Limit Theorems for a Storage Process with a Random Release Rule

Lakhdar Meziani
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Email: mezianilakhdar@hotmail.com

Received August 29, 2012; revised October 8, 2012; accepted October 15, 2012

Abstract

We consider a discrete time Storage Process X_{n} with a simple random walk input S_{n} and a random release rule given by a family $\left\{U_{x}, x \geq 0\right\}$ of random variables whose probability laws $\left\{\mu_{x}, x \geq 0\right\}$ form a convolution semigroup of measures, that is, $\mu_{x} \times \mu_{y}=\mu_{x+y}$. The process X_{n} obeys the equation: $X_{0}=0, U_{0}=0, X_{n}=S_{n}-U_{S_{n}}, n \geq 1$. Under mild assumptions, we prove that the processes $U_{S_{n}}$ and X_{n} are simple random walks and derive a SLLN and a CLT for each of them.

Keywords: Storage Process; Random Walk; Strong Law of Large Numbers; Central Limit Theorem

1. Introduction and Assumptions

The formal structure of a general storage process displays two main parts: the input process and the release rule. The input process, mostly a compound Poisson process $A(t)$, describes the material entering in the system during the interval $[0, t]$. The release rule is usually given by a function $r(x)$ representing the rate at which material flows out of the system when its content is x. So the state $X(t)$ of the system at time t obeys the well known equation:
$X(t)=X(0)+A(t)-\int_{0}^{t} r(X(s)) \mathrm{d} s$.
Limit theorems and approximation results have been obtained for the process $X(t)$ by several authors, see [1-5] and the references therein. In this paper we study a discrete time new storage process with a simple random walk input S_{n} and a random release rule given by a family of random variables $\left\{U_{x}, x \geq 0\right\}$, where U_{x} has to be interpreted as the amount of material removed when the state of the system is x. Hence the evolution of the system obeys the following equation: $X_{0}=0$, $U_{0}=0, \quad X_{n}=S_{n}-U_{S_{n}}, \quad n \geq 1$. where $S_{0}=0$, $S_{n}=Z_{1}+Z_{2}+\cdots+Z_{n}$, for i.i.d. positive random variables Z_{n}, with $E\left(Z_{1}\right)=\alpha>0$, and $\sigma_{Z_{1}}^{2}=\sigma^{2}<\infty$.

We will make the following assumptions:
1.1. The probability distributions $\left\{\mu_{x}, x \geq 0\right\}$ of the random variables $\left\{U_{x}, x \geq 0\right\}$ form a convolution semigroup of measures:

$$
\begin{equation*}
\forall x, y \geq 0, \mu_{x} \times \mu_{y}=\mu_{x+y}, \tag{1.1}
\end{equation*}
$$

We will assume that for each x, μ_{x} is supported by the interval $[0, x]$, that is, $\forall x \in \mathrm{R}_{+}, \mu_{x}[0, x]=1$. Consequently, for $x \leq y$ the distribution of $U_{y}-U_{x}$ is the same as that of U_{y-x}, (see 2.2 (ii)).
1.2. Also we will need some smoothness properties for the stochastic process $U_{x}, x \geq 0$. These will be achieved if we impose the following continuity condition:

$$
\begin{equation*}
\lim _{x \rightarrow 0_{+}} \mu_{x}=\delta_{0} \tag{1.2}
\end{equation*}
$$

where δ_{0} is the unit mass at 0 and the limit is in the sense of the weak convergence of measures.
1.3. The two families of random variables $\left\{U_{x}, x \geq 0\right\}$ and $\left\{Z_{n}, n \geq 1\right\}$ are independent.

2. Construction of the Processes

$$
\left\{Z_{n}, \boldsymbol{n} \geq \mathbf{1}\right\},\left\{\boldsymbol{U}_{x}, \boldsymbol{x} \geq \mathbf{0}\right\} \text { and }\left\{\boldsymbol{X}_{n}, \mathbf{n} \geq \mathbf{0}\right\}
$$

2.1. Let λ be a probability measure on the Borel sets $\mathbf{B}_{\mathrm{R}_{+}}$of the positive real line R_{+}and form the infinite product space $\left(\Omega_{1}, \mathbf{F}_{1}, P_{1}\right)=\left(\mathrm{R}_{+}^{\mathrm{N}}, \mathbf{B}_{\mathrm{R}_{+}^{\mathrm{N}}}, \lambda^{\otimes \mathrm{N}}\right)$. Now, as usual define random variables Z_{n} on Ω_{1} by:

$$
Z_{n}\left(\omega_{1}\right)=\omega_{1}(n), \text { if } \omega_{1}=\left(\omega_{1}(k)\right)_{k} \in \Omega_{1}
$$

Then the Z_{n} are independent identically distributed with common distribution $\lambda \mathrm{We}$ will assume that $E\left(Z_{1}\right)=\alpha>0$, and $\sigma_{Z_{1}}^{2}=\sigma^{2}<\infty$.
2.2. Let $\left\{\mu_{x}, x \geq 0\right\}$ be a semigroup of convolution of probability measures on $\mathrm{R}_{+}, \mathbf{B}_{\mathrm{R}_{+}}$with $\mu_{0}=\delta_{0}$ and satisfying (1.2) then, it is well known, that there is a probability space $\left(\Omega_{2}, \mathbf{F}_{2}, P_{2}\right)$ and a family
$\left\{U_{x}, x \geq 0\right\}$ of positive random variables defined on this space such that the following properties hold:
(i). Under P_{2} the distribution of U_{x} is μ_{x}, $U_{0}=0$.
(ii). For $x \leq y$, the random variables $U_{y}-U_{x}$ and U_{y-x} have under P_{2} the same distribution μ_{y-x}.
(iii). For every $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, the increments $U_{x_{1}}, U_{x_{2}}-U_{x_{1}}, \cdots, U_{x_{n}}-U_{x_{n-1}}$ are independent.
(iv). For almost all $\omega_{2} \in \Omega_{2}$ the function $x \rightarrow U_{x}\left(\omega_{2}\right)$ is right continuous with left hand limit (cadlag).
From (iv) we deduce:
(v). The function $\left(x, \omega_{2}\right) \rightarrow U_{x}\left(\omega_{2}\right)$ is measurable on the product space $\mathrm{R}_{+} \times \Omega_{2}$.
2.3. The basic probability space for the storage process X_{n} will be the product
$(\Omega, \mathbf{F}, P)=\left(\Omega_{1} \times \Omega_{2}, \mathbf{F}_{1} \otimes \mathbf{F}_{2}, P_{1} \otimes P_{2}\right)$. Then we define X_{n} by the following recipe:

$$
\begin{equation*}
X_{0}=0 \tag{2.3}
\end{equation*}
$$

$X_{n}(\omega)=S_{n}\left(\omega_{1}\right)-U_{S_{n}\left(\omega_{1}\right)}\left(\omega_{2}\right), \quad$ if $\quad \omega=\left(\omega_{1}, \omega_{2}\right) \in \Omega$, $n \geq 1$. where S_{n} is the simple random walk with: $S_{0}=0, \quad S_{n}=Z_{1}+Z_{2}+\cdots+Z_{n}, \quad n \geq 1$.
2.4. Since S_{n} is a simple random walk, the random variables $S_{n}-S_{k}$ and S_{n-k} have the same distribution for $k \leq n$.

3. The Main Results

The main objective is to establish limit theorems for the processes $U_{S_{n}}$ and X_{n}. Since the behavior of S_{n} is well understood, we will focus attention on the structure of the process $U_{S_{n}}$. The outstanding fact is that $U_{S_{n}}$ itself is a simple random walk. First we need some preparation.
3.1. Proposition: For every measurable bounded function $f: \mathrm{R}_{+} \rightarrow \mathrm{R}$, the function
$x \rightarrow \mu_{x}(f)=\int_{R_{+}} f(t) \mu_{x}(\mathrm{~d} t)$ is measurable. Thus for any Borel set A of R_{+}the function $x \rightarrow \mu_{x}(A)$ is measurable.

Proof: Assume first $f: \mathrm{R}_{+} \rightarrow \mathrm{R}$ continuous and bounded, then from (1.2) we have

$$
\lim _{x \rightarrow 0_{+}} \mu_{x}(f)=\delta_{0}(f)=f(0)
$$

Now by (1.1) we have

$$
\begin{aligned}
& \mu_{x+y}(f)=\int_{R_{+}} f(t) \cdot \mu_{x} \times \mu_{y}(\mathrm{~d} t) \\
& =\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} f(t+s) \mu_{x}(\mathrm{~d} t) \cdot \mu_{y}(\mathrm{~d} s) \\
& \rightarrow \int_{\mathrm{R}_{+}} f(t) \mu_{x}(\mathrm{~d} t), y \downarrow 0 .
\end{aligned}
$$

by (1.2) and the bounded convergence theorem. Consequently the function $x \rightarrow \mu_{x}(f)=\int_{R_{+}} f(t) \mu_{x}(\mathrm{~d} t)$ is right continuous for all $x \geq 0$, hence it is measurable if f is continuous and bounded. Next consider the class of functions:

$$
\mathbf{H}=\left\{\begin{array}{l}
f: \mathrm{R}_{+} \rightarrow \mathrm{R}, \text { such that the function } \\
x \rightarrow \mu_{x}(f)=\int_{\mathrm{R}_{+}} f(t) \mu_{x}(\mathrm{~d} t), \text { is measurable. }
\end{array}\right\}
$$

then \mathbf{H} is a vector space satisfying the conditions of Theorem I,T20 in [6]. Moreover, by what just proved, H contains the continuous bounded functions
$f: \mathrm{R}_{+} \rightarrow \mathrm{R}$, therefore H contains every measurable bounded function $f: \mathrm{R}_{+} \rightarrow \mathrm{R}$,
3.2. Remark: Let $E_{P_{1}}, E_{P_{2}}, E_{P}$, be the expectation operators with respect to P_{1}, P_{2}, P, respectively. Since $P=P_{1} \otimes P_{2}$, we have $E_{P_{1}} \cdot E_{P_{2}}=E_{P_{2}} \cdot E_{P_{1}}$, by Fubini theorem.
3.3. Proposition: Let Y be a positive random variable on $\left(\Omega_{1}, \mathbf{F}_{1}, P_{1}\right)$ with probability distribution γ. Then the function U_{Y} defined on (Ω, \mathbf{F}, P) by:

$$
\begin{equation*}
\omega=\left(\omega_{1}, \omega_{2}\right) \rightarrow U_{Y}(\omega)=U_{Y\left(\omega_{1}\right)}\left(\omega_{2}\right) \tag{3.3}
\end{equation*}
$$

is a random variable such that

$$
E_{P}\left(f\left(U_{Y}\right)\right)=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} f(t) \mu_{y}(\mathrm{~d} t) \cdot \gamma(\mathrm{d} y)
$$

for every measurable positive function $f: R_{+} \rightarrow R$. In particular the probability distribution of U_{Y} is given by:

$$
\begin{align*}
A & \in \mathbf{B}_{\mathrm{R}_{+}} \tag{3.5}\\
P\left(U_{Y} \in A\right) & =\int_{\mathrm{R}_{+}} \mu_{y}(A) \gamma(\mathrm{d} y)
\end{align*}
$$

and its expectation is equal to

$$
\begin{equation*}
E_{P}\left(U_{Y}\right)=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} t \mu_{y}(\mathrm{~d} t) \cdot \gamma(\mathrm{d} y) \tag{3.6}
\end{equation*}
$$

Proof: Define $T: \Omega_{1} \times \Omega_{2} \rightarrow R_{+} \times \Omega_{2}$ by $T\left(\omega_{1}, \omega_{2}\right)=\left(Y\left(\omega_{1}\right), \omega_{2}\right)$ and $S: \mathrm{R}_{+} \times \Omega_{2} \rightarrow \mathrm{R}_{+}$by
$S\left(x, \omega_{2}\right)=U_{x}\left(\omega_{2}\right)$. It is clear that T is measurable. Also S is measurable by $2.2(v)$, so $S \circ T=U_{Y}$ is measurable.
(3.4) is a simple change of variable formula since $E_{P}=E_{P_{1}} \cdot E_{P_{2}}$.
3.7. Proposition: For all $1 \leq k \leq n$, the random variables $U_{S_{n}}-U_{S_{k}}, U_{S_{n}-S_{k}}, U_{S_{n-k}}$ have the same probability distribution.

Proof: It is enough to show that for every positive measurable function $f: R_{+} \rightarrow R$, we have:

$$
\begin{align*}
& E_{P}\left(f\left(U_{S_{n}}-U_{S_{k}}\right)\right) \\
& =E_{P}\left(f\left(U_{S_{n}-S_{k}}\right)\right)=E_{P}\left(f\left(U_{S_{n-k}}\right)\right) \tag{3.4}
\end{align*}
$$

Since $E_{P}=E_{P_{1}} \cdot E_{P_{2}}$, we can write:

$$
\begin{aligned}
& E_{P}\left(f\left(U_{S_{n}}-U_{S_{k}}\right)\right) \\
& =\int_{\Omega_{1} \Omega_{2}} \int_{\Omega_{n}} f\left(U_{S_{n}\left(\omega_{1}\right)}\left(\omega_{2}\right)-U_{S_{k}\left(\omega_{1}\right)}\left(\omega_{2}\right)\right) P_{1}\left(\mathrm{~d} \omega_{1}\right) \cdot P_{2}\left(\mathrm{~d} \omega_{2}\right) .
\end{aligned}
$$

But for each fixed $\omega_{1} \in \Omega_{1}$ we get from 2.2(ii):

$$
\begin{aligned}
& \int_{\Omega_{2}} f\left(U_{S_{n}\left(\omega_{1}\right)}\left(\omega_{2}\right)-U_{S_{k}\left(\omega_{1}\right)}\left(\omega_{2}\right)\right) P_{2}\left(\mathrm{~d} \omega_{2}\right) \\
& =\int_{\Omega_{2}} f\left(U_{S_{n}\left(\omega_{1}\right)-S_{k}\left(\omega_{1}\right)}\left(\omega_{2}\right)\right) P_{2}\left(\mathrm{~d} \omega_{2}\right) \\
& =\mu_{S_{n}\left(\omega_{1}\right)-S_{k}\left(\omega_{1}\right)}(f)
\end{aligned}
$$

Applying $E_{P_{1}}$ to both sides of this formula we get the first equality of (3.7). To get the second one, observe that the function $\omega_{1} \rightarrow \mu_{S_{n}\left(\omega_{1}\right)-S_{k}\left(\omega_{1}\right)}(f)$ is measurable (Proposition 3.1) and use the fact that under P_{1}, the random variables $S_{n}-S_{k}$ and S_{n-k} have the same probability distribution by 2.4.
3.8. Theorem: The process $U_{S_{n}}, n \geq 0$ is a simple random walk with:
$U_{S_{0}}=U_{0}=0$
and $P\left(U_{S_{1}} \in A\right)=P\left(U_{Z_{1}} \in A\right)=\int_{R_{+}} \mu_{z}(A) \lambda(\mathrm{dz})$
Proof: We prove that for all integers $1 \leq i \leq j \leq k \leq n$, and all positive measurable functions $f, g, h: \mathrm{R}_{+} \rightarrow \mathrm{R}$ we have:

$$
\begin{align*}
& E_{P}\left(f\left(U_{S_{n}}-U_{S_{k}}\right) \cdot g\left(U_{S_{k}}-U_{S_{j}}\right) \cdot h\left(U_{S_{j}}-U_{S_{i}}\right)\right) \\
& =E_{P} f\left(U_{S_{n}}-U_{S_{k}}\right) \cdot E_{P}\left(g\left(U_{S_{k}}-U_{S_{j}}\right)\right) \tag{3.8}\\
& \cdot E_{P}\left(h\left(U_{S_{j}}-U_{S_{i}}\right)\right)
\end{align*}
$$

Let ω_{1} be fixed in Ω_{1}. By 2.2 (ii),(iii), under P_{2} the random variables

$$
\begin{aligned}
& U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}, U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\omega_{1}\right)} \\
& U_{S_{j}\left(\omega_{1}\right)}
\end{aligned}
$$

are independent. Therefore, applying first $E_{P_{2}}$ in the L.H.S of (3.8), we get the formula:

$$
\begin{align*}
& E_{P_{2}}\left(\left(f\left(U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}\right)\right) \cdot\left(g\left(U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\varphi_{1}\right)}\right)\right)\right. \\
& \left.\cdot h\left(U_{S_{j}\left(\omega_{1}\right)}-U_{S_{i}\left(\omega_{1}\right)}\right)\right) \tag{*}\\
& =E_{P_{2}}\left(f\left(U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}\right)\right) \cdot E_{P_{2}}\left(g\left(U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\omega_{1}\right)}\right)\right) \\
& \cdot E_{P_{2}}\left(h\left(U_{S_{j}\left(\omega_{1}\right)}-U_{S_{i}\left(\omega_{1}\right)}\right)\right)
\end{align*}
$$

But $\quad U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}, U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\omega_{1}\right)}, U_{S_{j}\left(\omega_{1}\right)}-U_{S_{i}\left(\omega_{1}\right)}$
have distributions $\mu_{S_{n}\left(\omega_{1}\right)-s_{k}\left(\omega_{1}\right)}, \quad \mu_{S_{k}\left(\omega_{1}\right)-S_{j}\left(\omega_{1}\right)}$,
$\mu_{S_{j}\left(\omega_{1}\right)-S_{i}\left(\omega_{1}\right)}$, respectively. Thus:

$$
\begin{aligned}
& E_{P_{2}}\left(f\left(U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}\right)\right)=\mu_{S_{n}\left(\omega_{1}\right)-S_{k}\left(\omega_{1}\right)}(f) \\
& E_{P_{2}}\left(g\left(U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\omega_{1}\right)}\right)\right)=\mu_{S_{k}\left(\omega_{1}\right)-S_{j}\left(\omega_{1}\right)}(g) \\
& E_{P_{2}}\left(h\left(U_{S_{j}\left(\omega_{1}\right)}-U_{S_{i}\left(\omega_{1}\right)}\right)\right)=\mu_{S_{j}\left(\omega_{1}\right)-S_{i}\left(\omega_{1}\right)}(h)
\end{aligned}
$$

By Proposition 3.1, the R.H.S of these equalities are random variables of ω_{1}, independent under P_{1} since they are measurable functions of the independent random variables $S_{n}-S_{k}, \quad S_{k}-S_{j}, \quad S_{j}-S_{i}$. Therefore, applying $E_{\mathrm{R}_{1}}$ to both sides of formula (${ }^{*}$) we get the proof of (3.8):

$$
\begin{aligned}
& E_{P_{1}} E_{P_{2}}\left(\left[f\left(U_{S_{n}}-U_{S_{k}}\right) \cdot g\left(U_{S_{k}}-U_{S_{j}}\right) \cdot h\left(U_{S_{j}}-U_{S_{i}}\right)\right]\right) \\
= & E_{P_{1}}\left[E_{P_{2}}\left(f\left(U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}\right)\right)\right) \\
& \left.\cdot E_{P_{2}}\left(g\left(U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\omega_{1}\right)}\right)\right) \cdot E_{P_{2}}\left(h\left(U_{S_{j}\left(\omega_{1}\right)}-U_{S_{i}\left(\omega_{1}\right)}\right)\right)\right] \\
& E_{P_{1}} E_{P_{2}}\left(f\left(U_{S_{n}\left(\omega_{1}\right)}-U_{S_{k}\left(\omega_{1}\right)}\right)\right) \\
& \cdot E_{P_{1}} E_{P_{2}}\left(g\left(U_{S_{k}\left(\omega_{1}\right)}-U_{S_{j}\left(\omega_{1}\right)}\right)\right) \\
& \cdot E_{P_{1}} E_{P_{2}}\left(h\left(U_{S_{j}\left(\omega_{1}\right)}-U_{S_{i}\left(\omega_{1}\right)}\right)\right) \\
= & E_{P}\left(f\left(U_{S_{n}}-U_{S_{k}}\right)\right) \cdot E_{P}\left(g\left(U_{S_{k}}-U_{S_{j}}\right)\right) \\
& \cdot E_{P}\left(h\left(U_{S_{j}}-U_{S_{i}}\right)\right) .
\end{aligned}
$$

To achieve the proof, write $U_{S_{n}}$ as follows:
$U_{S_{n}}=\sum_{1}^{n}\left(U_{S_{k}}-U_{S_{k-1}}\right)$, where the $U_{S_{k}}-U_{S_{k-1}}$ are independent with the same distribution given by

$$
P\left(U_{Z_{k}} \in A\right)=\int_{R_{+}} \mu_{z}(A) \lambda(\mathrm{d} z)
$$

according to (3.5).
3.9. Proposition: For every positive measurable function $f: \mathrm{R}_{+} \rightarrow \mathrm{R}$, we have:

$$
\begin{equation*}
E_{P}\left(f\left(U_{S_{n}}\right)\right)=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} f(t) \cdot \mu_{s}(\mathrm{~d} t) \cdot \lambda^{* n}(\mathrm{~d} s) \tag{3.9}
\end{equation*}
$$

$\lambda^{* n}$ being the n-fold convolution of the probability λ. In particular the distribution law of the process $U_{S_{n}}$ is given by:

$$
B \in \mathbf{B}_{\mathrm{R}_{+}}, \quad P\left(U_{s_{n}} \in B\right)=\int_{\mathrm{R}_{+}} \mu_{s}(B) \lambda^{* n}(\mathrm{~d} s)
$$

and its expectation is:

$$
E_{P}\left(U_{S_{n}}\right)=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} t \mu_{s}(\mathrm{~d} t) \cdot \lambda^{* n}(\mathrm{~d} s)
$$

Proof: We have:

$$
\begin{aligned}
E_{P}\left(f\left(U_{S_{n}}\right)\right) & =E_{P_{1}} E_{P_{2}}\left(f\left(U_{S_{n}\left(\omega_{1}\right)}\left(\omega_{2}\right)\right)\right) \\
& =E_{P_{1}} \int_{R_{+}} f(t) \mu_{S_{n}\left(\omega_{1}\right)}(\mathrm{d} t)
\end{aligned}
$$

and, by Proposition 3.1, the function
$\omega_{1} \rightarrow \int_{R_{+}} f(t) \mu_{S_{n}\left(\omega_{1}\right)}(\mathrm{d} t)$ is a measurable function of $S_{n}\left(\omega_{1}\right)$. Since $S_{n}=Z_{1}+Z_{2}+\cdots+Z_{n}$ is a simple random walk with the Z_{n} having distribution λ, the random variable S_{n} has the distribution $\lambda^{* n}$. So, by a simple change of variable we get:
$E_{P_{1}} \int_{R_{+}} f(t) \mu_{S_{n}\left(\omega_{1}\right)}(\mathrm{d} t)=\int_{\mathrm{R}_{+}} \int_{\mathrm{R}_{+}} f(t) \mu_{s}(\mathrm{~d} t) \cdot \lambda^{* n}(\mathrm{~d} s)$. So for mula (3.9) is proved. To get the distribution law of the process $U_{S_{n}}$, take f equal to the characteristic function of some Borel set B.
3.10. Remark: Let v be the distribution of $U_{Z_{1}}$, that is $v(A)=\int_{R_{+}} \mu_{z}(A) \lambda(\mathrm{d} z)$ and let
$\beta=E_{P}\left(U_{Z_{1}}\right)=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} t \mu_{\mathrm{Z}}(\mathrm{d} t) \cdot \lambda(\mathrm{d} z)$, then as a direct consequence of theorem 3.8,

$$
\begin{aligned}
& P\left(U_{S_{n}} \in B\right)=v^{* n}(B) \\
& E_{P}\left(U_{S_{n}}\right)=n \cdot \beta
\end{aligned}
$$

Now we turn to the structure of the process X_{n}. We need the following technical lemma:
3.11. Lemma: For every Borel positive function
$F: \mathrm{R}_{+} \times \mathrm{R}_{+} \rightarrow \mathrm{R}$, the function $\varphi: s \rightarrow \int_{\mathrm{R}_{+}} F(s, t) \mu_{s}(\mathrm{~d} t)$ is measurable.
Proof: Start with $F=I_{A \times B}$, the characteristic function of the measurable rectangle $A \times B$, in which case we have $\varphi(s)=I_{A}(s) \mu_{s}(B)$. Since by proposition 3.1, the function $s \rightarrow \mu_{s}(B)$ is measurable we deduce that φ is measurable in this case. Next consider the family
$\Gamma=\left\{B \in \mathbf{B}_{\mathrm{R}_{+} \times \mathrm{R}_{+}}: s \rightarrow \int_{\mathrm{R}_{+}} I_{B}(s, t) \mu_{s}(\mathrm{~d} t)\right.$, is measurable. $\}$
It is easy to check that Γ is a monotone class closed under finite disjoint unions. Since it contains the measurable rectangles, we deduce that $\Gamma=\mathbf{B}_{\mathrm{R}_{+} \times \mathrm{R}_{+}}$. Finally consider the following class of Borel positive functions

$$
\mathbf{P}=\left\{F: \mathrm{R}_{+} \times \mathrm{R}_{+} \rightarrow \mathrm{R}, \varphi(s)=\int_{\mathrm{R}_{+}} F(s, t) \mu_{s}(\mathrm{~d} t) \text { is Borel }\right\}
$$

It is clear that \mathbf{P} is closed under addition and, by the step above, it contains the simple Borel positive functions. By the monotone convergence theorem, \mathbf{P} is ex-
actly the class of all Borel positive functions.
3.12. Theorem: The random variables
$Z_{k}-\left(U_{S_{k}}-U_{S_{k-1}}\right), k=1,2, \cdots$, are independent with the same distribution given by: for $B \in \mathbf{B}_{R_{+}}$

$$
\begin{align*}
& P\left(\left(Z_{k}-\left(U_{S_{k}}-U_{S_{k-1}}\right)\right) \in B\right) \\
& =\int_{R_{+}} \mu_{s}(s-B) \cdot \lambda(\mathrm{d} s) \tag{3.12}
\end{align*}
$$

Consequently the storage process $X_{n}=S_{n}-U_{S_{n}}=\sum_{1}^{n}\left(Z_{k}-\left(U_{S_{k}}-U_{S_{k-1}}\right)\right)$, is a simple random walk with the basic distribution (3.12).

Proof: For each integer $r \geq 0$, and each
$\left(\omega_{1}, \omega_{2}\right) \in \Omega_{1} \times \Omega_{2}$, put:

$$
\begin{aligned}
& W_{r}\left(\omega_{1}, \omega_{2}\right) \\
& =Z_{r}\left(\omega_{1}\right)-\left(U_{S_{r}\left(\omega_{1}\right)}\left(\omega_{2}\right)-U_{S_{r-1}\left(\omega_{1}\right)}\left(\omega_{2}\right)\right)
\end{aligned}
$$

So it is enough to prove that for all $0 \leq i \leq j \leq k$ and all Borel positive functions $f, g, h: \mathrm{R}_{+} \rightarrow \mathrm{R}$, we have:

$$
\begin{align*}
& E_{P}\left(f\left(W_{k}\right) \cdot g\left(W_{j}\right) \cdot h\left(W_{i}\right)\right) \tag{3.13}\\
& =E_{P}\left(f\left(W_{k}\right)\right) \cdot E_{P}\left(g\left(W_{j}\right)\right) \cdot E_{P}\left(h\left(W_{i}\right)\right)
\end{align*}
$$

From the construction of the process $U_{S_{n}}$, we know that for ω_{1} fixed, the random variables $W_{r}\left(\omega_{1}, \omega_{2}\right)$, $r=i, j, k$, are independent under P_{2} (see 2.2 (iii)). So, applying $E_{P_{2}}$ to $f\left(W_{k}\right) \cdot g\left(W_{j}\right) \cdot h\left(W_{i}\right)$, we get:

$$
\begin{align*}
& E_{P_{2}}\left(f\left(W_{k}\right) \cdot g\left(W_{j}\right) \cdot h\left(W_{i}\right)\right) \tag{3.14}\\
& =E_{P_{2}}\left(f\left(W_{k}\right)\right) \cdot E_{P_{2}}\left(g\left(W_{j}\right)\right) \cdot E_{P_{2}}\left(h\left(W_{i}\right)\right)
\end{align*}
$$

Now, since under P_{2}, the distribution of $U_{S_{r}\left(\omega_{1}\right)}\left(\omega_{2}\right)-U_{S_{r-1}\left(\omega_{1}\right)}\left(\omega_{2}\right)$ is the same as that of $U_{S_{r}\left(\omega_{1}\right)-S_{r-1}\left(\omega_{1}\right)}=U_{Z_{r}\left(\omega_{1}\right)}\left(\omega_{1}\right.$ fixed $)$, we have for each Borel positive function $\psi: \mathrm{R}_{+} \rightarrow \mathrm{R}$
$E_{P_{2}}\left(\psi\left(W_{r}\right)\right)=\int_{R_{+}} \psi\left(Z_{r}\left(\omega_{1}\right)-t\right) \mu_{Z_{r}\left(\omega_{1}\right)}(\mathrm{d} t), \quad r=i, j, k$
From lemma 3.11, the functions
$\omega_{1} \rightarrow \int_{R_{+}} \psi\left(Z_{r}\left(\omega_{1}\right)-t\right) \mu_{Z_{r}\left(\omega_{1}\right)}(\mathrm{d} t), r=i, j, k$, are Borel
functions of the random variables Z_{r}, thus they are independent under the probability P_{1}. Therefore, applying $E_{P_{1}}$ to both sides of (3.14) we get (3.13).

As for the process X_{n}, the counterpart of proposition 3.9 is the following:
3.15. Proposition: If $f: \mathbf{R}_{+} \rightarrow \mathbf{R}$ is positive measurable and if $B \in \mathbf{B}_{{R_{+}}}$, then we have:

$$
E_{P}\left(f\left(X_{n}\right)\right)=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} f(s-t) \mu_{s}(\mathrm{~d} t) \cdot \lambda^{* n}(\mathrm{~d} s)
$$

$$
\begin{gathered}
P\left(X_{n} \in B\right)=\int_{R_{+}} \mu_{s}(s-B) \lambda^{* n}(\mathrm{ds}) \\
E_{P}\left(X_{n}\right)=n \cdot(\alpha-\beta)
\end{gathered}
$$

For the proof, use the formula $X_{n}=S_{n}-U_{S_{n}}$ and routine integration.
3.16. Example: Let $0<c<1$ and let us take as measure μ_{s} the unit mass at the point cs, that is, the Dirac measure $\mu_{s}=\delta_{c s}, s \in \mathrm{R}_{+}$. It easy to check that $\mu_{s+t}=\mu_{s} \times \mu_{t}$ for all s, t in R_{+}Then for every probability measure λ on R_{+}
we have: $P\left(U_{Z_{1}} \in B\right)=\int_{R_{+}} \mu_{s}(B) \lambda(\mathrm{d} s)=\lambda\left(c^{-1} B\right)$. This gives the distribution of the release process in this case:
$P\left(U_{S_{n}} \in B\right)=\int_{R_{+}} \mu_{s}(B) \lambda^{* n}(\mathrm{~d} s)=\lambda^{* n}\left(c^{-1} B\right)$.
Since we have $\lambda^{* n}\left(c^{-1} B\right)=P\left(c S_{n} \in B\right)$, we deduce that the release rule consists in removing from S_{n} the quantity $c S_{n}$.

Likewise it is straightforward, from Proposition 3.14, that

$$
\begin{aligned}
& P\left(X_{n} \in B\right)=\int_{R_{+}} \mu_{s}(s-B) \cdot \lambda^{* n}(\mathrm{~d} s) \\
& =\int_{R_{+}} \delta_{c s}(s-B) \lambda^{* n}(\mathrm{~d} s) \\
& =\int_{R_{+}} l_{(1-c)^{-1} B}(s) \lambda^{* n}(\mathrm{~d} s) \\
& =\lambda^{* n}\left((1-c)^{-1} B\right)
\end{aligned}
$$

from which we deduce that the distribution of the storage process is

$$
P\left(X_{n} \in B\right)=P\left((1-c) S_{n} \in B\right)
$$

One can give more examples in this way by choosing the distribution λ or/and the semigoup $\left\{\mu_{x}, x \geq 0\right\}$. Consider the following simple example:
3.17. Example: Take λ the 0-1 Bernoulli distribution with probability of success p. In this case the semigroup $\left\{\mu_{x}, x \geq 0\right\}$ is a sequence μ_{n} of probabilities with μ_{n} supported by $\{1,2, \cdots, n\}$ for $n \geq 1$ and $\lambda^{* n}$ is the Binomial distribution. So we get from proposition 3.9

$$
\begin{aligned}
P\left(U_{S_{n}} \in B\right) & =\int_{R_{+}} \mu_{s}(B) \lambda^{* n}(\mathrm{~d} s) \\
& =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \mu_{k}(B)
\end{aligned}
$$

Likewise we get the distribution of X_{n} from proposition 3.15 as :

$$
\begin{aligned}
& P\left(X_{n} \in B\right)=\int_{R_{+}} \mu_{s}(s-B) \lambda^{* n}(\mathrm{~d} s) \\
& =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \mu_{k}(s-B)
\end{aligned}
$$

4. Limit Theorems

Due to the simple structure of the processes $U_{S_{n}}$ and X_{n} (Theorems 3.8, 3.12), it is not difficult to establish a SLLN and a CLT for them.
4.1. Theorem: For the storage process X_{n} and the release rule process $U_{S_{n}}$, we have:

$$
\lim _{n} \frac{X_{n}}{n}=\alpha-\beta=E_{P}\left(X_{1}\right)
$$

and

$$
\lim _{n} \frac{U_{S_{n}}}{S_{n}}=\frac{\beta}{\alpha}
$$

Proof: Since S_{n} and $U_{S_{n}}$ are simple random walks with $E_{P}\left(Z_{1}\right)=\alpha$ and $E_{P}\left(U_{S_{1}}\right)=\beta$, we have:
$\lim _{n} \frac{S_{n}}{n}=\alpha$ and $\lim _{n} \frac{U_{S_{n}}}{n}=\beta$, by the classical S.L.L.N.
So we deduce:

$$
\lim _{n} \frac{X_{n}}{n}=\lim _{n} \frac{S_{n}-U_{S_{n}}}{n}=\alpha-\beta
$$

and

$$
\lim _{n} \frac{U_{S_{n}}}{S_{n}}=\lim _{n} \frac{\frac{U_{S_{n}}}{n}}{\frac{S_{n}}{n}}=\frac{\beta}{\alpha}
$$

4.2. Proposition: Under the conditions:

$$
\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} t^{2} \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)<\infty \text { and }
$$

$\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} s \cdot t \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)<\infty$, the variances σ_{U}^{2} and $\sigma_{X_{1}}^{2}$
of the random variables U_{Z} and X_{1} are finite. The conditions can respectively be written as

$$
\int_{R_{+}} E\left(U_{s}^{2}\right) \cdot \lambda(\mathrm{d} s)<\infty
$$

and

$$
\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} s \cdot E\left(U_{s}\right) \cdot \lambda(\mathrm{d} s)<\infty .
$$

Proof: We have
$\sigma_{U}^{2}=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} t^{2} \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)-\beta^{2}$, so the first condition gives $\sigma_{U}^{2}<\infty$. On the other hand we have

$$
\sigma_{X_{1}}^{2}=\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}}(s-t)^{2} \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)-(\alpha-\beta)^{2}
$$

and

$$
\begin{aligned}
& \int_{\mathrm{R}_{+} \times \mathrm{R}_{+}}(s-t)^{2} \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s) \\
= & \left.\int_{\mathrm{R}_{+} \times \mathrm{R}_{+}}\left(s^{2}+t^{2}\right) \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)\right) \\
& -2 \int_{\mathrm{R}_{+} \times \mathrm{R}_{+}} s \cdot t \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)
\end{aligned}
$$

Since the variance σ^{2} of Z_{n} is finite we have $\int_{R_{+} \times \mathrm{R}_{+}} s^{2} \mu_{s}(\mathrm{~d} t) \cdot \lambda(\mathrm{d} s)=\int_{\mathrm{R}_{+}} s^{2} \cdot \lambda(\mathrm{~d} s)<\infty$, so the conclusion follows.

Finally we get under the conditions of proposition 4.2:
4.3. Theorem: Assume the conditions of proposition
4.2. Then the normalized sequences of random variables:

$$
T_{n}=\frac{U_{S_{n}}-n \cdot \beta}{\sigma_{U} \sqrt{n}} \text { and } R_{n}=\frac{X_{n}-n \cdot(\alpha-\beta)}{\sigma_{X_{1}} \sqrt{n}}
$$

both converge in distribution to the Normal law $N(0,1)$.
Proof: The condition of the theorem insures the finiteness of the variances σ_{U}^{2} and $\sigma_{X_{1}}^{2}$. Now the conclusion results from the fact that $U_{S_{n}}$ and X_{n} are simple random walks and the Lindberg Central Limit Theorem. To see this, we use the method of characteristic functions. Let us denote by f_{θ} the characteristic function of the random variable θ. Since by Theorem 3.8 the components $U_{S_{k}}-U_{S_{k-1}}$ of $U_{S_{n}}$ have the same distribution as $U_{Z_{1}}$, we have

$$
\begin{aligned}
& f_{T_{n}}(t)=\exp \left(\text { it } T_{n}\right) \\
& =\left(f_{U_{Z_{1}}-\beta}\left(\frac{t}{\sigma_{U} \sqrt{n}}\right)\right)^{n} \\
& =\left\{1+\frac{i^{2} \sigma_{U}^{2}}{2}\left(\frac{t}{\sigma_{U} \sqrt{n}}\right)^{2}+o\left(\frac{|t|}{\sigma_{U} \sqrt{n}}\right)^{2}\right\}^{n} \\
& =\left\{1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right\}^{n} \rightarrow \exp \left(-\frac{t^{2}}{2}\right)
\end{aligned}
$$

where the second equality comes from the Taylor expansion of $f_{U_{z_{1}}-\beta}$. It is well known that this limit is the characteristic function of the random variable $N(0,1)$. The same proof works for R_{n}, using the components of the process X_{n} as given in Theorem 3.12.

In some storage systems, the changes due to supply and release do not take place regularly in time. So it would be more realistic to consider the time parameter n as random. We will do so in what follows and will consider the asymptotic distributions of the processes $U_{S_{n}}$, and X_{n}, when properly normalized and random-
ized. First let us put for each k,

$$
\begin{gathered}
A_{k}=\frac{U_{S_{k}}-U_{S_{k-1}}-\beta}{\sigma_{U}} \text {, and } \\
B_{k}=\frac{Z_{k}-\left(U_{S_{k}}-U_{S_{k-1}}\right)-(\alpha-\beta)}{\sigma_{X_{1}}} .
\end{gathered}
$$

Then we have:
4.4. Theorem: Let $\left\{N_{n}: n \geq 1\right\}$ be a sequence of integral valued random variables, independent of the A_{k} and B_{k}.

If $\frac{N_{n}}{n}$ converges in probability to 1 , as $n \rightarrow \infty$, then the randomized processes:

$$
\frac{\sum_{1}^{N_{n}} A_{k}}{\sqrt{n}} \text { and } \frac{\sum_{1}^{N_{n}} B_{k}}{\sqrt{n}}
$$

both converge in distribution to the Normal law $N(0,1)$.
Proof: It is a simple adaptation of [7], VIII.4, Theorem 4, p. 265.

5. Conclusion

In this paper, we presented a simple stochastic storage process X_{n} with a random walk input S_{n} and a natural release rule $U_{S_{n}}$. Realistic conditions are prescribed which make this process more tractable when compared to those models studied elsewhere (see Introduction). In particular the conditions led to a simple structure of random walk for the processes $U_{S_{n}}$ and X_{n}, which has given explicitly their distributions, and a rather good insight on their asymptotic behavior since a SLLN and a CLT has been easily established for each of them. Moreover, a slightly more general limit theorem has been obtained when time is adequately randomized and both processes $U_{S_{n}}$ and X_{n} properly normalized.

6. Acknowledgements

I gratefully would like to thank the Referee for his appropriate comments which help to improve the paper.

REFERENCES

[1] E. Cinlar and M. Pinsky, "On Dams with Additive Inputs and a General Release Rule," Journal of Applied Probability, Vol. 9, No. 2, 1972, pp. 422-429. doi:10.2307/3212811
[2] E. Cinlar and M. Pinsky, "A Stochastic Integral in Storage Theory," Probability Theory and Related Fields, Vol. 17, No. 3, 1971, pp. 227-240. doi:10.1007/BF00536759
[3] J. M. Harrison and S. I. Resnick, "The Stationary Distribution and First Exit Probabilities of a Storage Process with General Release Rule," Mathematics of

Operations Research, Vol. 1, No. 4, 1976, pp. 347-358. doi:10.1287/moor.1.4.347
[4] J. M. Harrison and S. I. Resnick, "The Recurrence Classification of Risk and Storage Processes," Mathematics of Operations Research, Vol. 3, No. 1, 1978, pp. 57-66. doi:10.1287/moor.3.1.57
[5] K. Yamada, "Diffusion Approximations for Storage Pro-
cesses with General Release Rules," Mathematics of Operations Research, Vol. 9, No. 3, 1984, pp. 459-470. doi:10.1287/moor.9.3.459
[6] P. A. Meyer, "Probability and Potential," Hermann, Paris, 1975.
[7] W. Feller, "An Introduction to Probability Theory and Its Applications," 2nd Edition, Wiley, Hoboken, 1970.

