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ABSTRACT

The model of Bates specifies a rich, flexible structure of stock dynamics suitable for applications in finance and eco-
nomics, including valuation of derivative securities. This paper analytically derives a closed-form expression for the
joint conditional characteristic function of a stock’s log-price and squared volatility under the model dynamics. The use
of the function, based on inverting it, is illustrated on examples of pricing European-, Bermudan-, and American-style
options. The discussed approach for European-style derivatives improves on the option formula of Bates. The suggested
approach for American-style derivatives, based on a compound-option technique, offers an alternative solution to exist-

ing finite-difference methods
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1. Introduction

Stochastic volatility and jump-diffusion are standard tools
of modeling asset price dynamics in finance research (see
Ait-Sahalia and Jacod, 2011 [1]). Popularity of stochastic
volatility models, such as the continuous-time model of
Heston (1993) [2], is partly due to their ability to account
for several aspects of stock price data that are not cap-
tured by analytically simpler geometric Brownian motion
dynamics. For example, these models can help to account
for an empirically relevant “leverage effect,” which re-
fers to an increase in the volatility of a stock when its
price declines, and a decrease in the volatility when the
price rises. They also can help to partly correct for defi-
ciencies of the famous Black and Scholes (1973) [3] op-
tion pricing formula (e.g., the implied volatility “smile”).
The model of Bates (1996) [4] extends the Heston model
by incorporating jumps in stock dynamics. Allowing for
jumps enables a more realistic representation of stock
price time-series, which may feature discontinuities (for
a discussion on jumps in asset data, see Ait-Sahalia and
Jacod, 2009 [5]).

In this paper, I analytically derive and provide exam-
ples for the use of a closed-form expression for the joint
conditional characteristic function of a stock’s log-price
and squared volatility under the dynamics of the Bates
model. The model offers a rich distributional structure of
stock returns. For instance, a skewed distribution can
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arise due to a correlation between shocks to the stock
price and shocks to the volatility or due to nonzero aver-
age jumps. Excess kurtosis can arise from variable vola-
tility or from a jump component. Also, the model can
help to distinguish between two alternative explanations
for skewness and excess kurtosis: stochastic volatility
implies a positive relationship between the length of the
holding period and the magnitude of skewness and kur-
tosis, whereas jumps imply a negative relationship (Bates,
1996 [4], pp. 72-73). The flexibility of the model makes
it particularly attractive for the task of valuation of de-
rivative securities. As such, it is useful in applied research
and practice.

Under jump-diffusion dynamics with stochastic vola-
tility, the values of derivative securities such as Euro-
pean-style options are typically impossible to express in
simple form. Instead, they may be computed numeri-
cally by applying the transform methods of Duffie et al.
(2000) [6] and Bakshi and Madan (2000) [7], which
require inverting a conditional characteristic function of
an underlying state-price vector. Bates (1996) [4] solved
for the marginal conditional characteristic function of
the logprice and derived a formula for the value of a
European-style call option that involves two separate
inversions. In contrast, the problem of finding the joint
conditional characteristic function of the log-price and
squared volatility was not posed, and to the best of my
knowledge, a solution for this function is not available in
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existing finance studies. This paper aims to fill in the gap
by deriving a closed-form expression for the function,
which is an analytically challenging task. In addition, I
provide two practically relevant examples illustrating the
use of the function. The first example revisits the prob-
lem of the valuation of European-style options. I show
that the marginal characteristic function is a special case
of the joint characteristic function and then apply results
from prior research to obtain formulas for European-style
put and call options that require a single inversion; this
approach is more efficient than the solution suggested by
Bates involving two inversions. The second example
addresses the problem of valuation of Bermudan- and
American-style options by proposing an extension of the
Geske-Johnson compound-option technique (Geske and
Johnson, 1984 [8]). In this case, knowledge of the joint
(rather than marginal) characteristic function is indis-
pensable. The proposed approach provides an alternative
to pricing American-style options using finite-difference
methods (e.g., Chiarella et al., 2008 [9]), which can pose
practical challenges when dealing with stochastic volatil-
ity (for a review, see Zhylyevskyy, 2010 [10]). The em-
pirical relevance of the example is due to a large num-
ber of single name equity and commodity futures op-
tions traded on organized exchanges being American-
style.

The remainder of the paper is organized as follows.
Section 2 sets up the Bates model and outlines the as-
sumptions and notation. Section 3 derives a stochastic
differential equation for the stock’s log-price. Section 4
shows that the joint conditional characteristic function is
a martingale and uses this result to derive a partial dif-
ferential-integral equation for the function. Section 5
solves this equation analytically to obtain a closed-form
expression for the function. Section 6 provides examples
for the use of the function when pricing derivative secu-
rities. Section 7 concludes.

2. The Bates Model

I first outline the assumptions and introduce the notation.
The financial market is assumed to admit no arbitrage
opportunities. Thus, there is an equivalent martingale pro-
bability measure (see Harrison and Kreps, 1979 [11]),
denoted here as P '. Random variables and stochastic
processes are defined on a probability space with P as
the probability measure. An expected value taken with
respect to P is denoted by E[-]. To rigorously analyze
stochastic processes, I work with a filtered probability
space (Q,}',{}"{}N,P) , where Q is the set of
outcomes, t indexes time, {%} _ isa filtration (i.e., a
non-decreasing sequence of o-fields ), and o-field
F=U,F . Stochastic processes are assumed to be

'P need not be unique, as the financial market may be incomplete.
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adapted to {#} _, -

One of the assets traded in the financial market is a
riskless bond fund with a share worth M, =M e" on
date t, where M, >0 is an initial value and r>0 is
a risk-free interest rate, which is assumed to be constant
over time. In contexts involving asset pricing (e.g.,
valuation of derivative securities), such riskless fund is
often used as a numéraire asset, with prices of other
assets being discounted by M, . Also, P is often
referred to as the “risk-neutral” probability measure.

I focus on a stock process {St}I> 0 where S, denotes
the price of the stock on date t. The stock is allowed to
pay dividends continuously at a rate ¢ >0, which is
assumed to be constant over time (J =0 in the case of
no dividend). Since the stock process in the Bates model
incorporates a jump component, which results in discon-
tinuities in the stock price, it is helpful to introduce the
notion of a “left limit” of a stochastic process. In
particular, the left limit of {St}t> , ondate t isdefined
as S = limn=S_yn» Where n is a positive integer. If
there is a jump on date t,then S,_ #S,.

In the Bates model, the dynamics of S, under P are
described by a system of two stochastic differential equa-
tions:

dS,/S. =(r—6—6u)di+./v,dW, +UdN,, (1)

dv, = (a - Bv, ) dt+ v, dW,,. )

Equation (1) shows that the instantaneous net return on
the stock, dS,/S,_, is a sum of three distinct com-
ponents: 1) a deterministic drift term (r -0- 9,u) dt; 2)
a stochastic diffusion term \/I dW,,, and (3) a stochastic
jump term UdN, . A process {W,}_ . underlying the
stochastic diffusion term is a standard Brownian motion.
A process {N,}_, underlying the stochastic jump term
is a Poisson process with intensity €>0, so that
EN, =6t . The processes {W,}_, and {N._, are
independent of each other. A value of N, >0 in-
dicates that the stock price has undergone N, jumps as
of date t. The magnitudes of such jumps are governed
by independent and identically distributed (i.i.d.) ran-
dom variables U,,U,,--- such that

In(1+U) ~N[In(1+4)-0" /2,67 |, 3)

where U is a generic random variable having the same
distribution as U ,U,,---,and x#>-1 and o’ >0 are
the distribution parameters. In Equation (1), U is the
random percentage jump of the stock price given a jump
occurring at t (i.e., given dN, =1). The Bates model
reduces to the Heston stochastic volatility model (Heston,
1993 [2])if (1) 6=0,0r(2) #=0 and o’ =0, since
these cases effectively eliminate jumps from the stock
dynamics.

Equation (2) describes a mean-reverting square root
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process for the squared volatility”. This equation is bor-
rowed directly from the Heston model. A process
{Wm}po is a standard Brownian motion possibly cor-
related with {W,}.,, so that d<W1,W2>t = pdt , with
|p|<1. The process {W,} _ . process {N}_ . and the
random variables U,,U,,... are mutually independent.
Constants >0, f>0,and y>0 are parameters. In
order for v, to be almost surely (a.s.) positive so that
S, and vV, are real-valued as., a and y are
assumed to satisfy a restriction y* <2a (see Chernov
and Ghysels, 2000 [12]).

3. Dynamics of Log-Price

Let s, denote the stock’s log-price, s, =InS,. The dy-
namics of s, under P are derived using a generalized
[t6 formula for semimartingales, which allows me to
properly account for possible discontinuities in the time
path of the stock price. See Theorem 32 of Protter (1990
[13], p. 71) for details on the formula. Before applying
the Itd6 formula, observe that Equation (1) implies that
S, and S, are, in general, not equal to each other
because of the presence of the jump term; more speci-
fically, S,—-S_=S,_UdN,. Thus, S, /S_=1+UdN, ,
and therefore,

InS, —InS,_ =In(1+UdN,).

Also, note that by the properties of the Poisson process,
dN, is effectively either 0 or 1. Therefore,

InS, ~InS,_ =In(1+UdN,)=In(1+U)-dN,.

Hence, the generalized It6 formula applied to the
function In(S,) indicates that the dynamics of S
under P are described by a stochastic differential
equation

ds, = —ds, —l%vt (S.) dt
S‘- 2 (St—)

+InS, ~InS,_—(S,-S._)/S._.
which is straightforward to simplify as:
ds, = (r—8—gu—v,/2)dt+./v,dW, +In(1+U)dN,. (4)

4. Martingale Property and Dynamics of
Joint Characteristic Function

My main interest lies in deriving a closed-form ex-
pression for the joint characteristic function of some
future, date-T log-price and squared volatility given
their present, date-t values, where t<T . Consider an
arbitrary date h such that t<h<T , and note that
since t<h, F cZXF . Equations (2) and (4), the

’In applications, the unobserved value of V; is often treated as an ad-

ditional parameter to estimate.
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properties of the Poisson process and standard Brownian
motion, and the assumption of i.i.d. random variables
U,,U,,--- imply that the information contained in the
o-field F, relevant for conditioning the joint dis-
tribution of s; and v; on F comprises the values
of S, and V,, and the time remaining at h until T,
T-h>0. Thus, let ¥(¢,,¢,;S,,V,.T —h) denote the
joint conditional characteristic function of (ST,VT)
given (Sh,vh), evaluated at real arguments ¢, and ¢,.
By definition of the characteristic function,

‘{J(é,l’é,z;sh’vh’_l_ —h)= E|:ei(§15'r+42"T) |ﬁ:|
Likewise,
‘I’(.{l,.{z;sh,vh,T —t)= E|:ei(§15T+szT) |]_:]

Since F < F,, the law of iterated expectations im-
plies that
d

P(40s0v T —t) = E[e‘(ﬁswzw)
e[ e[et5m |7 | 7]

- E[\P(§1»§2;Shavh:-r _h)|£:| a.s.,

which shows that
{\P(é’l’é’z;suvtv-r _t)}

is a martingale. The martingale property of W (-) implies
that

t:0<t<T

E[d¥(£.¢0:5.%.T-t)| A ]=0as.

In what follows, it is helpful to denote by 7 the dura-
tion of the time interval between t and T, 7=T -t.
Also, observe that Equation (2) implies that V, has a
continuous time path; therefore, v, =V, . In comparison,
Equation (4) implies that S; may have discontinuities in
its path, with s, =s_+In(1+U )dN,.

The goal is to find a solution for W(-) as a function
with continuous second order partial derivatives. Apply-
ing the generalized It6 formula,

d¥ (4545380 %.7) = =¥, ({1,658, v, 7)dt
¥ (156238 5V, 7)
x[(r=6=6u—v,/2)dt+ v aw, |
+W, (14535 5V 7)
X[(a—ﬂvl)duyﬁdwh]
+0.5¥  (£,,4538,, V%, 7) vt
+0.5%,, (£,45580.V,,7) 7 v dt
+ W, (€825, M 7) - prvdt
+¥(&. &5 +In(1+U)dN, v, 7)
(41,238 V07),
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where symbolic terms of the form ¥, and ¥, de-
note partial derivatives 0¥ /ox and 0°W/oxdy , re-
spectively.

By the properties of the Poisson process and mutual in-
dependence of U and dN,,

E[W(.is +In(1+U)dN,v,.7)
—W (4 8nsvet) | A
=0{E[¥(¢. &5 +In(1+U), v, 7)| 7]
—W(£),45380 V7)) dt.

Then, applying the relationship E[d‘l’(~)|};] =0
and the properties of the standard Brownian motion, it is
straightforward to show that the function ‘I’() must
satisfy the following partial differential-integral equation:

W (00 /2)+ ¥, (- )
+ WV 2+, 77V 2+, o,
+9{E[lp(§l,§2;st_ +1n(1+U),vt,r)|}I_]

_\y(gl,gz;st_,vt,r)},

where the arguments of the partial derivatives and the
term dt are omitted to shorten the notation. Note that in
the special case of 7=0, ¥(-)=exp[i(&s; +&\ )]

®)

5. Closed-Form Solution for Joint
Characteristic Function

Solving for the joint characteristic function W(-) in
closed form using Equation (5) presents a substantial ana-
lytical challenge. My approach to address this problem is
to first propose a general form of a solution to the equa-
tion, and then analytically derive all of the solution com-
ponents. Suppose that ‘P() is of the form:

\P(gl’§2;s[’vt7r): exp[p(r;é’l,g“z)+q(r;§l,§’2)V[
+Hgs +x(4)7]

where p(7;¢,.¢,) and q(7:¢,¢,) are complex-
valued functions of 7 to be solved for analytically, and

k(&) is complex-valued and constant with respect to

S, V., and 7. The expression for x is provided

shortly.
Differentiating the expression for ¥(-) in Equation

(6):
Wr(§1’§2;31—9vt’r)
I‘I’(é'l,é'z;stf,Vt,T)
><|:pz (T;éylaélz)"‘qf (T;gl’gz)vt +K(§1 ):|,
¥, (411:42;51—’\4’7): \P(é’pé’z;st—svwf)'igl’
¥, (é/pé/zﬁt—’vtaf): \P(é/pé’z;st—’vtsr)'q(T;é/pé’z)’

Q)
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Yo (6585580 V7) = W (4,855, v,7) [IG T
Yo (61,6580 V1) = (465580 V1) [A(7:6.5 ),
and

‘Psv(g“l,g’z;st_,vt,f)

=W (<1,60580, V% 7) %1, -A(7:¢1,45)s

where  p,(-)=dp(-)/dr and q,(-)=dq(-)/dr.

Next, recall from Equation (3) that 1n(l+U) is a
normal random variable. By assumption, it is indepen-
dent of the information contained in F_. Thus, using
Equation (6),

E[¥(£.nis +In(1+U). v, 7)| A
—Y¥(£.4558..%.7)
= E[‘I’(g”l,g”z;St,,Vt,T)'eXP[iQ ln(1+U)]|ft—]
—W(<£,$058.,Y,,7)
=¥ (& Caisvr){E[ exp[ig; In(1+U)]]-1]
=¥ (<£,4055.,%.7)
xfexp[ig, In(14+ ) ~(1+¢,)¢, 0/2] 1),

where the last equality follows from the properties of the
characteristic function of a normal random variable (see
Chung, 2001 [14], p. 156). Given this result, it is con-
venient to express x as follows:

K(¢1) = 0{exp[ig In(1+ )~ (i+ &) ¢ 0221} (D)
Then, the integral term in Equation (5) is

Q{E[Ly(gl’gz;st_ +ln(1+U),vt’T)|£_]
_\P(é/l,é/z;sti,vt,z-)}
= (68055 % 7) Kk (6)).

By plugging in the obtained expressions into Equation
(5) and simplifying it (e.g., note that x is differenced
out), I get

0=[-p,(r:4.&,) +ig, (r=6 - Ou)+aq(z:4,.5,) [+,
<[ -0, (7:¢1,6,)=161/2-Ba(5:61.6,) - ¢ /2
+7’2 [Q(T;§1,§2):|2/2+i§1p7Q(T;§1,§2):|-

Since this equation must hold irrespective of a par-
ticular value of V,, the functions p(-) and () need
to solve the following system of two differential equa-
tions:

P. (:61,¢:) =16, (=8 -6u) +aa(5:6,.42),
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~¢2[2-ig [2+[ig pr - Bla(r:4.<5)
7[a(n.6)] 2
Observe that the relationship
W (1,558 Ve,0) = exp[i (S8 + 40V ) ]
=exp[ p(0:£,,4))
+0(0:¢,,8 )V +igsr |

implies that the system has initial conditions
p(0§§1’§z):0 and q(O;é,]’é’Z): ig;.

The system is similar, although not identical, to a
system of differential equations analyzed by Zhylyevskyy
(2010) [10] in the case of the Heston model. By appro-
priately modifying the prior analysis, a closed-form solu-
tion for p(-) and q(-), in the case of the Bates model
studied here, can be split into three cases. In Case (1)
below, parameter y # 0, which implies that the squared
volatility process is stochastic. In comparison, Case (2)
and Case (3) provide solutions for p(-) and q(:)
when y =0, that is, under the special circumstances of
non-stochastic stock volatility®.

Case (1). Suppose that y #0.Let A(¢,) and
B(¢.<,) be complex-valued and constant with respect
to 7, and defined as follows:

(T 4,1’4,2

AG) =7 (1-97)S +(7 —201B)ig, + B,
B pYig, _ﬂ_\/A(éll)"'?/zié/z
B(é/l’é/z)__ . 2. .
PrIE, _ﬂ+\/A(§l)+y 1S,
Then,
p(T;§19§2): T(F—5—9ﬂ—ap/7)i§1

a B+l ()
+— rﬁ+rx/x+21n(—ﬂ,
72{ Be” +1

Q(T;é,],é’z)—iz|:ﬂ pylé,l \/_BeT\/_+1:| 9

where A=A(¢)) and B=B((,,{,) as defined above.
Case (2). Suppose that =0 but S #0. Then,

p(T§§1’§z):
—%[2(51’

ale” -1 )
EST

7(r—8-6u)i¢,

)i, +eig +w2] (0

Observe from Equation (2) that the value of =0 eliminates the

diffusion component from the dynamics of v, .
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a(:¢,.4) = Zﬂ[ D¢ rig +28i8) -6 -ic |

QY
Case (3). Suppose that » =0 and £ =0. Then,

p(73§1a§2): T(F—5—9ﬂ)i§l

_%[7(512+i§|)_4i§2j|’ (2

q(r;§],§2)=—%|:§12+i§l:|+i§2. (13)

Together, the expression for ‘{f() in Equation (6),
the expression for x in Equation (7), and the solution
for p(-) and q(-) given by Equations (8) and (9),
respectively (alternatively, Equations (10) and (11) or
Equations (12) and (13), respectively, depending on the
particular values of y and g, as shown above),
provide a closed-form, analytical expression for the joint
characteristic function of S; and V;, conditional on S;
and V,.

6. Applications of Joint Characteristic
Function

The derived joint characteristic function may be em-
ployed in asset pricing applications. To illustrate its use, |
provide two examples related to implementing the trans-
form methods of Duffie et al. (2000) [6] and Bakshi and
Madan (2000) [7] to price derivative securities under the
dynamics of the Bates model. These methods require
inverting a conditional characteristic function of an un-
derlying state-price vector. Thus, knowledge of a closed-
form expression for the characteristic function, such as
the one obtained in this paper, is essential for their imple-
mentation.

In the first example, I consider the problem of deter-
mining the values of European-style derivative securities.
Let PF(X,S,,V,,7) denote the date-t value of a Euro-
pean-style put option with a strike price X and time to
expiration 7, given the (current) underlying stock’s
price S, and squared volatility V,. This put option is
allowed to be exercised on date T, and its date-T
value is P®(X,S;,v;,0)=max{0,X —S;} . Likewise,
let CE(X,S,,V,,7) bethe date-t valueofa correspond-
ing European-style call option; its date- T value is
C*(X,S,v,0)=max{0,S; =X} . The dynamics of
S; and V,, under the equivalent martingale probability
measure, are described by Equations (1) and (2). Thus,
there are two state variables (comprising the state-price
vector), namely, S, and V,, or equivalently, (the log-
price) S, and V.

The analysis of Zhylyevskyy (2012) [15] adapted to
the case of the Bates model indicates that the valuation of
the options P®(-) and C®(:) requires knowledge of
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the marginal conditional characteristic function of the
date-T log-price S; given S, and V,. Let this fun-
ction be denoted as ¢(¢;s,,V,,7), where ¢ is a real
number. By definition,

P(&35V,7)= E[eig% |7'-1]

A closed-form expression for ¢(¢7s,,V,,7) is easily
obtained as a special case of the expression for
¥ (£1,45380%,7) , which was derived earlier. Namely,

¢(§;Sl,vl,7): E[eigST |£}
= E|:ei(§5T+0"’T)|};]

=‘I’(g",0;st,vt,r).

Then, applying Equation (10) of Zhylyevskyy (2012)
[15], the value of P () is

PE(X,St,VI,T)

1, 2% X
=—e "X x|1-=|Re| ——0(&;8,,V,»7) |d< |,
where Re[-] denotes the real part of a complex-valued
number. In turn, C®(-) can be calculated using a put-
call parity relationship for European-style options (Mer-
ton, 1973 [16]):

CF(X,S,.Vv,,7)=PF(X,S,v,7)+e S —e " X.

A practical implementation of these formulas for P (-)
and C®(-) would require numerical integration to cal-
culate the term _[ Re[-]d¢, which is straightforward,
using the Gauss-Kronrod quadrature method, for example
(Press et al., 2001 [17]). Notably, these formulas provide
a more efficient approach to price European-style de-
rivative securities under the Bates model dynamics than
the original solution of Bates. For instance, the formula
for CE(-) proposed here requires a single numerical
integration, whereas the corresponding formula due to
Bates (see Bates, 1996 [4], Equation (15) on p. 77) re-
quires two separate integrations.

In the second example, I consider the problem of pric-
ing Bermudan- and American-style options by building
on the methodological approach developed by Zhylyevskyy
(2010) [10]. The approach extends the Geske-Johnson
compound-option technique (Geske and Johnson, 1984
[8]) to a case of non-Black-Scholes stock dynamics. In
comparison to the first example in this section, which
utilizes only a special case

P(&55.V,7) =Y (£,05,v,,7)

of the joint characteristic function W(-), this second
example requires knowledge of the value of
¥ (£1,¢5380,V,7) for any combination of real numbers
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¢, and ¢, ,including cases of &, #0.

Let f(s;,V;S.V,7) be the joint probability density
function of S; and V;, conditional on S, and V,. The
density function f () is an inverse Fourier transform of
the characteristic function W¥(-) (see Shephard, 1991
[18]; Chung, 2001 [14]):

f(S,Vp38,V,7)

_ (21)2 y T Te_i(¢15T+§2VT)\P(é’1oé,z;stfvt’r)dé,ldé,z'
T —0—00

In practice, numerical values of f () can be ef-
ficiently computed using values of ‘{’() by applying a
fast Fourier transform algorithm with kernel smoothing
(see Press et al., 2001 [17]; Zhylyevskyy, 2010 [10]).

American-style put and call options are similar to their
European-style counterparts, except that the American-
style ones are allowed to be exercised at any time before
expiration (the European-style ones may be exercised
only on the expiration date). The possibility of an early
exercise substantially complicates the problem of de-
termining the value of an American-style derivative se-
curity; thus, closed-form solutions are generally not
available (Epps, 2000 [19]). Bermudan-style options may
be viewed as an intermediate case between their Euro-
pean- and American-style counterparts. A Bermudan-
style option is allowed to be exercised before expiration,
but only on a selected number of predetermined dates. To
clarify the idea, let

{D, (s,.v. T —t)}

be a sequence of Bermudan-style options, where D, (-)
is the value of an option that may be exercised on dates

j(T-t
n

©
n=

for j=1,---,n. In the sequence, D, (-) represents the
value of a European-style option, which may be ex-
ercised only once, on the expiration date, with n=1
and t, =T . D,(:) is the value of a Bermudan-style
option that may be exercised on two dates, t, = (t+T)/2
(i.e., half-way to expiration)and t, =T . D,(:), D, (),
are defined similarly. The limit of the sequence, D_ (-),
corresponds to the value of an American-style option,
which features a continuum of possible exercise dates
before expiration.

Let the exercise value of the Bermudan-style option
D,(-) on its first potential exercise date t, >t be de-
noted as

X(s,.%,T-t,).

For example,

X() = maX{O, X —gl }
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in the case of a put option and
X() = max{O,eSt‘ - X}

in the case of a call option. Bermudan-style derivative se-
curities obey a recursive relationship:

D, (s.v.T —t)
e—r(tl—t)

X E[max{é\’(stl Ny T —tl), D, (Stl VT =1 )}|};J
= e*r(trt) TTmax{X(S,V,T -t ), D, (S,V,T -t )}
-0
x £ (5,35, v, t;, —t)dvds,

where D, =0 and f(s,v;s,V.t, —t) can be com-
puted by inverting W (¢,,<,:8,,V,.t, —t), as discussed
earlier. In theory, the relationship provides a way to
compute the price of any Bermudan-style derivative se-
curity, as well as to approximate the price of an American-
style one by choosing a sufficiently large value of n. In
practice, it should be straightforward to compute
D, (s.V%.T-t) and D,(s,v.T—t), and if com-
putationally feasible, D, (s,,V,,T —t), and then use these
computed values to approximate the American-style
option price D, (s,,V,,T —t) by applying a Richardson
extrapolation (e.g., see Zhylyevskyy, 2010 [10]). This
methodological approach is an alternative to pricing
American-style derivative securities under the Bates model
dynamics using a finite-difference-type scheme proposed
by Chiarella et al. (2008) [9]*.

7. Conclusion

This paper contributes to the literature by solving in closed
form for the joint conditional characteristic function of
the log-price and squared volatility under the jump-dif-
fusion dynamics of the Bates model. The model features
a flexible distributional structure of asset returns. As such,
it has a number of applications in finance and economics,
including the problem of valuation of derivative se-
curities. Obtaining a closed-form expression for the joint
characteristic function is an analytically demanding task,
which involves applying a generalized [t6 formula for
semimartingales and solving a system of differential
equations, among other steps. The use of the derived
function is illustrated on empirically relevant examples
of pricing European-, Bermudan-, and American-style
options. The proposed methodological approach is based
on inverting the characteristic function, and may be em-

“Chiarella et al. propose a method of lines, in which a partial differen-
tial-integral equation is replaced with a system of simpler differential
equations to be solved using a stabilized finite-difference scheme. The
integral component of the equation is approximated using an Hermite-
Gauss quadrature.

Copyright © 2012 SciRes.

ployed in practice as an alternative to pricing derivative
securities using finite-difference techniques, particularly
in the case of American-style options.
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