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ABSTRACT

We consider a discrete time Storage Process X, with a simple random walk input S, and a random release rule

given by a family {Ux, XZO} of random variables whose probability laws { Hys XZO} form a convolution

semigroup of measures, thatis, z, x 4, = g, . The process X

Xy =0,U,=0,X,=§,-Ug ,n=>1. Under mild assumptions, we prove that the processes Ug

, obeys the equation:

and X, are simple

random walks and derive a SLLN and a CLT for each of them.
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1. Introduction and Assumptions

The formal structure of a general storage process dis-
plays two main parts: the input process and the release
rule. The input process, mostly a compound Poisson
process A(t), describes the material entering in the
system during the interval [O,I] . The release rule is usu-
ally given by a function r(X) representing the rate at
which material flows out of the system when its content
is X.So the state X (t) of the system at time t obeys
the well known equation:

X (t) = X (0)+ A(t)= [ r(X(s))ds.

Limit theorems and approximation results have been
obtained for the process X (t) by several authors, see
[1-5] and the references therein. In this paper we study a
discrete time new storage process with a simple random
walk input S, and a random release rule given by a
family of random variables {U,, x>0}, where U,
has to be interpreted as the amount of material removed
when the state of the system is X. Hence the evolution
of the system obeys the following equation: X, =0,
U,=0, X,=5,-Ug, nx1. where S,=0,
S,=Z,+Z,+---+Z,, for ii.d. positive random vari-
ables Z,, with E(Z,)=a>0, and o =0’ <,

We will make the following assumptions:

1.1. The probability distributions {z,, x>0} of the
random variables {U,, x>0} form a convolution
semigroup of measures:

VXY 2 0,10, % 4y = . (L.D)

Copyright © 2012 SciRes.

We will assume that for each X, g, is supported by
the interval [0,x], thatis, VxeR,, 4,[0,x]=1. Con-
sequently, for X<y the distribution of U, -U, is the
same as that of U,_ , (see 2.2 (ii)).

1.2. Also we will need some smoothness properties for
the stochastic process U,,x >0. These will be achieved
if we impose the following continuity condition:

lim p1, =3, (1.2)

X—>0,
where ¢, is the unit mass at 0 and the limit is in the
sense of the weak convergence of measures.
1.3. The two families of random variables {U,, x >0}
and {Z,, n>1} are independent.

2. Construction of the Processes
{Z,, n21},{U,, x20} and {X,, n>0}

2.1. Let A be a probability measure on the Borel sets
Bk, of the positive real line R, and form the infinite

AN ) Now, as usual

+

product space (Q,,F,,P)= (R'f, B

RN

define random variables Z, on €, by:
Z,(o)=o(n),if o=(a (k))k eQ,.

Then the Z, are independent identically distributed

with common distribution 4 We will assume that

E(Z)=a>0, and o3 =0’ <.

2.2. Let {,ux, XZO} be a semigroup of convolution
of probability measures on R, ,By =~ with 4, =J, and
satisfying (1.2) then, it is well known, that there is a
probability space (€,,F,,P,) and a family
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{U o X2 O} of positive random variables defined on this
space such that the following properties hold:

(i) . Under P, the distribution of U, is g, ,
U, =0.

(ii). For x<y, the random variables U, U, and
U, , haveunder P, thesame distribution 4, ,.

(iii). For every 0<x <X, <---<X,, the increments
u,.u, -U,,-uU, -U, —are 1ndependent

( ) Foralmostall @, €€, the function
x> U, (w,) is right continuous with left hand limit
(cadlag).

From (iv) we deduce:

(v). The function (X,®,) >U,(®,) is measurable
on the product space R, xQ,.

2.3. The basic probability space for the storage process
X, will be the product
(QF,P)=(Q, xQ,,F, ®F,,P®P).
X, by the following recipe:

X, =0, 2.3)

Then we define

Xn(a)):Sn(a)l)—Usn(m(a)z), if o=(o,0,)eQ,
n>1. where S, is the simple random walk with:
S,=0, S,=Z,+Z,+---+Z,, nxl

2.4. Slnce Sn is a 51mp1e random walk, the random
variables S, —S, and S, , have the same distribution
for k<n.

3. The Main Results

The main objective is to establish limit theorems for the
processes Ug and X, . Since the behavior of S is
well understood, we will focus attention on the structure
of the process Ug . The outstanding fact is that Ug
itself is a simple random walk. First we need some
preparation.

3.1. Proposition: For every measurable bounded func-
tion f: R —->R, the function

X — 1 ( j f(t) u,(dt) is measurable. Thus for
any Borel set A of R, the function x— sz, (A) is
measurable.

Proof: Assume first f:R, >R continuous and

bounded, then from (1.2) we have
tim 1 (1)=6,(1)=1(0)

Now by (1.1) we have

Hyy ( j f(t)- gy x g1, (dt)
= | f(t+s),ux(dt)-,uy(ds)
— [ f(t) g (dt), ydo.
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by (1.2) and the bounded convergence theorem Conse-

quently the function X—>,uX J f ,uX dt is
right continuous for all x>0, hence it is measurable if
f is continuous and bounded. Next consider the class
of functions:

f : R, >R, such that the function

H= X — 1, ( J f(t) u,(dt),is measurable.
then H is a vector space satisfying the conditions of
Theorem I, T20 in [6]. Moreover, by what just proved, H
contains the continuous bounded functions
f : R, >R, therefore H contains every measurable
bounded function f : R, >R, =

3.2. Remark: Let EPI,EPZ,EP, be the expectation
operators with respect to P,P,,P, respectively. Since
P=R®P,, we have E;-E, =E; -E; , by Fubini
theorem. m

3.3. Proposition: Let Y be a positive random vari-
able on (Q,F,P) with probability distribution y.
Then the function U, defined on (Q,F,P) by:

o=(a,0,)>U, (a)):UY(wl)(a)z) (3.3)

is a random variable such that

Bs (T(Uy))= [ T(t)a,(dt)7(dy)

R, xR,
for every measurable positive function f : R, > R.In
particular the probability distribution of U, is given by:
AeBg, (3.5)

UeA I,uy

and its expectation is equal to
E-(Uy)= [ tu(dt)-7(dy) (3.6

R, R,

Proof: Define T : Q,xQ, >R, xQ, by
T(a)l,a)z):(Y (a)l),a)z) and S : R, xQ, >R, by
S(X,@,)=U,(®,). It is clear that T is measurable.
Also S is measurable by 2.2 (v), so SoT =U, is
measurable.

(3.4) is a simple change of variable formula since
Er=E; Ep. m

3.7. Proposition: For all 1<k <n, the random vari-
ables Us -Ug, Ug o, Ug have the same prob-
ability dlstrlbutlon

Proof: It is enough to show that for every positive
measurable function f:R, - R, we have:

E, ( f(Us, -Us, ))

(1 (U0 )= B (1(05,))

3.4
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Since E, =Ej -E;, we can write:

Es ((Us, -Us, )

=[] f(USn(m(wz)—Usk(m(wz)) P(dey)-P,(do,).
Q

But for each fixed @, € Q; we get from 2.2 (ii):

[ 1(Ug) (@) -Ug ) (@) Po(d,)

= J- f (USn(wl)‘Sk(wl) (a)2 )) P2 (dwz)

Q0
= Hs. ()5, ( T)

Applying E, to both sides of this formula we get the
first equality of (3.7). To get the second one, observe that

the function @ — 4 () s, () (f) is measurable (Pro-

position 3.1) and use the fact that under P, the random
variables S, —S, and S, , have the same probability
distribution by 2.4. m

3.8. Theorem: The process U ,n>0 is a simple
random walk with:
Ug, =U, =0

and P(Ug e A)=P(U, e A)= [ 1, (A)A(dz)
R,
Proof: We prove that for all integers 1<i< j<k <n,

and all positive measurable functions f,g,h:R, >R
we have:

Ep(f (Us, -Us, )-8 (Us, -y, ) h(us, -Ug ))
= E, (U, —Usk)~EP(g(Usk U )) (3.8)
o v.)

Let @, be fixedin Q,.By 2.2 (ii),(iii), under P,
the random variables

Usn(“’l) _USk(@)’ USk(wl) -U
U

-U

Sj(@)’
Sj(@) Si(@)?

are independent. Therefore, applying first E, in the
L.H.S of (3.8), we get the formula:

Ee, (( F(Us o ‘Usk(m))'(g(usw ‘Usjw«)))

'h(Us,w) “Usa) )) *)
=&, ( (Vs ‘Usk(m))‘ E., (g(Uskw ‘Usi(m))
-Epz(h(usjw—u . )

But U U -U.

S (e
Sn(@r) (@) = S¢(ar)

have distributions  4zg () s, () Hs, (ar)-si(n) >

_USk
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s (0r)-5i(c1) * respectively. Thus:

EPZ (f (Usn(g}l) _Usk(wl))) = ,Usn(wl)isk(wl) ( f)
=, (g(USk(“’l) _USJ(”’l)))ZﬂSk(an)*Sj(an) (9)

EP2 (h(Us,-(w.) _Usi(wl))) = Hsj(ar)-si() (h)

By Proposition 3.1, the R.H.S of these equalities are
random variables of @, independent under P, since
they are measurable functions of the independent random
variables S, -S,, S, -S;, §;-S;. Therefore, ap-
plying E; to both sides of formula (*) we get the proof
of (3.8):

EqEa ([ F(Us, ~Us, ) 0(Us, s, )-h(us -Us )

“E, [EPZ (f (Vs ‘Usk(m))

To achieve the proof, write U as follows:
Us = Zn(USk -Ug, ), where the Ug -Ug

| are in-

n

dependent with the same distribution given by
P(U,, € A)= [ 1, (A)A(d2)
R,

according to (3.5). m
3.9. Proposition: For every positive measurable func-
tion f:R, >R, wehave:

Eo(f(Us,))= | f(t)-m(dt)-2"(ds) (3.9)

R, xR,

A" being the n-fold convolution of the probability A.
In particular the distribution law of the process Ug is
given by:

BeBg. P(Us €B)= [ 4/(B)A™"(ds)

Ry

and its expectation is:

Ep(Us, )= [ tu(dt)-A"(ds)

R, xR,
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Proof: We have:

Ea (£(Us, )= EnEn (1 (Usy 0 ()

and, by Proposition 3.1, the function
0 = I f (t) Hs

R,
S,(@). Since S, =Z,+Z,+---+Z, is a simple ran-
dom walk with the Z_, having distribution A, the ran-
dom variable S, has the distribution A™. So, by a
simple change of Variable we get

EPIJ F(8) s, 0 ( .Hf

mula (3.9) is proved. To get the distribution law of the
process Us , take f equal to the characteristic func-
tion of some Borel set B. m

3.10. Remark' Let v be the distribution of U, ,

that is v ( I,uz A(dz) and let

(wl)(dt) is a measurable function of

4 (dt).A™" (ds). So for-

B=E, (UZI )= J' tu, (dt)-A(dz), then as a direct con-

R, xR,

sequence of theorem 3.8,

P(Us, €B)=v"(B)

E,(Us,)=n-8 =

Now we turn to the structure of the process X,. We
need the following technical lemma:

3.11. Lemma: For every Borel positive function
F:R, xR, >R, the function ¢:s—> J'F(S,t) L (dt)

R,
is measurable.

Proof: Start with F =1, ;, the characteristic function
of the measurable rectangle AxB, in which case we
have ¢(s)=1,(s) 4 (B). Since by proposition 3.1,
the function s— s (B) is measurable we deduce that
@ 1is measurable in this case. Next consider the family

= {B €Bg g, 1S I lg (S,t) 1 (dt),is measurable}
R+

It is easy to check that " is a monotone class closed
under finite disjoint unions. Since it contains the mea-
surable rectangles, we deduce that I'=Bg . Finally
consider the following class of Borel positive functions

R,

= {F ‘R xR, >R, ¢(s)= J.F (s,t) s, (dt) is Borel}

It is clear that P is closed under addition and, by the
step above, it contains the simple Borel positive func-
tions. By the monotone convergence theorem, P is ex-
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actly the class of all Borel positive functions. m

3.12. Theorem: The random variables
Z, —(USk -Us,, ),k =12,---, are independent with the
same distribution given by: for B eBg,

P((zk ~(Ug, -Ug, ) e B)

= [ 1, (s—B)-A(ds)

R,

(3.12)

Consequently the storage process
X,=8,-Ug = Zn(Zk —(USk -Us )) , is a simple ran-

1
dom walk with the basic distribution (3.12).
Proof: For each integer r >0, and each
(a)l,a)z) e, xQ,, put:

W, (@, ,)

=7, (w,)—(usr(@) (@)=Us, ) ((02))

So it is enough to prove that forall 0<i< j<k and
all Borel positive functions f,g,h:R, - R, we have:

Eq (F(W,)-g(W,)-h(W,))
= E. (f(W,))-Ex(9(W;))-Ex (h(W,))

From the construction of the process U , we know
that for @, fixed, the random variables W, (o, ),
r=i, j,k, are independent under P, (see 2.2 (iii)). So,
applying E, to f(W,)-g (Wj ) h(W, ), we get:

Epr, (f(W,)-g(W;)-h(w,))
= EF’z ( f (Wk )) EF’z (g (Wj )) EPz (h(W' ))
Now, since under P, , the distribution of

Us (o) (@) =Us_ () (@,) is the same as that of
U

(3.13)

(3.14)

Us (i) 501 (e) = Yz, () (@ fixed), we have for each Borel

positive function y:R, -»R

Ep, ('//(Wr)) = I V/(Zr (a)l)—t) Hz, (@) (dt),

Ry

r=i,jk

From lemma 3.11, the functions
o, —> fw(Z (a),)—t) '“Z,(aq)(dt)’ r=i,j,k, are Borel
R+

functions of the random variables Z,, thus they are in-
dependent under the probability P,. Therefore, applying
E; to both sides of (3.14) we get (3.13). m

As for the process X, the counterpart of proposition
3.9 is the following:

3.15. Proposition: If f:R, >R is positive mea-
surable and if B e By , then we have:

Eo(f(X,))= [ f(s—t)u(dt)-2""(ds)

R, xR,
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P(X,eB)=[

R,

Eq (Xy)=n-(a~4)

For the proof, use the formula X 6 =S ,-Ug; and
routine integration. '

3.16. Example: Let 0<c<1 and let us take as
measure 4, the unit mass at the point cs, that is, the
Dirac measure u, =J,, S€R,. It easy to check that
U = x4 forall s,t in R, Then for every prob-
ability measure 4 on R,

( Z; € B) I :us
gives the distribution of the release process in this case:
( 5, eB) J,us A dS =A" (C_lB).

Since we have AT B)= P(cS, €B), we deduce
that the release rule consists in removing from S, the
quantity CcS,.

Likewise it is straightforward, from Proposition 3.14,
that

(s—B)A™(ds)

we have: /1(0’18) . This

P(X, eB):j

=Rj5cs(s—B),1*" (ds)
RJ' A7 (ds)
— 2 ((1—c)‘ B)

from which we deduce that the distribution of the storage
process is

4y (s—B)-A""(ds)

P(X,€B)=P((1-c)S, €B).

One can give more examples in this way by choosing
the distribution A or/and the semigoup {z,, X>0}.
Consider the following simple example:

3.17. Example: Take A the 0 - 1 Bernoulli distribu-
tion with probability of success p. In this case the
semigroup {z,, X>0} is a sequence 4, of probabili-
ties with 4, supported by {1,2,---,n} for n>1 and
A™ is the Binomial distribution. So we get from propo-

sition 3.9
< Sh € B) I:us

z[j “1-p) i (B)

Likewise we get the distribution of X from proposi-
tion 3.15 as :

A" (ds)

Copyright © 2012 SciRes.

P(xneB)Rj (s—B)A™(ds)

4. Limit Theorems

Due to the simple structure of the processes U and
X, (Theorems 3.8, 3.12), it is not difficult to estabhsh a
SLLN and a CLT for them.

4.1. Theorem: For the storage process X,
release rule process U , we have:

and the

X
I nn :a_ﬂ:EP(xl)
and

Us, B
S a

n

Proof: Since S, and Ug are simple random walks
with E,(Z,)=a and E, (U s, ) = 3, we have:

.S .
lim—" = * = /3, by the classical S.L.L.N.

So we deduce:

. S
= lim— ~=a-f
non n n
and
Usn
N S, .
lim—= = lim-n :ﬁ.
n n Sn a

n

4.2. Proposition: Under the conditions:

| tu(dt)-A(ds)<oo and
R, xR,

j s-ty, (dt)-A(ds) <o, the variances oy and oy
R, xR,
of the random variables U, and X, are finite. The
conditions can respectively be written as

JE(U§)~/1(ds)<oo
and
] L s-E(U,) - A(ds) <o

Proof: We have
.[ t* 4, (dt)- A(ds)— 4%, so the first condition

R, xR,

gives o, <o . On the other hand we have
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—t)" g, (dt)-A(ds)— (e~ B)’

and

[ (s=t) u(dt)-A(ds)

- !R (8 +") a4 (dt)- A(ds))
-2 [ s-tu,(dt)-A(ds)

Since the variance o’ of Z, is finite we have

[ s’u,(dt)-A(ds)= [ s*-A(ds)<oo, so the conclu-
R, xR, R,
sion follows. m

Finally we get under the conditions of proposition 4.2:

4.3. Theorem: Assume the conditions of proposition
4.2. Then the normalized sequences of random variables:

A SV RS ek i o))
- o

both converge in distribution to the Normal law N (0,1).

Proof: The condition of the theorem insures the fi-
niteness of the variances o, and o-f( Now the con-
clusion results from the fact that U and X, are sim-
ple random walks and the Llndberg Central L1m1t Theo-
rem. To see this, we use the method of characteristic
functions. Let us denote by f, the characteristic func-
tion of the random variable . Since by Theorem 3.8 the
components Ug —Ug ~ of Ug have the same distri-
butionas U, , we have

fr (t)=exp(itT

n

)
{wita)]
) ( t J*"[ 4 j"

2 \oyvn o,n

t2 2] t2
I-—+0| — —>exp| ——
2n n 2

where the second equality comes from the Taylor expan-
sion of f, Uy, . It is well known that this limit is the
characteristic functlon of the random variable N (0, 1)
The same proof works for R, using the components of
the process X, as given in Theorem 3.12. m

In some storage systems, the changes due to supply
and release do not take place regularly in time. So it
would be more realistic to consider the time parameter
n as random. We will do so in what follows and will
consider the asymptotic distributions of the processes
Us, » and X, , when properly normalized and random-
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ized. First let us put for each Kk,

_Ys, YUy -8
O'U ’
Zk_(usk Usk,l) (a—ﬂ)
B, = -
X

Then we have:

4.4. Theorem: Let {N,:n>1} be a sequence of in-
tegral valued random variables, independent of the A
and B,.

N . -
If — converges in probability to 1, as n — o, then
n

the randomized processes:

Ny Ny
21 A< an d Zl Bk
Jn Jn
both converge in distribution to the Normal law N (0,1).

Proof: It is a simple adaptation of [7], VIIL.4, Theorem
4,p.265. m

5. Conclusion

In this paper, we presented a simple stochastic storage
process X, with a random walk input S, and a natu-
ral release rule Ug . Realistic conditions are prescribed
which make this process more tractable when compared
to those models studied elsewhere (see Introduction). In
particular the conditions led to a simple structure of ran-
dom walk for the processes U; and X,, which has
given explicitly their dlstrlbutlons and a rather good in-
sight on their asymptotic behavior since a SLLN and a
CLT has been easily established for each of them. More-
over, a slightly more general limit theorem has been ob-
tained when time is adequately randomized and both
processes Ug and X, properly normalized.
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