
Journal of Mathematical Finance, 2012, 2, 315-320 
http://dx.doi.org/10.4236/jmf.2012.24034 Published Online November 2012 (http://www.SciRP.org/journal/jmf) 

From Dynamic Linear Evaluation Rule to Dynamic CAPM 
in a Fractional Brownian Motion Environment* 

Qing Zhou, Chao Li 
School of Science, Beijing University of Posts and Telecommunications, Beijing, China 

Email: zqleii@gmail.com, 907871377@qq.com 
 

Received May 29, 2012; revised June 3, 2012; accepted June 17, 2012 

ABSTRACT 

In this paper, we present the fundamental framework of the evaluation problem under which the evaluation operator 
satisfying some axioms is linear. Based on the dynamic linear evaluation mechanism of contingent claims, studying this 
evaluation rule in the market driven by fractional Brownian motions has led to a dynamic capital asset pricing model. It 
is deduced here mainly with the fractional Girsanov theorem and the Clark-Haussmann-Ocone theorem. 
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1. Introduction 

In the 1960s, Sharpe (1964), Lintner (1965) and Mossin 
(1966) established the famous Capital Asset Pricing 
Model (CAPM for short). The CAPM has been used and 
cited in the literature over the past several decades. Some 
efforts have been made to extend this model. Dybvig and 
Ingersoll [1] investigated the relationship between the 
linear evaluation rule and the CAPM. They proved that 
the standard mean-variance separation theorem obtained 
in a complete market only if all investors had quadratic 
utility. In addition, the familiar CAPM pricing relation 
could hold for all assets in a complete market only if ar-
bitrage opportunities existed. A description of the rela-
tionship between the linear evaluation rule and the theory 
of Markowitz portfolio choice can be found in [2], which 
they derived a general representation for asset prices that 
displayed the role of conditioning information. This rep-
resentation was then used to examine restrictions implied 
by asset pricing models on the unconditional moments of 
asset payoffs and prices. An exhaustive discussion of the 
equivalence of these three theories (the linear evaluation 
rule, the CAPM and the theory of Markowitz portfolio 
choice) was presented in [3]. Shi [4] gave a fundamental 
probability model in the two-period security market. 
Under some conditions, if the linear evaluation rule holds, 
then there would be a stochastic discount factor. If this is 
true, all three theories (CAPM, linear evaluation rule and 

Markowitz portfolio choice) are equivalent. They are ma- 
inly deduced by the method of Hilbert space and stochas-
tic discount factor. Particularly, CAPM could be deduced 
from the linear evaluation rule in the intertemporal mar- 
ket. 

Since nowadays the market fluctuates promptly and 
dealings in securities require extremely high speed, no 
discrete-time model could adapt to the market well. 
However, the continuous-time model is regarded as a 
good approximation to real scenarios. If we assume that 
the model is continuous, then it facilitates the use of sto-
chastic differential equations, stochastic analysis, and so 
on, to obtain some profound and concise conclusions. 
The famous Black-Scholes option pricing model is a 
classic issue of continuous-time finance. The fundamen-
tal theorem of asset pricing, the portfolio choice of secu-
rities and the CAPM all have their continuous-time ver-
sion. Zhou and Wu [5] deduced the dynamic CAPM 
from the dynamic linear evaluation rule in the market 
driven by the Levy processes. They mainly used the pre-
dictable representation property in weak form and the 
Girsanov theorem of the Levy processes to obtain the 
results. 

Ever since the pioneering work of Hurst [6,7] and 
Mandelbrot [8], the fractional Brownian motion has 
played an increasingly important role in various fields 
such as hydrology, economics, and telecommunications 
[9-12]. In this paper, we study the dynamic CAPM in the 
fractional Brownian motion environment, which repre-
sents a new perspective. 

*This research is supported by the Natural Science Foundation of 
China under grants 11001029 and 10971220, the Fundamental Re-
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follows: Some preliminaries of fractional Brownian mo-
tion are presented in Section 2. Section 3 presents the 
fundamental framework of the evaluation problem under 
which the evaluation operator satisfying some axioms is 
linear. In Section 4, we investigate the relationship be-
tween the dynamic linear evaluation rule and the dy-
namic CAPM in the market driven by fractional Brow- 
nian motions. Section 5 provides the conclusions. 

2. Preliminaries of Fractional Brownian  
Motion 

As preparation, collecting some important results con-
cerning fractional Brownian motion is essential in this 
section. Also, it is necessary to introduce notation for 
further use.  

Recall that if 0 < H < 1, then the fractional Brownian 
motion with Hurst parameter H is a Gaussian process  

 , t 0H
tB    with mean  and covariance  0H

tE B   

 2 2 21

2

H H HH H
t sE B B t s t s         

where  and , 0s t 
H

E E  denotes the expectation 
with respect to the probability law for  

 t,H H .B B  Assume that H is defined on the 
bra -alge H

 HB

F

0 0.

 of subsets of  generated by the 
random variables . For simplicity we assume 
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 , t 0H
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If 1 2H  , then H
t  coincides with the standard 

Brownian motion , which has independent incre- 
B

tW

ments. If 
1

,
2

H   then H
tB  has a long-range depend- 

ence, in the sense that if we put:  

    1 1cov , ,H H H
n nr n B B B   then  1n
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


  .  

For any  the process  0,1H  H
t  is self-similar in 

the sense that 
B

H
tB  has the same law as H HB t  for any 

0.   See [8,12] for more information about fractional 
Brownian motion. 

Due to these properties, t
HB  with Hurst parameter  

1
,1

2
H


 


  has been suggested as a useful tool in many  

applications [11], including finance. 

Fix a Hurst constant H , 
1

1.
2

H   Since H is fixed,  

the probability measure is denoted by P and the filtration 
is denoted by F . In this case we have the integral rep-
resentation [13] and the references therein): 
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, d ,
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where s is a standard Brownian motion (Wiener 
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with HC  being a constant such that 

 1 2

0
1, d 1.HK s s   

With this  ,HK t s
t

 we associate an operator 

      
0

, d , 0H HK h t K t s h s s t .     

Recently, stochastic calculus for fractional Brownian 
motion has been developed by many researchers [13,14]. 

2.1. Quasi-Conditional Expectation and  
Fractional Girsanov Theorem 

The quasi-conditional expectation is important to obtain 
the main results. It was initially introduced to find the 
hedging strategy in an application to finance [9]. Let f 
and g be two continuous functions on [0, T], where 

 0,T    is a fixed time horizon. Define 

 
0 0

, d
t t

u vt
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where     2 2
2 2 1 .
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2
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Apparently, for any  0, , ,
t

t T f g  is a Hilbert sca-
lar product. Let t  be the completion of the continuous 
functions under this Hilbert norm. The elements in t  
may be distributions [15]. 
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t
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that 
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It is known [15] that tH  is a subspace of t  and 
they are not identical. Let  denote the set 
of 

2 , ,L  F Pˆ

 2 , ,F L  F P  such that F has the following chaos  

expansion:  
0
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n

F I f

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Definition 2.1 If ,

 

is the multiple stochastic integral (for the multiple inte-
grals and the chaos expansion, [14,16]. 

  2ˆ , ,F L P  F  then the quasi-  
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co n [7] is defined as nditional expectatio

  0,
ˆ n

t n n tE F I f I


    F
0

,
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where 

.         1 10,t 0, 0,, ,n
n nt tI t t I t I t    

The following Lemma 2.1 (resp. Lemma 2.2) is from 
[17] Theorem 3.9 (resp. Theorem 3.11). 

Lemma 2.1 Let   be continuous such that 
t

  is 
an increasing function. Denote g   ,T  where a 
measurable real valued function of polynomial growth  

and 
0

d .
T

g is 

H
T s sB    Then 

2 2ˆ .E E E    F  

Th ma is ae following lem n analogue of the Striebel- 
Kallianpur formula. It is called a form of fractional Gir-
sanov theorem. 
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above two lemmas are indisp sable to the main 
resu

ractional Clark-Haussmann-Ocone (CHO)  

Fina view a fractional version of the Clark- 

The en
lts. 

2.2. A f
Theorem 

lly let us re
Haussmann-Ocone (CHO) representation obtained in 
Theorem 4.5 in [9]. 

Lemma 2.3 Let    2 , ,G L P   F  be TF -mea- 
surable, then Ê D G t t F
 

  exists. Define  
ˆ,t E D G    F  t t

Here  d
,

G
D G t 

dt 
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liavin derivative) of G at t. Then, 

 ic gradient (M

     , d
0

T H
tG E G t    B  

Refer to Section 4 in [9] for details. 

3. Mechanis ntingent  

is low. 



m of Evaluation of Co
Claims 

The mathematical formulation to the evaluation problem 
provided be
Let  , , P F  be a complete probability space de-

fined in Section 2, and     0
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t tt T
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P
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s. 
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The following lemma is from [5] Lemma 2.1. 
Lemma 3.1 For  0π ,  hypotheses (H1) and (H2) 

ho ction de-
fin

ld if and only if it is a continuous linear fun
ed on  2L P  
(H3) For each  2 ,L P   if 0   . .a s , then  
 0π 0  , if in addition 0  . .,a s   0 >0,P    

then  0 0 
Remark 3.1 The financial mean f hy thesis (

is self ev ent. Hypothesis (H3
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π . 
ing o po H1) 

id ) is similar to that there is 

 

itrage in the market. Hypotheses (H1)-(H3) are the 
static properties of the linear evaluation operator. 

Remark 3.2 From Lemma 3.1, we know that 0π  is a
continuous linear function defined on the Hilbert space 

 2L P . It then follows from (H3) and the Riesz repre-
sentative theorem that: there exists  2L P    , 0
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. .a s , such that 
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uation 3.1, you may see [5] Remark 2.2. 
Now comes the explicit form of this evaluation opera- 

tor in the market driven by fractional Brownian motion. 

 Deduce the Dynamic CAPM from the  
Dynamic Linear Evaluation Rule 

4.1. The Explicit Form of the Evaluation  
Operator 
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4.2. Deduce the Dynamic CAPM from 
Dynamic Linear Evaluation Rule 

pe
rate  the  
period rate of return of the entire m easured

the  

In fact, the CAPM attempts to relate iR  the one-
of return of a specified security i, to mR

 (as market
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say, by the Standard and Poor’s index of 500 stocks). If 

fr  is the risk-free interest rate (usually tak  to be the 
current rate of a US Treasury bill) then the model as- 
sumes that, for some constant ,i

en

  

  ,i f i m f iR r R r      

where i  is a normal random riab va
andir

le with mean 0 that 
u of  the CAPM 

odel
s val
m

es 
 (whi

 and be resp ,i m mR R r
ch treats 

.

fr  t) impas a constan lies that 

 r  

or, equivalently, that   ,i f i m fr r r    where  

i f fr r  i mr

r

   Cov , Var .R  at is, he i i mR R difference be- 

te of re f the s  the 
M Th

turn o

 t

tween the expected ra ecurity and
risk-free interest rate is assumed   to equal i  times the 

ected rate of return of the diffe

tai

rence between the exp

e

arket portfolio. 

market and the risk-free interest rate. 
From the above formula, we know that th  rate of re-

turn of a single security is determined by the relationship 
between this single security and the m

Assume that the non-risk interest rate is 0. Equation 
(4.2) indicates that the instantaneous return of the con-
tingent claim can be decomposed into two parts. Con-

ning fractional Brownian motion, the first term to the 
right side denotes the stochastic volatility and  ,t   
denotes the volatility rate. The volatility rate changes in 
compliance with the change of the contingent claim  . 
In the other term, f is determined by the evalua
erator πt  itself and it reflects the mechanism of the 
market.  ,t

tion op-

   reflects the extent to which the insta -
taneous return of the contingent claim and the return of 
the ma t portfolio are related. Therefore, the instanta-
neous re the contingent claim is mainly deter-
mined by this dependence. Equation (4.2) can be re-
garded as another version of CAPM. Accordingly, Equa-
tion (4.2) indicates that the instantaneous return of the 
contingent claim is mainly determined by the extent to 
which the instantaneous return of the contingent claim 
and the return of the market portfolio are related. 

From the discussion above, we deduce the dynamic 
CAPM from the dynamic linear evaluation rule in the 
market driven by fractional Brownian motion. 

n

rke
turn of 

s of frac-
otion. Then present the fundamen- 
e evaluati blem under which the
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