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ABSTRACT 

The model of Bates specifies a rich, flexible structure of stock dynamics suitable for applications in finance and eco- 
nomics, including valuation of derivative securities. This paper analytically derives a closed-form expression for the 
joint conditional characteristic function of a stock’s log-price and squared volatility under the model dynamics. The use 
of the function, based on inverting it, is illustrated on examples of pricing European-, Bermudan-, and American-style 
options. The discussed approach for European-style derivatives improves on the option formula of Bates. The suggested 
approach for American-style derivatives, based on a compound-option technique, offers an alternative solution to exist- 
ing finite-difference methods 
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1. Introduction 

Stochastic volatility and jump-diffusion are standard tools 
of modeling asset price dynamics in finance research (see 
Aït-Sahalia and Jacod, 2011 [1]). Popularity of stochastic 
volatility models, such as the continuous-time model of 
Heston (1993) [2], is partly due to their ability to account 
for several aspects of stock price data that are not cap- 
tured by analytically simpler geometric Brownian motion 
dynamics. For example, these models can help to account 
for an empirically relevant “leverage effect,” which re- 
fers to an increase in the volatility of a stock when its 
price declines, and a decrease in the volatility when the 
price rises. They also can help to partly correct for defi-
ciencies of the famous Black and Scholes (1973) [3] op- 
tion pricing formula (e.g., the implied volatility “smile”). 
The model of Bates (1996) [4] extends the Heston model 
by incorporating jumps in stock dynamics. Allowing for 
jumps enables a more realistic representation of stock 
price time-series, which may feature discontinuities (for 
a discussion on jumps in asset data, see Aït-Sahalia and 
Jacod, 2009 [5]). 

In this paper, I analytically derive and provide exam- 
ples for the use of a closed-form expression for the joint 
conditional characteristic function of a stock’s log-price 
and squared volatility under the dynamics of the Bates 
model. The model offers a rich distributional structure of 
stock returns. For instance, a skewed distribution can 

arise due to a correlation between shocks to the stock 
price and shocks to the volatility or due to nonzero aver- 
age jumps. Excess kurtosis can arise from variable vola- 
tility or from a jump component. Also, the model can 
help to distinguish between two alternative explanations 
for skewness and excess kurtosis: stochastic volatility 
implies a positive relationship between the length of the 
holding period and the magnitude of skewness and kur-
tosis, whereas jumps imply a negative relationship (Bates, 
1996 [4], pp. 72-73). The flexibility of the model makes 
it particularly attractive for the task of valuation of de-
rivative securities. As such, it is useful in applied research 
and practice. 

Under jump-diffusion dynamics with stochastic vola- 
tility, the values of derivative securities such as Euro- 
pean-style options are typically impossible to express in 
simple form. Instead, they may be computed numeri- 
cally by applying the transform methods of Duffie et al. 
(2000) [6] and Bakshi and Madan (2000) [7], which 
require inverting a conditional characteristic function of 
an underlying state-price vector. Bates (1996) [4] solved 
for the marginal conditional characteristic function of 
the logprice and derived a formula for the value of a 
European-style call option that involves two separate 
inversions. In contrast, the problem of finding the joint 
conditional characteristic function of the log-price and 
squared volatility was not posed, and to the best of my 
knowledge, a solution for this function is not available in 
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existing finance studies. This paper aims to fill in the gap 
by deriving a closed-form expression for the function, 
which is an analytically challenging task. In addition, I 
provide two practically relevant examples illustrating the 
use of the function. The first example revisits the prob-
lem of the valuation of European-style options. I show 
that the marginal characteristic function is a special case 
of the joint characteristic function and then apply results 
from prior research to obtain formulas for European-style 
put and call options that require a single inversion; this 
approach is more efficient than the solution suggested by 
Bates involving two inversions. The second example 
addresses the problem of valuation of Bermudan- and 
American-style options by proposing an extension of the 
Geske-Johnson compound-option technique (Geske and 
Johnson, 1984 [8]). In this case, knowledge of the joint 
(rather than marginal) characteristic function is indis-
pensable. The proposed approach provides an alternative 
to pricing American-style options using finite-difference 
methods (e.g., Chiarella et al., 2008 [9]), which can pose 
practical challenges when dealing with stochastic volatil-
ity (for a review, see Zhylyevskyy, 2010 [10]). The em-
pirical relevance of the example is due to a large num-
ber of single name equity and commodity futures op-
tions traded on organized exchanges being American- 
style. 

The remainder of the paper is organized as follows. 
Section 2 sets up the Bates model and outlines the as- 
sumptions and notation. Section 3 derives a stochastic 
differential equation for the stock’s log-price. Section 4 
shows that the joint conditional characteristic function is 
a martingale and uses this result to derive a partial dif-
ferential-integral equation for the function. Section 5 
solves this equation analytically to obtain a closed-form 
expression for the function. Section 6 provides examples 
for the use of the function when pricing derivative secu-
rities. Section 7 concludes. 

2. The Bates Model 

I first outline the assumptions and introduce the notation. 
The financial market is assumed to admit no arbitrage 
opportunities. Thus, there is an equivalent martingale pro- 
bability measure (see Harrison and Kreps, 1979 [11]), 
denoted here as 1. Random variables and stochastic 
processes are defined on a probability space with  as 
the probability measure. An expected value taken with 
respect to  is denoted by . To rigorously analyze 
stochastic processes, I work with a filtered probability 
space 

0t
, where  is the set of 

outcomes,  indexes time,    is a filtration (i.e., a 
non-decreasing sequence of 

P

 t

P

P

, ,
t

[ ]E 


t t


-f

 , P   

elds
0
i ), and -field  

. Stochastic processes are assumed to be 

adapted to 

t t 

  0t t
One of the assets traded in the financial market is a 

riskless bond fund with a share worth 

. 

0= rt
tM M e

0r 
 on 

date , where 0  is an initial value and  is 
a risk-free interest rate, which is assumed to be constant 
over time. In contexts involving asset pricing (e.g., 
valuation of derivative securities), such riskless fund is 
often used as a numéraire asset, with prices of other 
assets being discounted by t

t > 0M

M . Also,  is often 
referred to as the “risk-neutral” probability measure. 

P

I focus on a stock process 
0t t

, where t  denotes 
the price of the stock on date . The stock is allowed to 
pay dividends continuously at a rate 

 S
t

S

0 
= 0

, which is 
assumed to be constant over time (  in the case of 
no dividend). Since the stock process in the Bates model 
incorporates a jump component, which results in discon- 
tinuities in the stock price, it is helpful to introduce the 
notion of a “left limit” of a stochastic process. In 
particular, the left limit of   0t t

S


 on date t  is defined 
as 1mnt = liS St n  , where  is a positive integer. If 
there is a jump on date , then . 

n
t t t

In the Bates model, the dynamics of t  under P  are 
described by a system of two stochastic differential equa- 
tions: 

S S
S

  1= ,t t tdS dt v dW UdN    t tS r     (1) 

  2= .t t tdv tv dt v dW           (2) 

Equation (1) shows that the instantaneous net return on 
the stock, t tdS S  , is a sum of three distinct com- 
ponents: 1) a deterministic drift term ; 2) 
a stochastic diffusion term 

 r d   t

1t t

 1W
v dW , and (3) a stochastic 

jump term tUdN . A process 
0t t

 underlying the 
stochastic diffusion term is a standard Brownian motion. 
A process  N

0t t
 underlying the stochastic jump term 

is a Poisson process with intensity 0  , so that 
=tEN t . The processes  1 0t t

 and  are 
independent of each other. A value of  in- 
dicates that the stock price has undergone t  jumps as 
of date . The magnitudes of such jumps are governed 
by independent and identically distributed (i.i.d.) ran- 
dom variables  such that 

W   0t t
N


> 0tN

N
t

1 2, ,U U

    2 2ln 1 ln 1 / 2, ,U N             (3) 

where  is a generic random variable having the same 
distribution as 1 2 , and 

U
, ,U U  > 1 

= 1t

 and  are 
the distribution parameters. In Equation (1),  is the 
random percentage jump of the stock price given a jump 
occurring at  (i.e., given ). The Bates model 
reduces to the Heston stochastic volatility model (Heston, 
1993 [2]) if (1) 

2 0 
U

t dN

= 0 , or (2) = 0  and , since 
these cases effectively eliminate jumps from the stock 
dynamics. 

2 = 0

Equation (2) describes a mean-reverting square root 1P need not be unique, as the financial market may be incomplete. 
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process for the squared volatility2. This equation is bor- 
rowed directly from the Heston model. A process 

0t t
 is a standard Brownian motion possibly cor- 

related with 1 0{ , so that 
 2W

}t tW  1 2, =
t

d W W dt , with 
1  . The process  2t t

W


1 2 ,...U U
0

, process 
0t t

, and the 
random variables  are mutually independent. 
Constants 

 N
,

0  , 0  , and 0   are parameters. In 
order for  to be almost surely (a.s.) positive so that 

t  and t  are real-valued a.s., 
tv

vS   and   are 
assumed to satisfy a restriction 2 2   (see Chernov 
and Ghysels, 2000 [12]). 

3. Dynamics of Log-Price 

Let ts  denote the stock’s log-price, t= lnts S . The dy- 
namics of ts  under  are derived using a generalized 
Itô formula for semimartingales, which allows me to 
properly account for possible discontinuities in the time 
path of the stock price. See Theorem 32 of Protter (1990 
[13], p. 71) for details on the formula. Before applying 
the Itô formula, observe that Equation (1) implies that 

t  and t  are, in general, not equal to each other 
because of the presence of the jump term; more speci- 
fically, t t  Thus, 

P

= tS U 

S S 

S S .tdN = 1t t tS S UdN  , 
and therefore, 

 ln ln = ln 1 .t t tS S UdN   

Also, note that by the properties of the Poisson process, 
 is effectively either 0 or 1. Therefore, tdN

   ln ln = ln 1 = ln 1 .t t tS S UdN U dN   t  

Hence, the generalized Itô formula applied to the 
function  ln tS  indicates that the dynamics of ts  
under  are described by a stochastic differential 
equation 
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which is straightforward to simplify as: 

   1= 2 ln 1 .

1 2, ,U U 
-field

t t t t tds r v dt v dW U dN      

h

(4) 

4. Martingale Property and Dynamics of 
Joint Characteristic Function 

My main interest lies in deriving a closed-form ex- 
pression for the joint characteristic function of some 
future, date-  log-price and squared volatility given 
their present, date- t  values, where . Consider an 
arbitrary date  such that , and note that 
since , . Equations (2) and (4), the 

properties of the Poisson process and standard Brownian 
motion, and the assumption of i.i.d. random variables 

 imply that the information contained in the 

T
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Th


<t h

<t t  

  h  relevant for conditioning the joint dis- 
tribution of T


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of 
v 

hs  and h , and the time remaining at  until , v h T
0T h  . Thus, let  1 2, ; , ,h hs v T h    denote the 

joint conditional characteristic function of  T,Ts v  
given  ,h hs v , evaluated at real arguments 1  and 2 . 
By definition of the characteristic function, 
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which shows that 
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is a martingale. The martingale property of     implies 
that 
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In what follows, it is helpful to denote by   the dura- 
tion of the time interval between  and T , t = T t  . 
Also, observe that Equation (2)

 
implies that  has a 

continuous time path; therefore, v . In comparison, 
Equation (4)

 
implies that 
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ts  may have discontinuities in 
its path, with  1= lnt t ts s U dN
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ing the generalized Itô formula, 
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2In applications, the unobserved value of  is often treated as an ad-tv

ditional parameter to estimate. 
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 and xy
xwhere symbolic terms of the form  de- 

note partial derivatives / x   and 2 / x y   , re- 
spectively.

 By the properties of the Poisson process and mutual in- 
dependence of  and U tdN , 
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5. Closed-Form Solution for Joint  
Characteristic Function 

Solving for the joint characteristic function   

he eq
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 
    
 

    

1 2

1 2

1 2 1

1 2

1 2 1

1 2

2
1 1 1

    , ; ln 1 , ,

   , ; , ,

= , ; , , exp ln 1

  , ; , ,

= , ; , , exp ln 1 1

= , ; , ,

   exp ln 1 2 1 ,

t t t

t t

t t t

t t

t t

t t

E s U v

s v

E s v i U

s v

s v E i U

s v

i i

  

  

   

  

   

  

    

 



 







    


      


       


      





 

w

res
ress 

here the last equality follows from the properties of the 
characteristic function of a normal random variable (see 
Chung, 2001 [14], p. 156). Given this ult, it is con- 
venient to exp   as follows: 

      2
1 1 1 1= exp ln 1 2 1i i         .      (7)

 

Then, the integral term in Equation (5) is 

  
 

   

1 2

1 2

1 2 1

  , ; ln 1 , ,

       , ; , ,

= , ; , , .

t t

t t

t t

E s U v

s v

s v

   

  

    

t 





    



 



 

By plugging in the obtained expressions into Equation 
(5) and simplifying it (e.g., note that  is differenced 
out), I get 

     

   

   

1 2 1

22
1 2 1 1 2

; , 2

     ; , 2 ; , .q i q

  

        

1 2 1 1 2

2
1 2 1

0 = ; , ; ,

     ; , 2

tp i r q v

q i q





         

     

       

    

    

 

is equation m par- 
ticular value of , the functions 

Since th ust hold irrespective of a 
tv ( )p   and ( )q   need 

to solve the ng system of two 
tions: 

followi differential equa- 

    1 2 1 1 2; , = ; ,p i r q  ,           
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     
 

2
1 2 1 1 1 1 2

22

; , = 2 2 ; ,

                 

q i i q

1 2    ; , 2.q

          

      

Observe that the relationship 

   

 

   
 
 

1 2 1 2

1 2

1 2 1

, ; , ,0 exp

                           = exp 0; ,

                                      0; ,

T T T T

T T

s v i s v

p

q v i

   

 

  

    

  

 
s 

im
i

plies that the system has initial conditions  
 1 20; , = 0p    and  1 2 20; , =q    . 
The system is similar, although not identical, to a 

system of differential equations analyzed by Zhylyevskyy 
(2010) [10] in the case of the Heston model. By appro- 
priately modifying the prior analysis, a closed-form olu- 
tion for  and 

 s
 p   q 

0

, in the case of the Bates model 
studied here, can be split into three cases. In Case (

 belo ter 
1)

w, parame   , which implies that the square
vo In comparison, Case (2)
and ns for  and 

d 
latility process is stochastic. 

Case (3) provide solutio  
 

 p   q   
when = 0 , that is, under the spec stan
non-stochastic stock volatility3. 

Case (1). Suppose that 

ial circum ces of 

0  . Let  1A   and  
 1 2,B    be complex-v nd c tant with respect alued a ons

to  , and defined as follows: 

    2 2 2
1 1= 1 2A i2 2 ,1          

 

 
 
 

2
1 1 2

1 2 2
1 1 2

, = .
i A i

B
i A i

     
 

     

  


    

Then, 

   1 2 1

2

; , =

1
                   2 ln ,

1

p r i

B
A

Be

        

  


  

      
  

 (8)
 

A

 1 2 2
; , = ,q i A   


       1

1A

A

Be





(9)

1 


1Be     

where  1A A   and  1 2,B B    
at = 0

as defined above. 
Ca se thse (2). Suppo   but 0  . Then, 

    

 

 

1 2 1

2
2 1 1

2
1 12

; , =

                  2 1
2

1
                  ,

2

p r i

e i i

e
i





      

    



 







 

     


   

   2 2
1 2 1 1 2 1 1

1
; , = 2 .

2
q e i i i        


       

) (11

Case (3). Suppose that 

     (10)
 

= 0  and = 0 . Then, 

   

 
1 2 1

2
1 1 24

; , =

                  4 ,

p r i

i i

      
    

 

    
      (12

 
)

  2; , .q i1 2 1 1 2=
2

i
          (13)

 

Together, the expression for  in Equation (6), 
the expression for 

    

  
  in Equati ), and th

for 
on (7 e solution 

 and  q   

 (1
f 

 p  given by ons (8
respectively (alternatively, E 10) and (11) or
Eq  (12) 3), resp  depending on the 

 val

 Equati
quations (
ectively,

) and (9), 
 

uations
particular

 and
ues o   and  , as shown above), 

 joint 
characteristic function 
provide a closed-form, analytical expression for the

of Ts  and Tv , conditional on ts  
and 

6. Applications of Joint Characteristic  

The derived joint characteristic function may be em- 
ployed in asset pricing applications. To illustr
provide two examples related to implementing the trans
form methods of Duffie et al. (2000) [6] and Bakshi and 
Madan (2000) [7] to price derivative securities 
dynamics of the Bates model. These method
in

ve
 expression for

er 

tv . 

Function 

ate its use, I 
- 

under the 
s require 

verting a conditional characteristic function of an un- 
derlying state-price ctor. Thus, knowledge of a closed- 
form  the characteristic function, such as 
the one obtained in this paper, is essential for their imple- 
mentation. 

In the first example, I consid the problem of deter- 
mining the values of European-style derivative securities. 
Let  , , ,E

t tP X S v   denote e date- value of a Euro-  th
with a strike 

t  
price pean-style put option X  and time to 

expiration  , gi

exerc

ven the (current) ing stock’s 
ion is 

all ised on date d its date-

un

T

derly

, an
price tS  and squared volatility tv . This put opt

owed to be T  
value is    , , ,0 = max 0,T T TP X S v X S . Likewise, 
let 

E

 , , ,E
t tC X S v   be the date-t  value of a correspond- 

ing European-style call option; its date- T  value is 
   , , ,0 = max 0,E

T T TC X S v S X . The dynamics of 
tS  and tv , under the equivalent martingale probability 

measure, are described by Equations (1) and (2). Thus, 
there are two state variables (comprising the state-price 
vector), namely, tS  and tv , or equivalently, (the log- 
price) ts  and tv . 

The analysis of Zhylyevskyy (2012) [15] adapted to 
the case of the Bates model indicates that the valuation of 
the options

3Observe from Equation (2) that the value of = 0  eliminates the 

diffusion component from the dynamics of . tv   EP   and  requires knowledge of  EC 
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the marginal conditional characteristic function of the 
date- T  log-price Ts  given ts  and tv . Let this fun- 
ction   ; , ,t ts v be denoted as    , where   is a real 
number. By definition, 

 ; , , = .i sT
t t ts v E e     

   

A closed-form expression for  ; , ,s vt t    is easily 
obtained a of the e pression for  

 1 2, ; , ,t ts v
s a special case x

   , which was derived earlier. Namely, 

 
 

 

0
                   =

                   = ,0; , , .

i s
t

i s vT T
t

t t

E e

s v





; ,t ts v , = T E e 

 

 






 
  






 

 Then, applying Equation (10) of Zhylyevskyy (2012) 
[15], the value of  EP   is 

 

 
0

  , , ,

= 1 ; , , d ,
2 π

E
t t

r
t t

P X S v

X
e X R s v



2

i1 2
e

i
   

 

 
   

  
  

  


where  Re   
 In tur

denotes the real part of a co lex-valued 
number. n, can be calculated ng a put- 
ca

A practical implementation of ese form  for 

mp
usi

ulas

 EC   
ll parity relationship for European-style options (Mer- 

ton, 1973 [16]): 

  = , , , .E r
t t tP X S v e S e X     

 
 , , ,E

t tC X S v

th  EP   
n to cal- and would require n rical integratio

 
 EC   

culate the term
ume

 dRe 
od qu

1 [17]). Not
t approach t

n of B
posed here re
ereas the cor

, which is straightforward, 
ture me

(Pres  200 a  these for ulas pr
a m fficien price Eu
riv

r instance,
for pro ires a sing nu

 wh onding fo
Bates (see Bates, 1996 [4], tion (15)

 
on p. 77) - 

quires two separate integrations. 
In the second example, I c ider the pro  of pric- 

uda
cal ap

ique (Geske and Joh on, 1984 
[8]) to a case of non-Black-Scholes stock ics. In 
comparison to the first example in this section, which 
ut

using the Gauss-Kronr
s et al.,

ore e

 C   
integration,

adra
bly,

o 

. Fo
qu

resp
Equa

ons

thod, for exam
m

ropean-style 

 the fo
le 
rm

blem

ns
dynam

ple 
ovide 

de- 

rmula 
merical 

ula due to 

ative securities under the Bates model dynamics than 
the original solutio ates

E

 re

ing Berm n- and American-style options by building 
on the methodologi proach developed by Zhylyevskyy 
(2010) [10]. The approach extends the Geske-Johnson 
compound-option techn

ilizes only a special case  

   ; , , = ,0; , ,t t t ts v s v      
 

of the joint characteristic function    , this second 
example requires knowledge of the value of  

 1 2, ; , ,t ts v    for any combination of real numbers 

1  and 2 , including cases of 2 0  . 
Let  , ; , ,T T t tf s v s v   be the joint probability density 

func  Ttion of s  and Tv , conditional on ts  and tv . The 
density function  f   is an inverse Fourier transform of 
the characteristic function     (see Shephard, 1991 
[18]; Chung, 2001 [14]): 

 

 
   1 2

1 2 1 22

   , ; , ,

1
= , ; , , d d .

2π

T T t t

i s vT T
t t

f s v s v

e s v
 



    
 

 



    

In practice, numerical values of  f   can be ef- 
ficiently computed using values of     by applying a 
fast Fourier transform algorithm el smoothing 
(see Press ., 2001 [17]; Zh , 20 [10]). 

American-style put and call tions are similar to their 
t t

time before 
ration  E

lity of an early 
exercise antially c

v  a r se
 sol

ption
n their Euro- 

pean- and American-style Bermudan- 
style option is allowed to be fore expiration, 

 only on a selected number of mined dates. To 
clarify the i ea, let  

s

 with ke
ylyevskyy
op

ha

e possi

counterparts. A 
exercised be

 predeter




 
tion

rn
et al

 (the
e 

 subst

d

10 

European-style counterparts, except t he American- 
style ones are allowed to be exercised at any 

uropean-style ones may be exercised 
y on th expiration date). Th bi

expi
onl

but

omplicates the problem of de- 
termining the alue of n American-style de ivative - 
curity; thus, closed-form utions are generally not 
available (Epps, 2000 [19]). Bermudan-style o s may 
be viewed as an intermediate case betwee

  
=1

, ,n t t n
D s v T t

be a sequence of Bermudan-style op , where  nD   
is the value of an option that may be exercised on dates  

 
=j

j T t
t t

n


 

for = 1, ,j n . In the sequence,  1D   represents the 
value of a European-style option, which may be ex- 
ercised only once, on the expiration date, with = 1n  
and 1 =t T . 



 2D   is the value of a Bermudan-style 
option that may be exercised on two dates,  1 = 2t t T  
(i.e., half-way to expiration) and 2 =t T .    3 4,  ,D D    
are defined similarly. The limit of the sequence,  D  , 
corresponds to the value of an American-style option, 
which features a continuum of possible exercise dates 
before expiration.

 Let the exercise value of the Bermudan-style option 
 nD   on its first potential ex te  be de- 

 as 
ercise da  1 >t t

noted

 11 1
, ,t ts v T t .

 
For example, 



 1
st  = max 0, X e 
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in the case of a put option and 

   1= max 0,
ste X 

 

in the case of a call option. Bermudan-style derivative se- 
curities obey a recursive relationship: 

 
 

    
 

1

1 1 11 1 1 1

1

   , ,

=

  max , , , , ,

= max

n t t

r t t

t t n t t t

r t t

D s v T t

e

E s v T t D s v T t

e

 



 
 



     

 

 
 

    

where  and 

 

1 1 1
0

1

, , , , ,

   , ; , , ,

n

t t

s v T t D s v T t

f s v s v t t dvds




 

 



0 0D   1, ; , ,t tf s v s v t t
 1 2 1, ; , ,t t

  can be com- 
puted rting by inve  s v t t  

relationship prov
ny Bermudan-styl

approximate the price of a

tforwar
 2 , ,t tD s v T t

 3 , ,t tD s v T t , and t

 2

, as discussed 
es a way to 

com ice of a e derivative se- 
curity,  to n American- 
style one value of . In 
pr d to co ute 

 and , and if m- 
hen  

010 [10]) is 
methodological approach is an alternative to pricing 
American-style derivative securities under the Bates m
dynamics using a finite-difference-type scheme proposed 
by Chiarella et al. (2008) [9]4. 

7. Conclusion 

This paper contributes to the literature by solving in closed
form for the joint conditional characteristic function of 

nd d volatility unde p
ates model. The

ving a syste

REFERENCES 

earlier. In theory, the 
pute the pr

as well as

 , ,t tv T t
putationally feasible, 

id

 by choosing a sufficiently large 
actice, it should be straigh

n
mp

 co
use these

. Th

1D s

computed values to approximate the American-style 
option price  , ,t tD s v T t   by applying a Richardson 
extrapolation (e.g., see Zhylyevskyy,

odel 

 

the log-price a square r the jum -dif- 
fusion dynamics of the B  model features 
a flexible distributional structure of asset returns. As such, 
it has a number of applications in finance and economics, 
including the problem of valuation of derivative se- 
curities. Obtaining a closed-form expression for the joint 
characteristic function is an analytically demanding task, 
which involves applying a generalized Itô formula for 
semimartingales and sol m of differential 
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function is illustrated on empirically relevant examples 
of pricing European-, Bermudan-, and American-style 
options. The proposed methodological approach is based 
on inverting the characteristic function, and may be em- 

ployed in practice as an alternative to pricing derivative 
securities using finite-difference techniques, particularly 
in the case of American-style options. 
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