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ABSTRACT 

The kinetic electron trapping process in a shallow defect state and its subsequent thermal- or photo-stimulated pro- 
motion to a conduction band, followed by recombination in another defect, was described by Adirovitch using coupled 
rate differential equations. The solution for these equations has been frequently computed using the Runge-Kutta 
method. In this research, we empirically demonstrated that using the Runge-Kutta Fourth Order method may lead to 
incorrect and ramified results if the numbers of steps to achieve the solutions is not “large enough”. Taking into account 
these results, we conducted numerical analysis and experiments to develop an algorithm that determines the smallest 
non-critical number of steps in an automatic way to optimize the application of the Runge-Kutta Fourth Order method. 
This algorithm was implemented and tested in a variety of situations and the results have shown that our solution is 
robust in dealing with different equations and parameters. 
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1. Introduction 

Adirovitch proposed a description of the luminescence in 
crystal phosphor through a kinetic process involving 
electrons trapped in a crystal defect, their subsequent 
thermally or optically induced promotion to a conduction 
band, and their recombination in another defect [1]. The 
use of this model allows the inclusion of physically 
meaningful quantities [2,3]. To date, the model has been 
applied and further extended to analyse, for example, to 
the optical absorption decay of Fe impurity oxidation [4], 
the thermal decay of the optical absorption of irradia- 
tion-induced color centers in spodumene [5,6], the lumi- 
nescence of irradiated spodumene [7], the EPR of atomic 
hydrogen in glass and beryl [8-10], defects in diamond 
films [11], charge transport in thin-layer photodielectric 
systems [12], thermally stimulated processes in dielec- 
trics [13], stimulated luminescence in insulators and 
semiconductors [14], soliton in biological systems [15], 
photo-induced-degradation of amorphous hydrogen sili- 
con (a-Si:H) [16] and the degradation of a polymer [17]. 

In Adirovitch’s model, the concentration of trapped 
charges ( 1Y ) and free charges in the conduction band ( ) 
are related by the rate equations: 
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where 1 , 2  and 3  are positive adjustable parame- 
ters associated with the release of charges from traps, 
retrapping and the charge and electron-hole recombine- 
tion process, respectively. In general the energy dissipa- 
tion of the recombination process occurs through a radia- 
tion process. Thus, the function  presented 
in Equation (1) is proportional to the luminescence in 
crystal phosphor and  is the concentration of traps 
[1]. 
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Previous research findings have shown that the solu- 
tions for the non-linear stability analysis of equations 1a 
and 1b are stable, following a hyperbolic path [18]. Mi- 
zukami et al. [19] observed that these solutions can be 
represented by the sum of two terms. The first term leads 
to slow first order decay and the other to a fast decay. 
Based on these observations they have proposed an ap- 
proximate method to reach stable solutions. To obtain the 
exact solutions, iterative methods can be applied. A fam-  *Corresponding author. 
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ily of explicit and implicit iterative methods that has been 
frequently used are the Runge-Kutta methods [20-22]. 

In this paper we initially report numerical analyses of 
the fourth order Runge-Kutta method as applied to the 
solution of Adirovitch model Equations (1a) and (1b). 
Even though the RK method is stable, we identified a 
disconcerting property that emerges from the stiffness of 
the method when solving these equations: the numerical 
results are reliable and efficient only for a limited range 
of parameter values. To solve this problem, this paper 
proposes an algorithm to determine the best values for 
parameters in the Runge-Kutta method in order to guar-
antee the reliability of the results while using the smallest 
numbers of steps to reach a solution. This algorithm was 
implemented and has been used in different situations 
with different parameters. Thus far, to the best of our 
knowledge, the proposed algorithm has not produced any 
incorrect solutions. 

The paper is organized as follows: in the first section 
we present the numerical analysis of the Adirovitch 
model; next, we present the problem of calculating the 
smallest number of steps to find the solution of this 
model using a Runge-Kutta Method; and finally we pre- 
sent an algorithm, together with its implementation and 
tests, to optimize the calculation of the smallest non- 
critical number of steps to reach the solution. 

2. Numerical Analysis 

To numerically solve the Equations (1a) and (1b) for the 
Adirovitch model presented in the introduction of this 
work it is necessary to find the correct values for each 
adjustable parameter 1 , 2 , and 3 . Powerful genetic 
[23] and statistical [24] methods were developed recently 
and can be applied in fitting these parameters. Also, other 
classical methods for fitting can be adopted [25,26]. 
Nevertheless, fit methods may use a high number of it- 
erations, and the number of steps used for the integration 
method may increase the computational cost. They may 
also require large adjustable parameter values. In this 
context, the solution of Equations (1) using the Runge- 
Kutta method, according to the parameters given, may 
require a large number of steps. Furthermore, the stiff- 
ness of the method can create difficulties in the numeri- 
cal integration of Equations (1) resulting in abnormal and 
numerically unstable solutions. In this section we will 
examine the chaotic behaviours of these solutions. In the 
next section, we propose an algorithm to overcome them. 

P P P

Equations (1) are made more tractable by introducing 
the transformations: 

1,0i iy Y Y               (2) 

where  is the total concentration of trapped 
charges at the initial instant 0 , and 

 1,0 1 0Y Y
0T   1 0 1y  . 

Since the parameters ,  and  enter linearly in 

the right hand side of Equations (1), mathematically only 
two of them are really independent. Therefore, it is natu-
ral to make an additional scaling. Then, using 1

1P 2P 3P

1,p   

2 2 1 3 3 1 1, ,p P P p P P t PT   , we deal with only two 
parameters. Thus, Equations (1) are written as: 
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Numerical methods for the solution of Equations (3) 
can be divided into two categories [27]. One is the initial 
value problem, in which the values of  iy t

 0t
 are known 

at an initial time 0 , with i i , requiring the 
evaluation of 

t 0y y
 iy t . The other is the boundary condition 

for two points, in which boundary conditions are given 
for  and 0t ft , typically. 

The numerical solution of Equations (3) belonging to 
the first category are mostly grouped as Runge-Kutta [21, 
22,27-30], Bulirsch-Stoer [31], predictor-corrector [32] 
solutions among others [33,34]. 

A widely used form of the Runge-Kutta method is of 
the fourth order. Using a vector notation typical in dif- 
ferential equations,  1 2,y yy  and  

 1 2= d d ,d dy t yf t , the advancing formula  
1n ny y  from time  to  is given by: nt 1n nt t  h

  1 1 2 3 4 n1 6 2 2n n     y y k k k k O   (4) 

where  1n nh t t N   is the time increment for N 
steps in which the interval is divided, 
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The precision of  is proportional to . For or- 
ders greater than four, it is necessary to evaluate M to M 
+ 2 more functions, increasing the computational cost. 
The equilibrium between computational efficiency and 
cost has been found for the fourth order Runge-Kutta 
method [13,23]. 

nO 5h

As the error is proportional to , the Runge-Kutta 
method has a strong dependence on the number of steps. 
It predicts that the solution is invariant for large numbers 
of steps and that errors accumulate with any decrease in 
the number of steps. 

5h

Because of the dynamic nature of the Equations (3), it 
is possible that the accumulation of error makes the solu-
tions erratic. Therefore, we investigated the types of er-
rors that can happen depending on the number of steps 
and the values of the parameters of the Equations (3). 
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We have found at least four types of erratic solutions 
for Equations (3), which are shown in Figure 1. Here we 
assume that all charge traps are filled (  1 0 1y  ) and 
have no free charges at first ( ). The time in- 
terval used for all calculations in the present work is 

 2 0y  0

 0,10t . Figure 1(a) shows an error in which the solu- 
tions behave as expected for the exact solutions but 
whose values are wrong. Figure 1(b) shows deformation 
errors in which the solution has anomalous depressions 
or elevations. Figure 1(c) shows an error in which solu- 
tions are duplicated, suggesting chaotic behavior. Finally, 
Figure 1(d) shows erratic solutions leading to divergence. 
Erratic solutions such as divergence, doubling and de- 
formations are easily identified. Nevertheless, wrong 
solutions are more difficult to identify. 

The existence of incorrect solutions can be evaluated 
by analysing the correction for the n-th step given by 

1
1

1
n ny y  . Figure 2 shows 1

1
1
n ny y   as a function of 

3  in the interval p  3 0,p 
2y

80
 0 0

, with 2 , initial 
parameters , 

65p 
 1 0 1y    and (a) , (b) 270N 

230N  , (c) 200N  , and (d) . Solid lines 
linking the values obtained at each i-th step makes the 
visualization of the properties of 

170N 

1
1 1
n ny y   easy. 

In Figure 2(a) ( 270N  ) it is possible to see that the 
modulus of differences decreases at each step and grows 
slowly with the increase of 3 . This behaviour changes 
starting at 3

p
p 75 , where oscillations can be seen. In 

Figure 2(b) ( 230N  ) a stranger fin-like formation 
appears at approximately 3 , at the same time that 
the differences become erratic. In Figure 2(c) (

56p 
200N  ) 

the fin-like formation appears around 3  and dou- 
bling appears in 3

42p 
68p  . In the interval between the 

beginning of the fin-like formation and the beginning of 
the doubling, the solutions are incorrect. In Figure 2(d) 
( 170N  ), we observed three critical points, one at the 
fin-like formation ( 3 32p  ), the second at the doubling 
( 3 52p  ), and the other at a point where the solution 
diverges completely ( 3 70p  ). The differences show the 
appearance of incorrect fin-like, doubling, and diver-
gence type solutions, but they do not allow for prediction  

 

 

Figure 1. Solution y1 of Equations (3) using the Runge-Kutta method. 
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Figure 2. Plot of 1
1
n

1
ny y   as function of  ,3 0 80p  , with 2 65p  , and (a) 270N  ; (b) ; (c) ; and (d) 

. 

230N  200N 

170N 
 
of the result of the sum of these differences. In fact we 
verified through an exact numerical solution of Equations 
(3) that wrong solutions for N = 170, 200, 230 and 270 
begin at approximately 3 , respectively. 
Therefore, 1

9, 21, 56, 75p 
1

1
n ny y   is not capable of revealing cumu-

lative errors and a new algorithm must be considered in 
order to do so. 

3. An Algorithm to Optimize the Calculation 
of the Number of Steps in the 
Runge-Kutta Method 

The analysis given in Section 2 reveals that the Equations 
(3) behave chaotically depending on the number of steps. 
Previous research findings have tried to provide mathe- 
matical explanations for why such phenomena occur in 
nonlinear systems [35]. Our work does not intend to 
build upon these mathematical explanations. Instead, this 
work intends to create an algorithm that calculates the 
smallest number of steps necessary to solve the Equa- 
tions (3), thereby preventing users/programs from en- 
countering these chaotic behaviours. Along these lines, 
Hagebeuk and Kivits have presented an algorithm in the 
form of expansion of a very small parameter 1

1P  to 
overcome the problem of stiffness [35]. More recently, a 
new improved class of RK methods of the fourth order 
were applied with success in several sample problems 
[36-38]. Nevertheless, the problem of finding the small- 
est number of steps in which the solutions of RK meth- 

ods are stable, numerically meaningful and efficiently 
calculated still remains a subject of great interest [39-42]. 

3.1. How to Determine the Smallest Non-Critical 
Number of Steps? 

The Runge-Kutta method numerically solves Equations 
(3) if the solution in a given interval becomes independ-
ent of the number of steps (i.e. the number of steps is 
large enough). However, as discussed in Section 2, we 
find that 1

1
1
n ny y   can detect fin-like, doubling and 

divergence (Figure 2), but cannot show incorrect solu-
tions. This observation is disturbing because it reminds 
us of the need to perform additional tests to ensure that 
the number of steps is large enough to give reliable re-
sults for the numerical integration. Therefore, we propose 
an algorithm that executes this task automatically as the 
solution to find the smallest number of steps to finding a 
correct solution to Equations (3). 

In Section 3, we observed that incorrect solutions may 
occur from the beginning of the calculations. For exam-
ple, considering the same interval of integration, for 

200N  , 1 2 31, 65p p p   , which gives wrong re-
sults,  in the first step is 0.954288... and for  1y

2000N  , 1 2 31, 6p p p 5   , which gives correct 
results, it is 0.952203... after 10 steps (the interval is the 
same in both calculations). This result shows that there is 
a difference from the beginning of the calculation. On the 
other hand for N = 2000, p1 = 1, p2 = p3 = 65, the result of  
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the calculation in the first step is 0.995014870675078 
and for N = 20,000 after 10 steps the same level of nu- 
merical precision is achieved. 

By examining these results, we conclude that the result 
of the application of the RK method using the interval of 
the first step and dividing it into 10 steps may reveal 
whether the number of steps will lead to incorrect results. 
So we will build the algorithm considering only the in- 
terval of the first step. We calculate the result of the ap- 
plication of the RK method with a single step in this in- 
terval and subtract the result of the calculation obtained 
by dividing this same interval into M steps. We write this 
algorithm as: 

     1 1i i iM y M y i    , 2     (5) 

Let us consider the difference  where  1 10  1 1y  
and  are calculated with one and 10 steps in the 
interval , respectively. Then, since we are dealing with 
an expansion of the fourth order, we expect that to pro-
duce a correct solution this difference must be smaller 
than . In case of incorrect solutions, the difference 
does not maintain proportional to  and will increase. 

 1 10y
h

5h
5h

Figure 3 shows  as a function of the parame-
ter 

 1 10
 3 0,80p 

N
, with 2  and the number steps (a) 

N = 270, (b) , (c) 
65
N

p 
230 200 , and (d) 170N  . 

In Figure 3(a) ( N ) the arrow shows a sharp in-
crease in 

270
 1 10



, at approximately 3 , which 
coincides with the region where the the results are wrong. 
In Figure 3(b) ( ) the arrow shows an abrupt 
increase in 

75p 

230N 
1 , at about 3 , which coincides 

with the fin-like region. In Figure 3(c) ( N ), the 
10 56p 

200

first arrow at approximately 3 , shows the begin-
ning of a plateau-like region that extends to 3

21p 
42p  , 

where the fin-like region indicated by a second arrow 
begins. In Figure 3(d) ( 170N  ), the first arrow shows 
the beginning of a plateau-like region extending to 

3 42p   at about 3 9p  , where the fin-like region in-
dicated by a second arrow begins and the third arrow 
indicates divergence. The plateau-like region is not 
shown in the plot of 1

1
n

1
ny y   (Figure 2). 

Figure 4 shows the values of  and  1 10  102  
as a function of the parameter  3 , with p2 = 65 
and 

0,80p
200N  . The features of  and  1 10  2 10  

are very similar, until the second arrow; above the sec-
ond arrow there are differences in the structure of the 
results. Therefore, the best description of the error in the 
application of the Runge-Kutta method in the solution of 
Equations (3) may include both  and  1 10  2 10  
features. 

To include the behavior of  and  1 10  2 10 , as 
suggested by the analysis of Figure 4, we chose the last 
term of equation 1b, because it contains the variables y1 
and y2. Therefore we write the new algorithm  1,2 M  
as: 

       
     

1,2 2 2 1

2 2 11 1 1

M y M y M y M

y y y

    
   

       (6) 

Figure 5 shows  1,2 10  as a function of  
 3 0,80p  , with 2 65p   and (a) , (b) 270N 
230N  , (c) 200N  , and (d) . Figure 5(a) 

(
17N  0

270N  ) shows agreement with the exact solution until  

3 75p  , where a sharp increase begins. Figure 5(b)  
 

 

Figure 3. The difference  shown as function of  1 10  ,3 0 80p  , with 2 65p  , and (a) ; (b) 270N  230N  ; (c) 

; and (d) . 200N  170N 
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Figure 4. Differences Δ1(10) and Δ2(10) for  ,3 0 80p  , 

with , and . 2 65p  200N 

 
( ) shows the exact solution region until 

3 . Figure 5(c) ( ) shows the plateau-like 
region between two arrows. Figure 5(d) (

230N 
56p  200N 

170N  ) 
shows the plateau-like, fin-like and divergence regions 
successively. 

The results of  and  are similar for 
small values of the number of steps (  and 

). However when the number of steps increases 
closer to the number ideal of steps, we observed that 

 1 10  1,2 10
170N 

200N 

 1,2 10  reveals more details. For this reason, we 
adopted the algorithm  1,2 10  to determine the small-
est number of steps with which it is possible to reliably 
solve Equations (3) using the RK method. 

Table 1 shows the number of steps and the values of 

1  at the end of the time interval determined using the 
algorithm 
y

 1,2 10 . For values of parameters 1 1,p   

2 3 65p p  , we see that the solution for  101,2 , is 
bifurcated for values equal to or greater than 0.004, but is 
convergent below 0.0039. We note that in the interval of 
values of delta between 0.0039 and E-06 the values of 
steps are equal and the values of 1  match up to the 
third decimal place when compared to the more accurate 
results. The accuracy in the fifth decimal place is ob-
tained in the interval of E-08 to E-10. For delta equal to 
E-08, the number of steps is 245 and for E-10 it is 340. 
For values of parameters 1 2 3 , we see 
that the solution is bifurcated for  values equal 
to or greater than 0.02. Between 0.01 and 0.019, the so-
lution is wrong. Between 0.004 and 0.001 accuracy is 
limited to the first decimal place, between 0.0001 and 
0.00001 it extends to the third decimal place and for val-
ues less than 0.000001 to the fifth decimal place. For 
delta equal to E-06, the number of steps is 161 and 677 
for E-10. In any case, we find that, even for very small 
values of delta, the magnitude of the number of steps is 
in an acceptable range of values. 



6p 

y

6 
1,2

1, 5,p p
 10

3.2. The Algorithm 

Taking into account the above considerations, we pro-
pose a 5-step algorithm to determine the smallest non- 
critical number of steps of the Runge-Kutta method 

 

 

Figure 5. The  1,2 10  difference shown as a function of  ,3 0 80p  , with 2 65p  , and (a) ; (b) 270N  230N  ; (c) 

; and (d) . 200N  170N 
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Table 1. Values of the number of steps and the y1 at the end of the time interval determined using the algorithm  1,2 10  

with values equal or smaller that those shown in the first column. Values of Na and 1
ay  were determined for  

 and of Nb and 

1 2= 1 =p , p

3 = 65p 1
by  were determined for . 1 2 3= 1 = 65, = 6p , p p

 1,2 10  Na 1

ay  Nb 1

by  

1E-01 131 0.388058 53 0.841878 

2E-02 131 0.388098 151 0.858205 

1.9E-02 131 0.388098 153 0.434904 

1E-02 131 0.388058 151 0.331284 

4E-03 164 0.753236 153 0.348315 

3.9E-03 241 0.090869 153 0.348315 

1E-03 241 0.090869 153 0.348315 

1E-04 241 0.090869 155 0.350197 

1E-05 241 0.090869 158 0.350395 

1E-06 241 0.090869 161 0.350405 

1E-07 242 0.090897 168 0.350407 

1E-08 245 0.090909 225 0.350406 

1E-09 266 0.090906 366 0.350406 

1E-10 340 0.090907 677 0.350405 

 
applied to Equations (3), as follows: 
 1) Define the starting number of steps (50 in the pre-

sent case); 
 2) Evaluate  1, 10  using Equation (6); 2

 3) Compare  1,2 10  with the minimum acceptable 
error (E–10 in the present case); 

 4) If  1,2 10  does not match the minimum accept-
able value, steps 2 and 3 are repeated with the number 
of steps increased by a constant value (50 in the pre-
sent case); 

 5) If  1,2 10  matches the minimum acceptable 
value, the process is stopped. 

Applying the algorithm described above in the exam-
ple presented in Section 3.1 for 1 2 3 , we 
obtain  as the smallest non-critical number of 
steps. The last value calculated for 1  in this case (N = 
340) is 9.0907128174813E-02, while fo 0

1, 65p p p  

y
r 200N

340N 

  it 
is 9.09071645004228E-02. Therefore the number of 
steps determined by our algorithm gives a solution that is 
correct and obtains a good degree of accuracy compared 
with that obtained using a larger number of steps. 

To test our algorithm, we implemented a function us-
ing the programming language Basic. Part of the code is 
shown on Table 2. Lines 1 to 14 represent the first step 
of the algorithm, lines 15 to 33 the second step, lines 34 
and 35 the third step, 36 to 40 the fourth step and 41 to 
46 the last step. We performed a series of tests changing 
the parameters of the equations and checking the solution 
for Adirovitch’s model. To the best of our knowledge, 
our algorithm has produced only correct solutions. 

It is worth noting that we also successfully used the 

same algorithm to calculate the minimum number of 
steps to find the correct solution to more complex equa- 
tions that describes the kinetics of atomic hydrogen [43]. 
We are aware of other solutions for problems in the 
Runge-Kutta method [38,39,42,44]. Nevertheless, some 
of them are not open source (e.g. algorithm presented in 
MathLab) and others cannot be applied in our previously 
developed programs and algorithms without extensive 
changes. 

We are currently developing software to simulate and 
fit the experimental results of decay to time and ther-
moluminescence using the present algorithm for deter-
mining the number of steps, optimizing the parameters 
using the grid method described in previous work [27]. 
Preliminary results show perfect integration among these, 
with safety and manageability. 

4. Conclusions 

The calculation of solutions for differential equations can 
be complex and time consuming, requiring large amounts 
of computational resources (processing time, memory, 
etc). Thus, it is essential to optimize this process in order 
to get faster results. In this paper we were interested in 
using the Runge-Kutta method to calculate the correct 
solution for the Adirovitch model that uses coupled rate 
differential equations to describe the kinetic electron 
trapping process in a shallow defect state and its subse- 
quent thermal- or photo-stimulated promotion to a con- 
duction band followed by recombination in another de- 
fect. 

A series of experiments were carried out, demonstrat- 
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Table 2. Part of the code of the proposed algorithm implemented in Basic. 

Private Sub FindNRungeKutta() 

FlagCancel = False  [indicates if the solution diverges] 

NRFIM = 50            [initial steps] 

LeituradeParametros [read the equation parameters] 

For ip = 1 To IXE - 1         [the calculation is done on all the intervals  

                                            between the data being simulated] 

ContinuaFNRKAn1101: 

If NRFIM > 1000000 Then 

msg = "The degree of Stiffness does not allow the calculation of the solution" 

MsgBox msg, 48, " NOTE" 

FlagCancel = True [solution diverges] 

End 

H1 = (XEXP(ip + 1) - XEXP(ip)) / NRFIM 

[Calculate steps of the integration for interval ip e ip+1] 

For ip2 = 1 To 2     

[for ip2=1 calculate the second parameter of equation (6) using step H1  (line 13). 

For ip2=2 calculate the first parameter of equation (6) with M=10 using the redefined H1 (line 31)] 

Z1 = 1#   [initial condition for Y1] 

Z2 = 0     [initial condition for Y2] 

Z0 = XEXP(ip) 

[initial conditions for the Runge Kutta algorithm] 

Sub2700 

[function that calculates diferential equations using Runge Kutta and returns YCALC(ip2)] 

If FlagCancel = True Then                [equation diverges => too few steps] 

NRFIM = NRFIM + 50       [increase number of steps] 

FlagCancel = False              [restart flag] 

GoTo ContinuaFNRKAn1101  [restart algorithm] 

End If 

H1 = H1 * 0.1 

NU = 10 * NU 

Next ip2 

If Abs(1# - YCALC(1) / YCALC(2)) > 0.0001 Then 

[compare the terms of the algoritm ]  1,2 M

NRFIM = NRFIM + 50 

[increase the number of steps for integration] 

GoTo ContinuaFNRKAn1101  [return the results for  1,2 M ] 

Else 

NFIM = NRFIM [accepts calculated value] 

Text11.Text = Format(NFIM, "#########") [print it] 

FlagCancel = False 

End If 

Next ip 

End Sub 

 
ing that using the Runge-Kutta Fourth Order method to 
calculate the solution for the Adirovitch model’s differ- 
ential equations may lead to incorrect results when the 
numbers of steps to calculate the solution is not “large 
enough”. Thus, a numerical analysis was conducted. As a 
result we develop an algorithm that automatically deter- 

mines the smallest non-critical number of steps that op- 
timize the calculation of correct solutions of differential 
equations that follow the same behaviour found in the 
Adirovitch model. The algorithm is composed of 5 steps: 
1) Define the starting number of steps; 2) Evaluate 

 1,2 10  using Equation (6); 3) Compare  1,2 10  
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with the minimum acceptable error; 4) If  does 
not match the minimum acceptable value, steps 2 and 3 
are repeated with the number of steps increased by a 
constant value (50 in the present case); 5) If 

 1,2 10

 101,2  
matches the minimum acceptable value, the process is 
stopped. This algorithm was implemented and tested 
with different values and parameters. We also success- 
fully used the same algorithm to optimize the calculation 
of more complex equations that describe the kinetics of 
atomic hydrogen [43]. 

In future work we will extend this algorithm to support 
fast calculation of different models that describe physical 
behaviors using differential equations. We will also use 
the results of this work to create software that works as a 
platform to conduct experiments that simulate the be- 
haviors of different models. It will enable users to change 
the values of parameters in the equations and rapidly 
check the implications in the behavior of each model. 
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