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ABSTRACT

In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives
are s-convex and apply these inequalities to discover inequalities for special means.
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1. Introduction

The following definition is well known in the literature.
Definition 1.1. A function f:/cR= (—oo,oo) —>R is
said to be convex if
f(Ax+(1=2)y)<Af(x)+(1-2) f (¥)
holds forall x,ye/ and A€[0,1].
In [1,2], among others, the concepts of so-called quasi-
convex and s-convex functions in the second sense was
introduced as follows.

Definition 1.2 ([1]). A function
fiIcR—>R,=[0,0) issaid to be quasi-convex if

S (Ax+(1=2)y) <sup{f (x). f (»)}
holds forall x,ye/ and A€[0,1].

Definition 1.3 ([2]). Lets €(0,1]. A function
f:R, >R, issaid to be s-convex in the second sense
if
f(Ax+(1-2)y) <2 f(x)+(1-2) f(»)
forall x,yel and A€ [0,1] .
If f:IcR—>R is a convex function on [a,b]

with a,bel and a<b, Then we have Hermite-Har-
damard’s inequality

atb)_ 1 b _f(a)+f(b)
f( > j_b_afaf(x)dx_ : . (LD

Hermite-Hadamard inequality (1.1) has been refined or
generalized for convex, s-convex, and quasi-convex fun-
ctions by a number of mathematicians. Some of them can
be reformulated as follows.

Theorem 1.1 ([3, Theorems 2.2 and 2.3]). Let
f:I'cR—>R be a differentiable mapping on [,
a,bel’ with a<b.
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(O If |f’(x)| is convex on [a,b], then
b b
|f(a)+f( )_biaj‘af(x)dx‘

2
_(b-a)(r(@)+]7'))
- 8
(2) If the new mapping | /(%)
[a,b] for p>1,then
[f(a)+r(b) 1 p
- dx
2 e AC)
g b—a |f'(a)|l’/(1"1) +|f/(b)|l’/(1"])
2(p+1)"” 2
Theorem 1.2 ([4, Theorems 1 and 2]). Let
f:IcR—>R be a differentiable function on /° and

abel with a<b,andlet g=1.1If |f'(x)" is con-
vexon [a,b], then

(1.2)

p/(p-1) .
| is convex on

1-1/p

+ b 1 b
If(a)zf( )_b_aja.f(x)dx
p ¢ e 1.3
G-l o]t
T4 2
and
a+b 1 b
‘f( 5 j—ELf(x)dx
Va (1.4)

(b=a)||/"(a)]" +[ 1" (B)
4 2

<

Theorem 1.3 ([5, Theorems 2.3 and 2.4]). Let
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f:IcR—>R. be differentiable on I°, a,bel with

a<b, and let p>1. If |f |p " is convex on
[a b] then

b—a( 4 N (el P
6 (p+1j X{Df (@™ 43 @) ]

p/(p-1 , p/(p-1 (p=1)/p
e ]

and
el ()

Sb;a(p+1j (17" (@)|+]' ().

Theorem 1.4 ([6, Theorems 1 and 3]). Let
f:IcR,—>R be differentiable on /° and a,bel
with a<b.

(D) If |f’(x)|q is s-convex on [a,b] for some fixed
s € (O,l] and ¢ >1, then

|f(a)+f(b)_ 1 ij(x)dx‘

(1.5)

| 2 b-a
L s Ve
S(b—a)(lj a| 2+(1/2) (1.6)
2 2 (s+1)(s+2)
q , q Ve
7@l e ]
Q) If |f’(x)|q is s-convex on [a,b] for some fixed

s€(0,1] and ¢>1,then

HESSTERRI N

A ()
oV
-z

.
+{f(a+bj (b |IM}

Theorem 1.5 ([7, Theorem 2]). Let f:IcR—>R
be an absolutely continuous function on [° such that
f"eL([a,b]) for abel” with abel . If [f"(x)
is quasi-convex on [a,b], then

IS
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dx—b;a{f(a)+4f(a;bj+f(b)}‘
SM{maX{VW(G)L et j‘}

1152
+max{f’"(a+bJ Ve b)|H

In recent years, some other kinds of Hermite-Hadamard
type inequalities were created in, for example, [8-17],
especially the monographs [18,19], and related refer-
ences therein.

In this paper, we will find some new inequalities of
Hermite-Hadamard type for functions whose third deri-
vatives are s-convex and apply these inequalities to dis-
cover inequalities for special means.

2. A Lemma

For finding some new inequalities of Hermite-Hadamard
type for functions whose third derivatives are s -convex,
we need a simple lemma below.

Lemma 2.1.Let f:/ cR— R be a three times dif-
ferentiable function on I° with a,bel and a<b. If
f"eL[a,b], then

f(a );‘f( -— aJ' flx 1_2a[f'(b)—f'(a)}
- (bIZa)3 Iot(l_t)(zt—l)f"’(ta+(1—t)b)dt.
Proof. By integrating by part, we have 2.1
L (1=0)(2=1)7* (1a+ (1-1)b)a
~ L et ()
__ -]
(b—a)2
+ (b_la)z [[(-126+6) f"(1a+(1-1)b)dt
(b—a)2
_(b—la)3'[ —121+6)df (ta+(1-1)b)
__Lre)=r@], slr(@)-s )]
(b a) (b- )
—( —1)b)dt
_r®)-r@] slr@)re)]
(b—a)2 (b a)
12 b
(b-a)’
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The proof of Lemma 2.1 is complete.

3. Some New Hermite-Hadamard Type
Inequalities

We now utilize Lemma 2.1, Holder’s inequality, and
others to find some new inequalities of Hermite-Ha-
damard type for functions whose third derivatives are
S-convex.

Theorem 3.1. Let f:Ic R, >R be a three times
differentiable function on I° such that f"eL[a,b]
for a,bel with a<b. If |f"|" is s-convex on
[a,b] forsome fixed se(0,1] and g=>1,then

L0 o bt ) ]

_(p=a)f [ 2 (s+6+2s) 1

/q
o192 {(s+2)(s+3)(s+4)}

| )]
3.1)

Proof. Since |f”|" is s-convex on [a,b], by Lemma
2.1 and Hoélder’s inequality, we have

S (a) +

If(a);f(b)_bia-[:f(x)dx bl—za[f,(b)_f,(a)]
< (b;;)a [ye(t=o)|2e=1)[£"(ra+(1-1)b)|de
S(b a)

AO q

"(ta +(1—t)b)|q dt}l/q

[ts

[j 0)|(2¢-1)
) {j ((1-1)|(2-1)

+(1-1)*| f'"(b)|th}l/q ,

where

"(a)f

1
4, :J';t(l—t)|(2t—1)|dt:E
and
rdt

A, = [ 1(1-1)|(2¢-1)
= [(-n)|2e-1)|(1-1)de

_ 6+s+2°"s
2 (s+2)(s+3)(s+4)
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Thus, we have

f(a)+f(b)_ 1
2 b—a

- (1 ererz
V) (Rj 22 (s+2)(s+3)(s+4)
f’" (b)|q T/q

B (b—a)3[ ZZ_S(S+6+2”ZS) Tq
) ( )

192 s+2)(s+3)(s+4
@) ]

The proof of Theorem 3.1 is complete.
Corollary 3.1.1. Under conditions of Theorem 3.1,
1)if s=1, then

|f(a)+f(b)_ 1
| 2 b-a

[/'(8)-1"(a)]

[ ()ae-2e

[/ 7= 220 ()~ £ (a)]

—a 3 1/q q I/q
S(17192) ( j Uf (@) +[7 () J/;
(3.2)
2)if g=s=1,then
L0 gacbotl o) e
(-

384 |:|f )|+|f’"(b)|:|

Theorem 3.2. Let f:Ic R, >R be a three times
differentiable function on I° such that f"eL[a,b]
for a,bel with a<b . If |f"" is s-convex on
[a,b] for some fixed s€(0,1] and g >1,then

s () 1 o bear
LT a2 o))

(p=a)' (1 (22 )"
9% (p+lj (s+1)(s+2)

|: I/q

@) ey ]

(3.3)
where L+L=1.
q p
Proof. Using Lemma 2.1, the s-convexity of | f "’|q
[a b] and Holder’s integral inequality yields
AM



L. CHUN, F. QI 1683

2 R

/
(bl") Bl/”[ |26 =1|| " (ta+(1- t)b)|th:|lq

A= e (@) +(1-0y

where an easy calculation gives

") Jarf

B=[1(1-1)"[2r~1]dr

B 1 (3.4
- 22p+] (P+1)
and
j Y2t -1de =
52 +1 3.3)
2 (s+1)(s+2)

Substituting Equations (3.4) and (3.5) into the above
inequality results in the inequality (3.3). The proof of
Theorem 3.2 is complete.

Corollary 3.2.1. Under conditions of Theorem 3.2, if
s =1, then

L I0) P )@

L) (4 Trer ]

Theorem 3.3. Under conditions of Theorem 3.2, we
have

S B) 4 g bar
DO b))

“airea) (i)

><|:f'"(a)|q " f,,,(b)|q:|l/q
(3.6)

Proof. Making use of Lemma 2.1, the s-convexity of
f"" on [a,b], and Holder’s integral inequality leads
to

()

IA
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ST

4L (0)- ' (a)]
"(ta+(1-1)b)’ dt}]/q

SMC'/" Uolt(l—t)

12

3
< (b_a) Cl/p
12

~{j'01t(l—t)[t5

where

(@ -0y [ Jo

C=[r(1-0)|(2-1) dr = (3.7)

2(p+1)(p+3)
and

1

fy (=0t = [0 = ey

(3.8)
Substituting Equations (3.7) and (3.8) into the above

inequality derives the inequality (3.6). The proof of
Theorem 3.3 is complete.

Corollary 3.3.1. Under conditions of Theorem 3.3, if s
=1, then

Faef () 1 o bear
LT b o))

) Vo e
S(1)24) [(p+1)1(p+3)] @/

[l |y ]

Theorem 3.4. Under conditions of Theorem 3.2, we
have

D210 ga ey )
_(b=a) [ 5427 (p-1)+p

48 [(p+l)(p+2)(p+3)}l/p
1

lg
(2‘? (s+1)(s+2)(s+3)j
s (542" (s=1) )| 77(a)
F(2 (s+1) +541)| f’"(b)ﬂv "
[(z (s+1) +s5+1) 77 (a)
w(ss2 sl ]}

Proof. Since |f”|" is s-convex on [a,b], by Lemma
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2.1 and Hoélder’s inequality, we have

L0 (a2 (0)- (0]
- (bfzay Jyt (=021 77 (e (1-0)b) e
< (b—a)3 DYp

12
(Lol (@) +0-0y o) Jod
and
LD a2 o) )
< (b—a)3 DYr

12

1 \ . . g

T e

where a straightforward computation gives
5+2p+l(p—1)+p

2P (pr1)(p2)(p+3)

D =j;t1’(1—t)|2t—1|dt:

s+2P  (po1)+p

2P (pr1)(p2)(p+3)

1
[Le(1=1)" |20 -1]ds =
25 (541)+1
25+ (512)(s+3)

J.;(l _ t)s+1

2t-1|dr =

25 (541)+1
25+ (542)(s+3)

Substituting these equalities into the above inequality
brings out the inequality (3.10). The proof of Theorem
3.4 is complete.

Corollary 3.4.1. Under conditions of Theorem 3.4, if
s =1, then

WL L) )]

sl S o 71!
1/q

sanin [+ 30 ]
Bl + f'"<b>|"}'”}~

J'; (l‘)ﬁl

2t-1|dt =

b (e
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4. Applications to Special Means

For positive numbers @ >0 and b >0, define
a+b

A(a,b)= > 4.1)
and
o
br+]_a/+l !
—_— , -1,0;
{vﬂ)(b—a)} "
b_
L(ab)=y ——— . r=-k (42)
b 1/(1)7(1)
l[b—aj , r=0.
e\ a

It is well known that 4 and L, are respectively called
the arithmetic and generalized logarithmic means of two
positive number a and b.

Now we are in a position to construct some inequali-
ties for special means 4 and L, by applying the above
established inequalities of Hermite-Hadamard type.

Let

s+3
(s+1)(s+2)(s+3)
for 0<s<1 and x>0.Since f"(x)=x" and
(/lx+(1—/1)y)s <A°x° +(l—/1)s b

forx,y>0 and A€[0,1], then f”(x)=x' is s-con-
vex functionon R, and
f(a)+f(b): 1 A(as+3 bs+3)
2 (s+1)(s+2)(s+3) ’ ’

f(x)= 4.3)

1 s+3 s+4 7. s5+4
L b
(s+1)(s+2)(s+3) B (aem),

1 s+1 s+2 g 5+2
12(s+1)L““<a b))
Applying the function (4.3) to Theorems 3.1 to 3.3

immediately leads to the following inequalities involving

special means 4 and L .

Theorem 4.1. Let b>a>0, 0<s<1, and ¢g>1.

Then

RO

1'(b)=s"(a)

‘IZA(CIHS,bHS)—lZLH}

s+3

(as+4 ,bs+4 )

—(b- a)2 (s+2)(s+3) L] (a“z b )

s+1

< —(b_af (s+1) [(s +2)(s +3)]li

16

3—-s s+2 Va
X[Z (s+6+2 s)]

s+4

x 44 (a“’,b“’).
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Theorem 4.2. For b>a>0, 0<s<1, and ¢>1,
we have

s+3

‘lZA(a“”,b“” )-12L3

(as+4’bs+4 )
-aP 42 ()

((=a) (S+3)[(s+1)(s+2)jvﬂ

8 p+1

(4.4)

<[22 (s2+ 1)]1/ LA (a b).

Theorem 4.3. For b>a>0, 0<s<1, and ¢>1,
we have

‘12A(a“3,b“3)—12L”3

—(b—a)2 (s+2)(s+3)L]

2(b—a)3(s+l){

s+3

(a.s+4 ,b5+4)

(as+2 ’bs+2 )

s+1

4(p+l)(p+3

(s+2)(s+ 3))}1/1’ e (asq b )
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