =g(7;), wheregisa
measurable real valued function of polynomial growth
and 7, = _[OT o dB{'. Then E‘é[ﬂ.f}r <ElE[.

The following lemma is an analogue of the Striebel-
Kallianpur formula. It is called a form of fractional Gir-
sanov theorem.

Lemma22Let f, and o, be continuous functions

of sin [0, T]and 7, = I()T o dB!'.
Consider the translation of B :

B =B/ +| fds 0<t<T.

Let Q denote the probability measure given by

99— exp{-[ (1] ) shw

—%LT(K;IJO f dr )2 (s)ds}
Then B[H ,0<t<T}; is a fractional Brownian mo-
tion under Q. If h satisfies the integral equation
o, I(:¢(t,v) h,dv + h.[;¢(t,v) o,dv+ fo, =0,
0<t<T,

then for any measurable function g of exponential growth,

éQ[g(UT )|/T:| :%9

T L2
where p; =exp UO h.dB!" _E"h"Tj

The above two lemmas are indispensable to the main
results.

2.2. A fractional Clark-Haussmann-Ocone (CHO)
Theorem

Finally let us review a fractional version of the Clark-
Haussmann-Ocone (CHO) representation obtained in
Theorem 4.5 in [9].

Lemma23Let G(w)e L*(Q,./,P) be ./ -mea-
surable, then E[DtG|./?ﬁ exists. Define

w(t,w)= E[DIG|. /T]
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Here D,G= j—G(t,a)) is the stochastic gradient (Mal-
2

liavin derivative) of G at t. Then,
.
G(w)= E[G]+jO v (t,0)B"

Refer to Section 4 in [9] for details.

3. Mechanism of Evaluation of Contingent
Claims

The mathematical formulation to the evaluation problem
is provided below.

Let (©,./,P) be a complete probability space de-
fined in Section 2, and (-/),__, =(,/?(H) , afil-
tration satisfying the usual conditions, ostsT
1=,/ =0{@,Q}. Fix a time interval [0,T]
and set

L?(P)={¢&: & is. /7 -measurable random variable,

and E[[¢]] < =}

For all &,¢, € ’(P), define the inner product of
these two random variables E[£&,]. Then L (P) isa
Hilbert space, which denotes the subspace of all contin-
gent claims. L*(Q,.4,P) is the space of ./ -mea-
surable and square-integrable random variables.

For all contingent claims ¢ e L*(P), denote the eva-
luated value by =, (£),te[0,T].

At each time t,

T, LZ(P)—> LZ(Q,./?,P)

is an evaluation operator. We will present the following
axiomatic hypotheses of the evaluation operator:

(H1) =,(0)=0.

(H2) If & e *(P).i :1,2,~--,i§i =¢el’(P),

then ﬂo((f):g”o (&)

The following lemma is from [5] Lemma 2.1.

Lemma 3.1 For m,(-), hypotheses (H1) and (H2)
hold if and only if it is a continuous linear function de-
fined on L*(P)

(H3) Foreach £eL’(P), if £20 as.,then
n,(£)=0, if in addition £>0 as, P(&>0)>0,
then m,(£)>0.

Remark 3.1 The financial meaning of hypothesis (H1)
is self evident. Hypothesis (H3) is similar to that there is
no arbitrage in the market. Hypotheses (H1)-(H3) are the
static properties of the linear evaluation operator.

Remark 3.2 From Lemma 3.1, we know that m, isa
continuous linear function defined on the Hilbert space

L*(P). It then follows from (H3) and the Riesz repre-
sentative theorem that: there exists pe L’ (P), p>0
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as., such that
m, (&)= E[pé], VEe L’ (P).

Since p e L’(P), by [16] Theorem 3.1 and 3.2, with-
out loss of generality, we may assume that there exists a
Borel measurable (deterministic) function h; such that

T R
p= exp(jo h,dB; _Euh"T j
(H4) For each &eL’(P),
m (£) _ E[pz]- 4]
(1) E[p|'71
Remark 3.3 Hypothesis (H4) is the dynamic charac-
teristic of the linear evaluation rules, which is shown
uniquely in this paper. For the financial meaning of
equation 3.1, you may see [5] Remark 2.2.

Now comes the explicit form of this evaluation opera-
tor in the market driven by fractional Brownian motion.

te[o,T]. 3.

4. Deduce the Dynamic CAPM from the
Dynamic Linear Evaluation Rule

4.1. The Explicit Form of the Evaluation
Operator

Theorem 4.1 Let o be continuous such that ||a||t is
an increasing function. Denote ¢& = g(77T ), where g is
measurable real valued functio_rrl of polynomial growth
such that & e L*(P)and 7y = [ oy dBl'. If there exists
a continuous function f_ satisfying the integral equa-
tion

mﬁ¢(t,V) h,dv+ hﬁ¢(t,v)avdv+ f.o, =0,
0<t<T,

then let Q denote the probability measure given by

ook )

_%( J'fdr) )ds}

We have

o1 i

4.1)
j (sw)fds, 0<t<T,
where y (s,o)=E° [DS ( E°[¢4) /t‘])‘ /;].
dG . . .
Here DG = d—(s, a)) is the stochastic gradient (Mal-
1)

liavin derivative) of G at S.
Proof. Let o be continuous function such that ||0||t
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is an increasing function. Denote &=g(7;), where g
is measurable real valued ﬁmctlon of polynom1a1 growth
such that ¢ e L*(P)and 7, = J o dB!'. By Lemma 2.2,
we know that if there exists a continuous function f
satisfying the integral equation

t t
o[ p(tv)hav+h [ g(tvio,dv+ fo, =0,
0<t<T,
then consider the translation of B :
BY=B"+[ f.ds 0<t<T

Let Q denote the probability measure given by
dQ K-
d_P = exp{ I ( I f dl’) )d

_%.[(;I—(Kljil.[o f dr )2 (s)ds}

Then {B" ,0<t< T} is a fractional Brownian mo-
tion under Q. It follows from (3.1) and Lemma 2.2 that

o) B[] o,
) e ekl

Let G=E®[&. ;]. Define

y(so)= EQ[DSG|./§], 0<s<t,

where D.G= dG (s,@) is the stochastic gradient (Mal-

liavin derivative) of G at s. By Lemma 2.1 and 2.3, we
obtain that

G(w)=E°[G]+ [,y (s.0)B!
Thus,
m (£)
m (1)
- eo[E°[e] A1+ v (soh(Bl + ] fudu)

=EQ[EQ[§|./T]] _[ (s,a))dBH+j w)fds.

The theorem is proved.
Suppose that m, (1)=1. Remark Equation (4.1) can
be formally expressed as

dr, (&) =y (t,)dB" +y (t, o) fdt. (4.2)
4.2. Deduce the Dynamic CAPM from the
Dynamic Linear Evaluation Rule

In fact, the CAPM attempts to relate R the one-period
rate of return of a specified security i, to R, the one-
period rate of return of the entire market (as measured,
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say, by the Standard and Poor’s index of 500 stocks). If
r, is the risk-free interest rate (usually taken to be the
current rate of a US Treasury bill) then the model as-
sumes that, for some constant /3,

R=r +ﬂi(R’n_rf)+€i’

where & 1is a normal random variable with mean 0 that
s values of R and R, ber andr,(resp.), the CAPM

I
model (which treats r; as a constant) implies that

h=r +ﬂi(rm_rf)

or, equivalently, that r, —r, =S (rm - ), where
B =Cov[R,R,]/Var[R,]. That is, the difference be-

tween the expected rate of return of the security and the
risk-free interest rate is assumed to equal S times the
difference between the expected rate of return of the
market and the risk-free interest rate.

From the above formula, we know that the rate of re-
turn of a single security is determined by the relationship
between this single security and the market portfolio.

Assume that the non-risk interest rate is 0. Equation
(4.2) indicates that the instantaneous return of the con-
tingent claim can be decomposed into two parts. Con-
taining fractional Brownian motion, the first term to the
right side denotes the stochastic volatility and !//(t,a))
denotes the volatility rate. The volatility rate changes in
compliance with the change of the contingent claim ¢.
In the other term, f is determined by the evaluation op-
erator m, itself and it reflects the mechanism of the
market. y (t,w) reflects the extent to which the instan-
taneous return of the contingent claim and the return of
the market portfolio are related. Therefore, the instanta-
neous return of the contingent claim is mainly deter-
mined by this dependence. Equation (4.2) can be re-
garded as another version of CAPM. Accordingly, Equa-
tion (4.2) indicates that the instantaneous return of the
contingent claim is mainly determined by the extent to
which the instantaneous return of the contingent claim
and the return of the market portfolio are related.

From the discussion above, we deduce the dynamic
CAPM from the dynamic linear evaluation rule in the
market driven by fractional Brownian motion.

5. Conclusion

In this paper, we first give some preliminaries of frac-
tional Brownian motion. Then, we present the fundamen-
tal framework of the evaluation problem under which the
evaluation operator satisfying some axioms is linear.
Based on the dynamic linear evaluation mechanism of
contingent claims, studying this evaluation rule in the
market driven by fractional Brownian motions has led to
a dynamic capital asset pricing model. It is deduced here
mainly with the fractional Girsanov theorem and the

Copyright © 2012 SciRes.

Clark-Haussmann-Ocone theorem.
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