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ABSTRACT 

Time evaluation of wave functions for any quantum mechanical system/particle is essential nevertheless quantum me- 
chanical counterpart of the time dependant classical wave equation does simply not appear. Epistemologically and on- 
tologically considered time dependant momentum operator is initially defined and an Alternative Time Dependant 
Schrödinger Wave Equation (ATDSWE) is plainly derived. Consequent equation is primarily solved for the free parti- 
cles, in a closed system, signifying a good agreement with the outcomes of the ordinary TDSWE. Free particle solution 
interestingly goes further possibly tracing some signs of new pathways to resolve the mysterious quantum world. 
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1. Introduction 

Quantum theory is undoubtedly one of the most success- 
ful theories within the scientific history and opens the 
doors to countless technological applications through 
describing, correlating and predicting the behavior of 
vast range of physical systems made up of molecules, 
atoms, nuclei and other elementary particles. No experi- 
mental evidence has been detected so far opposing the 
predictions of the theory flashing the extraordinary suc- 
cess [1-6]. In spite of its exceptional success, the theory 
surprisingly faces certain paradoxes and conceptual dif- 
ficulties such as Einstein, Podolsky, Rosen (EPR) Para- 
dox/Quantum Entanglement [7-9], Quantum Decoher- 
ence/Quantum Measurement Problem [10-12] and Quan- 
tum Zeno Effect [13,14], all question the theory philoso- 
phically from the spine and could not be fully resolved 
yet. In spite of nearly 100 years, famous discussions, 
primarily between Einstein and Bohr, have unfortunately 
not been completely terminated and some numerable 
quantum physicists still feel some disturbances about the 
probabilistic nature of the atomic world and of course 
about the conceptual composition of quantum theory 
[15-17]. A number of conceptual and philosophical in- 
terpretations, of the quantum theory, have been devel- 
oped in the past and most of them experience some sup- 
port but more noticeably intelligent criticism. Philoso- 
phically speaking, quantum theory barely probes its tools 
to explore the atomic order/world however believing it as 
the only possible theory/method would surely be dumpy 

mentality and alternative approaches/means could un- 
questionably be developed by other civilizations. 

The complicatedness of the theory mostly originates 
from the unsatisfactory definition of the most fundamen- 
tal concepts, namely “time” and “position”. Conse- 
quently, the paradoxes and conceptual difficulties of the 
quantum theory, to our view, regularly initiate from the 
lack of a clear scientific definition between “time” and 
“position”. Quantum theory basically assumes that 
“time” and “space” are continuous and completely inde- 
pendent variables and no scientific relation between time 
and position can be defined no matter if the particle is 
free or confined. The theory also assumes that quantum 
particles are solid spheres, however the particles are also 
somehow accompanied by physical waves. Hence, the 
existence of spatially and temporally distributed matter 
waves prevents to define position and time dependence 
of dynamical variables such as velocity, momentum and 
energy, in unfriendliness to classical physics. Instead, 
well defined time and position dependant waves and de- 
pending on the wave functions particle’s the existence 
probability is smartly defined. Quantum theory, in gen- 
eral, describes two distinct physical concepts, namely 
dynamical variables/operators and wave functions/state 
vectors. Concerning the time evolution of a quantum 
system, two distinct approaches simply exist, namely 
Schrödinger and Heisenberg models/pictures [18,19]. 
Schrödinger Model (SM) assumes that the wave func- 
tions/state vectors are time dependant but the dynamical  
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variables/operators are constant and the model offers an 
equation, TDSWE, for the time evolution of the state 
vectors/wave functions. Heisenberg Model (HM) is, on 
the other hand, based on that the wave functions/state 
vectors are steady whereas the operators/dynamical 
variables are time dependant and the model offers the 
well known Heisenberg Equation (HE). Independently 
from those pictures, ontological and epistemological ap- 
proaches to the subject forwards that “a quantum particle 
must exist at a specific point at a particular time” there- 
fore the position of the particle could, somehow, be de- 
finable. Additionally, the very existence of any quantum 
particle in space and time must ontologically be con- 
served; hence both state vectors and operators should be, 
in the most general case, considered time dependant. In 
order to obtain a full picture of the atomic world, means 
precise position at a given time, both time and position 
dependence of the operators ought to be defined. To our 
view, Einstein was/is right and it is the insufficiency of 
the theory and the theory ought to be progressed substan- 
tially to resolve the certain paradoxes and conceptual 
difficulties [15]. Philosophic and scientific discussion of 
this most fundamental theme is not the scope of the pre- 
sent paper, however will be handled in an upcoming pa- 
per. 

In addition to those paradoxes and conceptual difficul- 
ties, there are some other fundamental insufficiencies and 
difficulties within the quantum theory. Quantum systems 
may have obviously been both “closed” and “open” in 
character and the problem must be treated accordingly 
[20,21]. The physical properties of any quantum particle 
for open quantum systems are much more complicated 
due to having strongly time and position dependant ener- 
gies; potential, kinetic or overall mechanical energy. The 
exchange energy, of the most quantum systems, seems to 
be negligible compared to the actual system energy 
maintaining the assumption of being a closed system is 
highly fulfilled. Open quantum systems, however, dem- 
onstrate very high exchange energies between the actual 
system and the environment leading to very important 
applications in quantum optics, measurement in quantum 
mechanics, quantum statistical mechanics, quantum in- 
formation, quantum cosmology, some semi classical ap- 
plications and recently the ultimate concept of human 
consciousness [22-27]. Bohr emphasized that the border 
between classical and quantum worlds must be mobile so 
that even the ultimate apparatus the “Human Conscious- 
ness” could in principle be measured and analyzed as a 
quantum object, provided that a suitable classical device 
could be found to carry out the task. The problem of 
open quantum systems is traditionally resolved by means 
of non-Markovian Stochastic Schrödinger Equation. The 
approach basically considers that the present state of any 
quantum system is random but linked with the past and 

future states but can be predicted. Specific applications 
of the stochastic equation are known as von Neumann 
Equation (NE) or Quantum Liouville Equation (QLE) 
and Lindblad Equation (LE). Both NE/QLE and LE de- 
scribe the time evolution of a mixed quantum state by 
means of the density matrix/density operator that is de- 
fined as the sum of all the possible probability densities 
[28-30]. 

The approaches above are all based on the position 
dependant Hamiltonian operator which is defined in 
terms of position/space dependant momentum operator 
leading to a kinetic energy operator purely depends on 
position/space. However, open quantum systems surely 
consist of time dependant kinetic and potential energies. 
Therefore especially as in Hamilton picture, time de- 
pendant momentum operator seems to be quite important 
and missing. Definition of time dependant momentum 
operator is only possible if time dependant position is 
actually definable. Description of time position relation 
could undoubtedly influence the quantum theory and 
philosophy in the sense that as deterministic view 
strengthens, probabilistic view would weaken. The ap- 
proach is scientifically very simple but philosophically 
complicated and would possibly be bridging the existing 
gap between the theory and certain paradoxes and con- 
ceptual difficulties of the quantum theory. The present 
work is based on this simple however vital estimation of 
realistic time dependant momentum operator. The work 
initially defines a realistic time dependant alternative 
momentum operator and Hamiltonian operator, leading 
to an ATDSWE which can be employed from the sim- 
plest to the most complicated quantum systems.  

The other motivation of the present work arises from 
the fact that no counterpart of the time dependant classi- 
cal wave equation exists within the quantum theory. 
Waves accompanying the quantum particles are, natu- 
rally, matching with the classical counterparts. It is very 
well known that, space dependant classical wave equa-
tion is matched by the time independent and position 
dependant Schrödinger wave equation. The other part of 
the classical wave equation, namely time dependant part, 
is simply missing. Nevertheless, time dependant classical 
wave equation should naturally exist within the quantum 
world. The present work is also based on this most obvi- 
ous mental picture. 

2. Method 

Schrödinger/matter waves, in quantum theory, are char- 
acteristically very similar to the classical waves and 
space or time dependence of the waves could in fact be 
described by the equations identical to the classical 
waves [3-5]. Evidently, the position dependant SWE is 
just identical to the space dependent classical wave equa- 
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tion. Time dependant classical wave equation, on the 
other hand, has no counterpart in quantum mechanics; 
instead a first order differential equation, known as 
TDSWE, exists in the theory. Hence, the present work 
proposes to link this fundamental gap and offers the 
quantum mechanical counterpart of the time dependant 
classical wave equation. The work is in fact an extension 
of the “existing quantum theory” and following some 
philosophical arguments the ATDSWE is derived in a 
simplest possible form [19]. 

3. Theory 

The physical concepts/dynamical variables, in quantum 
theory, are represented by mathematical operators there- 
fore any quantum physical concept/dynamical variable 
transforms the wave function to a different one. The 
quantum operators are typically defined in terms of time 
or position derivatives and must be linear and hermitical 
to represent the physical world. Quantum theory purely 
relies on the two distinct concepts namely state vectors/ 
wave functions and physical concepts/dynamical vari- 
ables [6,19]. Therefore, spatial and temporal variation of 
the wave functions and dynamical variables are very cru- 
cial to be determined. Time evaluation of quantum me- 
chanical concepts, namely dynamical variables and wave 
functions, is a fundamental issue and being handled dif- 
ferently in the sense that Heisenberg Picture considers 
that operators are time dependant whereas the wave func- 
tions/state vectors are constant; alternatively Schrödinger 
Picture assumes wave functions/state vectors being time 
dependant but the operators are stationary [6,19]. 
Heisenberg Equation (HE) simply gives the time evalua-
tion of a quantum mechanical operator and the approach 
is simply based on the instantaneous operator terms 
which means that time dependence of any quantum me-
chanical operator could be defined. QLE or NE, on the 
other hand, describes time evaluation of the density ma-
trix/operator which is the overall wave function of the 
quantum system. The equations are very similar in the 
sense that both derived from the TDSWE and both de- 
pend on the commutation relation between the density 
matrix and the Hamiltonian operator. 

In order to derive the ATDSWE, we start with the sim- 
plest text book expression of momentum operator that 
can simply be extracted by taking the derivative of clas- 
sical plane waves with respect to the position r, that is 

 ˆ ip r
r


 






 

              (1) 

where i denotes the imaginary unit of the complex num- 
bers,  is the reduced Planck’s constant and r denotes 
the three dimensional position of the particle. It is very 
crucial to note that the position here is considered as a 
“continuous variable” and the momentum operator is 

purely defined as a function of position, means that mo- 
mentum of the quantum particle is solely position de- 
pendant. Quantum theory also assumes that “time” is as 
continuous and independent variable. Ontological and 
epistemological approach to the problem clearly indi- 
cates that a mathematical relation between position and 
time could be described since the quantum particle con- 
tinuously exists in space and time. This philosophical 
approach straight forwardly leads to a definition of the 
momentum operator depend purely on “time”. Employ- 
ing the textbook chain rule for the partial derivations 
gives the realistic time dependant momentum operator 
stated as 

i
p̂ t

v t
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
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               (2) 

where v denotes the time dependant instant velocity of 
the quantum particle defined by the HE of the quantum 
theory. In the expression above commutation property of 
the operators of /t and /x is simply used. The defini- 
tion above assumes that the “ontological approach” must 
be satisfied since the particle, as a physical object, is 
bound to be existing somewhere at an instant time. The 
approach above also expresses that time depended posi- 
tion, r(t), is definable and can be defined in principle. 
The existing quantum theory offers no time dependant 
position and this would certainly be leading to a more 
deterministic theory of the atomic world. This is not 
covered in the present work but will be tried to address in 
the future studies. The quantum particle, at this point, can 
be treated as a continuously moving object with well 
defined potential and kinetic energies that are directly 
time dependant. One can now reach to an alternative time 
dependant Hamiltonian operator, significantly different 
from the traditional time dependant Hamiltonian that can 
be affirmed as 

 
2 2

2 2
ˆ ˆ

2
t V t

mv t t


  


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H         (3) 

where v(t) denotes time dependant instantaneous velocity, 
m denotes the particle mass, and V(t) is the time depend- 
ant potential energy of the particle. The expression above 
can commonly be employed for the quantum particles 
having a potential energy or overall mechanical energy 
directly and heavily depending on time which is gener- 
ally the case for the open quantum systems. Time de- 
pendant Hamiltonian operator can now be employed in 
any involving equation, namely QLE/NE or LE to obtain 
time evaluation of any quantum system. The purpose of 
this paper is, however, to derive an alternative and sim- 
plest feasible wave equation to analyze the motion of a 
quantum particle. In order to do so, the well known eigen 
value-eigen function equation is employed as usual to 
acquire the ATDSWE for the most general case, that is  
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       Ĥ t t E t t             (4) 

where E(t) denotes  total mechanical energy which is 
considered to be time dependant and corresponding wave 
function is of course only time dependant. The most 
general case is the open quantum systems and substitu-
tion of the Hamiltonian expression above and also using 
the classical definition of kinetic energy simply gives the 
ATDSWE as, 

   
2

2 2

d 4

d

t
E t V

t


 

   2
0t t        (5) 

This basic equation is identical to the time dependant 
part of the classical wave equation by simply considering 
the angular frequency as, 

      2
t E t V t  

 

2
2

4 


          (6) 

The angular frequency in this case is defined in gen- 
eral for the open quantum systems and can easily be re- 
duced to the closed quantum systems. The main problem 
at this stage is of course to determine the time dependant 
kinetic energy of the quantum particle or alternatively 
time dependant potential and total mechanical energies of 
the quantum particle. Using the basic expression of ki- 
netic energy,    V t T t E t , leads to the result that, 
the quantum particles are accompanied by the Schrö- 
dinger/matter waves with frequencies totally depends 
only on the kinetic energy. This is evident that the wave 
frequency instantaneously varies as the kinetic energy 
changes as being the common property of the open 
quantum systems. 

4. Results and Discussion 

The present work primarily based on the view that both 
Schrödinger wave functions/state vectors and dynamical 
variables/operators may simultaneously vary for any 
quantum mechanical particle. The view in a way com- 
bines the views of Schrödinger and Heisenberg and of- 
fers an alternative momentum operator, the Equation (2), 
depends on time not position. The momentum expression 
is simply offered by considering ontologically and epis- 
temologically realistic approach, rather than conventional 
Heisenberg or Schrödinger approaches, assuming that the 
quantum particle should be present at a definable posi- 
tion at a definite instant. The approach partially considers 
the Heisenberg model but further the state vectors/wave 
functions are considered to be varying. The approach is 
significant and should lead to a new pathway for the in- 
terpretation of the quantum mechanics in the sense that 
the probabilistic view would, to some extent, switch to a 
deterministic view. 

The ATDSWE, the Equation (5), is valid for the most 
general cases only excluding the relativistic region how- 

ever including open quantum systems in which all the 
energies and state vectors/wave functions are highly time 
dependant. The equation is important in the sense that it 
is the quantum mechanical counterpart of the time de- 
pendant classical wave equation. The equation basically 
expresses that the frequency of the waves accompanying 
the quantum particle varies continuously and instantly as 
a function of the kinetic energy. Quantum particles, ba- 
sically having stationary kinetic energies, are accompa- 
nied by stationary Schrödinger waves with constant fre- 
quencies. The simplest possible case, to apply the Equa- 
tion (5), is the free particle case having no potential en- 
ergies and also having uniform overall mechanical ener- 
gies. First of all, the relation between overall mechanical 
energy and the angular frequency, concerning the free 
particle case, is given by 

2
E





                  (7) 

where E denotes the total mechanical energy and also 
equals to the kinetic energy for the free particles,  de-
notes the angular frequency. This energy expression is 
well known as the “zero point energy” and just equal to 
the minimum energy given by the position dependant 
SWE solved for the harmonic oscillator problem. This is 
very interesting in many ways but especially ought to be 
expected in the sense that “zero point energy” is jut uni-
versal and independent of both time and space. Therefore, 
derived ATDSWE passes a solid test by this simple but 
very important comparison [4,19]. 

General solution, concerning the free particle case, of 
the offered ATDSWE is straightforward and is simply 
given by  

  i ie ewt wtt A B                (8) 

where w denotes the angular frequency, A and B are 
constants determined by the physical boundary condi- 
tions in the backward and forward propagations, respec- 
tively. It is very interesting to note that the general term 
has both forward and backward time propagation terms, 
exclusively different from the free particle solution of the 
ordinary TDSWE that is given by. Quantum systems/ 
particles are, in most cases, naturally confined in space 
but confinement in terms of time does not normally exist. 
Therefore boundary conditions for the time evolution of 
the quantum systems/particles is quite different com-
pared to the spatial conditions. Spatial confinement of 
any quantum particle is just fulfilled naturally however 
temporal confinement is not possible. Philosophically 
speaking creation of any quantum system or particle is 
not possible to set the initial conditions. Instead, the 
quantum systems and particles just exist independently 
from time and no temporal initial conditions can nor-
mally be set. Physical boundaries in terms of time 
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propagation in the forward and backwards then A and B 
can be considered to be equal then the solution can be 
given by 

   0 cost wt                (9) 

where 0 denotes the initial wave function at the time 
beginning. Immediate comparison indicates missing 
imaginary part for the ATDSWE solution. The existence 
of forward and backward time propagation and the su- 
perposition of those terms lead to a real time dependant 
waves. This, in many ways, may lead to very important 
impacts on the interpretation of the quantum theory. The 
most widely accepted Copenhagen Interpretation of the 
wave functions/state vectors is employed to compare the 
finding probability of the quantum particles. The free 
particle wave functions/state vectors simply give the 
probability density, that is finding the quantum particle in 
a unit time at the instant t, as 

   2 2
0 cos wtP t             (10) 

which is obviously time dependant. Ordinary TDSWE, 
on the other hand, gives a probability density,  
  2P t 0 , that is of course time independent. ATDSWE 

offers a probability density being time dependant how- 
ever as time goes to zero, the probability density equals 
to the result of the ordinary TDSWE. The result would 
seem to be conflicting with the present quantum theory 
and experiments; however this view would not be so sat- 
isfying since how fast the probability density varies with 
time is not known. 

The ATDSWE includes the velocity term, finally con- 
verted to the kinetic energy term, which to our opinion is 
very important aspect. The existing quantum theory can- 
not possibly estimate the exact position or velocity at a 
certain time, instead it gives the finding probabilities for 
the quantum particle. Having classical definition of ve- 
locity in the ATDSWE might be important and might 
lead to open the door to a further and even better theory 
of atomic world. 

5. Conclusions 

The first conclusion is the definition of a “momentum 
operator” in terms of time derivative; hence the operator 
simply describes time evolution of momentum for a 
quantum particle. The pictures of Schrödinger and 
Heisenberg, without any doubt, analyze the counterintui-
tive structure of the quantum theory, however more real-
istic picture ought to consider simultaneous variation of 
both dynamical variables/operators and state vectors/ 
wave functions with respect to time and space. Restrict- 
ing the variation of them, as in the HM and SM, is not 
philosophically realistic. The momentum operator is 
simply based on the “time dependant position operator” 

for the quantum particles and in fact would initiate deep 
philosophic discussions. Time dependant momentum 
operator specifically expresses that instantaneous posi- 
tion of any quantum particle could, in fact, be predictable. 
This conclusion, on its own, is revolutionary and sup- 
ports Einstein in the sense that a novel approaches could 
be developed to move the quantum theory from purely 
probabilistic to more deterministic. 

The second important conclusion is the suggested so 
called ATDSWE. Fundamental equation of ATDSWE, 
which is the counterpart of the classical time dependant 
wave equation of classical mechanics, is simply derived 
by means of the time dependant momentum operator. 
The equation only requires time dependant kinetic energy 
or alternatively time dependant both potential and overall 
mechanical energies to estimate the time evolution of the 
Schrödinger wave functions. The equation can further be 
expanded to obtain the time evolution of the density ma-
trix, as in the cases of NE/QLE or LE.  

The ATDSWE also expresses the basic relation be- 
tween kinetic energy, or alternatively potential and total 
mechanical energies, and angular frequency of the 
Schrödinger waves accompanying the quantum particles. 
The time evolution of the frequency is directly propor- 
tional to the actual time dependant kinetic energy of the 
quantum particles. It is also important to note that time 
dependant kinetic energy for the quantum particles is 
simply equal to the “zero point energy”, would surely 
ignite many philosophical and scientific discussions in 
the future. 
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