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ABSTRACT 

We present a new fixed point technique to solve a system of convex equations in several variables. Our approach is 
based on two powerful algorithmic ideas: operator-splitting and steepest descent direction. The quadratic convergence 
of the proposed approach is established under some reasonable conditions. Preliminary numerical results are also 
reported. 
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1. Introduction 

System of convex equations is a class of problems that is 
conceptually close to both constrained and unconstrained 
optimization and often arise in the applied areas of mathe- 
matics, physics, biology, engineering, geophysics, chemistry, 
and industry. Consider the following system of convex 
equations 

  0, nF x x R

m

                  (1) 

in which : nF R R  is a convex continuously differ- 
entiable function. It is noticed that if  F x Ax 

m n

b  the 
system (1) is a linear system of equations and there are a 
lot of approaches to solve this problem. One of the most 
interesting methods for solving linear system is fixed 
point methods that have been comprehensively studied 
by many authors. For example, shrinkage, subspace 
optimization and continuation [1], fixed-Point continuation 
method [2], nonlinear wavelet image processing [3], EM 
method [4], iterative thresholding method [5] and fast 
iterative thresholding [6]. The system (1) is called an 
overdetermined system whenever  and under-de- 
termined for n . If m m n , we obtain a square 
system of convex equations. Most of the time, we wish to 
find a proper nx R  such that (1) holds as closely as 
possible. This means that our objective is to reduce 

 
2

F x  as much as and, if possible, reduce it to zero. 
Hence the system of convex Equations (1) can be written 
as an unconstrained optimization problem 

 min s.t nf x x R           (2) 

in which 

    2

2

1
.

2
f x F x              (3) 

It is obvious that 

       ,T g x f x J x F x    

where  J x  is the Jacobin matrix of  F x . In this 
work, we consider a -regularized least squares 
problem for system (1): 

1

   1
min x x f   x          (4) 

in which 0 
 , , , mF F

 is a parameter. We note that if 

1 2  and any iTF F F  is convex, then F is 
convex. On the other hand, convexity of 

2

2
 implies 

that f is convex. Therefore, φ is a convex function. 
.

As an example, Hale, Yin, and Zhang in [2] presented 
a fixed-point continuation method for 1 -regularized 
minimization that based on operator-splitting and con 
tinuation: 



  1 shrink ,k kx h x
            (5) 

in where 



  and mappings shrink  are  , :h R R 

defined as : 

      ,h I g                (6) 

    shrink sgn max | | ,0 .            (7) 

The operator   in the right hand side of relation (7) 
denote the component-wise product of  sgn  and 

 max | | ,0  . Because of the parameter τ is constant, 
the number of iterations and computational costs increase 
and so it is not suitable. To overcome the mentioned 
disadvantage, we create innovation in the parameter τ 
based on the steepest descent direction: 
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kT k

k
Tk k k k

g g

J g J g
              (8) 

The analysis of the new approach shows that it inherits 
both stability of fixed point methods and low com- 
putational cost of steepest descent methods. We also in- 
vestigate the global convergence to first-order stationary 
points of the proposed method and provide the quadratic 
convergence rate. To show the efficiency of the proposed 
method in practice, some numerical results are also 
reported. 

The rest of this paper is organized as follows: In 
Section 2, we describe the motivation behind the pro- 
posed algorithm in the paper together with the algo- 
rithm’s structure. In Section 3, we prove that the 
proposed algorithm is globally convergent. Preliminarily 
numerical results are reported in Section 4. Finally, some 
conclusions are expressed in Section 5. 

2. The New Algorithm: Motivation and 
Structure 

In this section, we first introduce a fixed point algorithm 
for small-scale convex systems of equations. Then, given 
some properties of the algorithm and investigate its global 
convergence as well as the quadratic convergence rate. 
The objective function in (4) is a sum of two convex 
functions. By convex analysis, minimizing a convex 
function  x  is equivalent to finding a zero of the 
subdifferential  x . Let *X  be the set of optimal 
solutions of (4). It is well-known that an optimality 
condition for (4) is 

  * * * *0 sgn ,x X x g    x  

or equivalently, 

   
*

* * * *

*

1 0

1,1 0

1 0

i

i

i

x

x X g x x

x


   
    
  

     (9) 

where 0 denotes the zero vector in  and nR *
ix  is i-th 

component of *x . It follows readily from (9) that 0 is an 
optimal solution of (4) if and only if  0


1g  , or in 

other words, 

 
* 1

0
0

X
g




    

Therefore, it is easy to check whether 0 is a solution of 
(4) (see [2]). 

One of the simplest methods for solving (4) generates  

a sequence   that based on steepest de- 
0

k k k

k
x g




scent direction. Here, 

   
kT k

k
Tk k k k

g g

J g J g
   

and k k kg J F . Note that if the system (1) be a linear 
system of equations, then 2 Tg A A   and  

 max

2
0,

TA A




 

 
 



k

. Here, the system (1) is a convex  

system of equations, then k kTg J J   and for the 
purpose of our analysis, we will always choose  

 max

1
0 k

kT kJ J



  . Using these information, we  

present a proximal regularization of the linearized 
function f at kx  for problem (4) (see [7]), and written it 
equivalently as 

   1

2

12

arg min

1 1
.

2

k k k kT k
x

k
k k

fx f x g x x

x x x



 

   


   



   (10) 

After ignoring constant terms, (10) can be rewritten as 

 

  

2
1

12

2

1

1 1
arg min

2

arg min | | .
2

k k k k k
k

k

kn
i k k k

x ik i
i

x x x g x

x x g x

 


 






 
    

 
 

    
 


(11) 

Notice that the function in the problem (11) is 
minimized if and only if each functions 

    2

,
2

k
k k k

i i i 1, 2, ,i n 
k i

q x x x g x
 


      

is minimized. If we take 
k

k
k




 , then we can simply  

obtain the minimizer of  iq x  as follows: 

 

 

 
 
 

* 0

k k k k
k k k k

i
i

k k k k
i i

k k k k
k k k

i
i

x gx g

x x

x g x g k

g

  

 

   

   
 
     



*

 

Therefore, i
1k

ix x   and the solution of (4) is 
obtained. Now, based on above arguments, a new fixed 
point algorithm can be outlined as follows: 

Algorithm 1: Fixed point algorithm (FP) 
Input: Choose an initial point 0 nx R  and constants 

0  , 00 1  ,  1,10  . 
Begin 

0 1  ; 0k  l 
While  max2k

Step 1: {Parameter shrinkage calculation} 
and k k F {Start loop } 
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;
k

k
k




  

Step 2: {Operation shrinkage calculation} 

  1 shrink ;k kx h x
    

Step 3: {Parameters update} 

Calculate k  as (8);  

Generate 1k k   ; 

       Increment k by one and go to Step 1;  
End While {End loop} 
End 

3. Convergence Analysis 

In this section, we will give the convergence analysis of 
the proposed algorithm given in Section 2. In the 
convergence analysis, we need the following assumption: 

(H1) Problem (4) has an optimal solution set *X  , 
and there exists a set 

 * *

2
: δ ,x x x X      

for some * *x X  and , such that f is twice 
continuously differentiable on Ω and 

δ 0

         max
ˆ max ,T T

xJ x J x J x J x   

for all . Using the mean-value theorem, we hav x

         

    

1

0

, , ,

T

T

g x g y J y t x y J y t x y

J x y J x y x y

 
      

 

 


T

 

for any . ,x y
(H2) There exists a constant  such that 0M 

   , 0 .  kJ x M k N   

Lemma 3.1. By the definition of i  and j  satisfy- 
ing (8), we have 

i j ix x j     

for any . ,i jx x 
Proof. Suppose that i jx x  then i jg g  and 

iT i jT jJ J J J . So by (8), we conclude that i i j jg g  . 
Now suppose that i j  . Then, we show that i jx x . 
By contradiction, we assume that i jx x . Then 

i jg g  and iT i jT jJ J J
i i

J
j j

. 
Therefore we have g g   that is a contradiction. 
In the following lemma, we show that the new choice 

of k  satisfying in the lemma 4.1 and corollary 4.1 of  

[2] when 
 max

1
0,k

kT kJ J




 
 
 
 

. 

Lemma 3.2. Under assumption (H1), the choice of i  
and j  result in     h I g     

,i jx x
 is nonexpansive 

over Ω, i.e. for any   

   
22
.i j i jh x h x x x        (12) 

Moreover, i jg g  whenever equality holds in (12). 
Proof. Let  i jJ J x x  and d i jx x  . Now, we 

have two cases: 
1) If j i  , then 

   i j i j i i jh x h x x x g g      j      (13) 

   
 

d d

d.

i i j i T

i T

g g J

I J J

 



    

 

J
 

Hence, 

     
2 2

di j i Th x h x I J J    

2 2

i T i jI J J x x    

   2
ˆmax 1 ,1i T i jJ J x x     

   
  2

ˆ ˆ
max ,1 .

ˆ

iT i T

i j

iT i

J J J J
x x

J J

 



    
  

 

Let dp J . By the lemma 3.1, we have 
d i jx x 0    if and only if . 0i i j jg g  

Then 

     2 22 2
d d di j i i j jh x h x g g        

     2d 0
TT i i j j i i j j i i j jg g g g g g             

   
 

2
d

Tj j i i j j i i

T i i j j

g g g g

g g

   

 

 
 


 

if 0i i j jg g   , 

by the equation (13), we obtain 

   
1 2 1 2 ,

d d

Ti T i T i T T

i T T T

J J J J p J Jp

J J p p

  


 
      

which contradicts to  ˆ
T T

T
T

p J Jp
J J

p p
 . 

Hence 0p   so that 

    0.i j Tg x g x J p    

2) If i j  , then 

   j i j i j j ih x h x x x g gi         (14) 
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d d

d.

j j i j T

j T

g g J J

I J J

 



    

 
 

Hence, 

     
2

dj i j Th x h x I J J  
2

 

2 2

j T j iI J J x x    

   2
ˆmax 1 ,1j T j iJ J x x     

   
  2

ˆ ˆ
max ,1 .

ˆ

jT j T

j i

jT j

J J J J
x x

J J

 



    
  

 

Let p Jd . By the lemma 3.1, we have 
d i jx x   0  if and only if . 0j j i ig g  
Then 

     2 22
d d dj i j j i ih x h x g g      

2



 

    2d 0
TT j j i i j j i i j j i ig g g g g g             

   
 

2
d

Ti i j j i i j j

T j j i i

g g g g

g g

   

 

 
 


 

if , 0j j i ig g  

by the Equation (14), we obtain 

   
1 2 1 2 ,

d d

Tj T j T j T T

j T T T

J J J J p J Jp

J J p p

  


 
      

which contradicts to ˆ
T T

T
T

p J Jp J J
p p

 . Hence 0p    

so that 

    0,j i Tg x g x J p    

which completes the proof. 
Corollary 3.3. (Constant optimal gradient). From (H1) 

assumption, for any , there is a vector 
 such that 

* *x X 
 * *g x * nR  . 

Let *X  be the solution set of (4), * *x X , and *  
be the vector specified in corollary 3.2. Then, we define 

   * *: 1 , :i iL i E i      1 ,  

  *1 :i i     ,  

where   



 . We will show that the sequence gener- 

ated by (5) is finite convergence for components in L and  
is quadratic convergence for components in E. 

It is obvious from the optimality condition (9) that 

L E  {1, 2,  , n}  , and for any * *x X , we have 

   * *supp : 0 ,ix i x E   * 0, .ix i L    

Hale, Yin, Zhang in [2] establishes the finite con- 
vergence properties of  kx  stated in the following of 
theorem. The proof of the theorem 3.4 and 3.5 is similar 
to the theorem 4.1 and 4.2 in [2]. 

Theorem 3.4. Under assumption (H1), the sequence 
 kx  is generated by the fixed point iteration (5) applied 
to problem (4) from any starting point 0x   
converges to some * *x X  . In addition, for all but 
finitely many iterations, we have 

* 0k
i i ,x x i L               (15) 

     * *sgn sgn ,k
i i ih x h x g i L         (16) 

where the numbers of iterations not satisfying (15) and 
(16) do not exceed 

20 *x x 2  and 
20 * 2x x  , 

respectively. 
Theorem 3.5. (The quadratic case). Let f be a convex 

quadratic function that is bounded below, kT kJ J  be its 
Hessian, and k  satisfy 

 max

1
0, ,k

kT kJ J




 
 
 
 

 

then the sequence  kx  is generated by the fixed point 
iteration (5) applied to problem (4) from any starting 
point 0x   converges to some . In 
addition, for all but finitely many iterations, we have (15) - 
(16) hold for all but finitely many iterations. 

* *x X 

Lemma 3.6. Suppose assumptions (H1) and (H2) 
holds. Then, we have 

2
lim 0.k kF   

Proof. From (9), we can obtain 

1,kk
g


  

then, by (H2) and the above inequality, we have 

2

1
1 .k k k k

k

M F F F
M

 
 

      

For sufficiently large k, we conclude that 

2
lim 0.k kF   

Now, consider the sequence kx  generated by the FP 
algorithm. According to the fixed point iterations (5), it 
converge to some point * *x X  . We will show that 
the convergence is quadratic. In order to do, the 
following additional assumption is required: 

(H3) The following condition 

 1 ,k k k kG G O x x          (17) 

Copyright © 2012 SciRes.                                                                                  AM 



M. KIMIAEI, F. RAHPEYMAII 1331

holds, in where   1 1, ,
Tk k k k kG J x x J x x  

k
 and 

. Suppose that k is enough large so 
that , for all . Also, suppose that 

   Tk kG J x J x
* 0k

i ix x  i L

, ,
,EE i j i j E

C C


     

denote the square sub-matrix of the matrix C cor- 
responding to the index set E. Firstly we suppose that 

*  , then the mean-value theorem yields 

   * *k k k i * *
E E E E E E Eh x h x x x g g      E    (18) 

    
  

* * *

*

k k k k k k k
E E E E E E E E EE E E

k k k
E EE E E

*x x g g x x G x x

I G x x

 



       

  
 

Since   1 shrinkk kx h x
    and  shrink .  is 

non-expansive [2], using H2, (17), and (18), we have that 

   1 * 1 * *

2 2 2

k k k
E E E E E Ex x x x h x h x       

* *
kT k

k k k k kE
E EE E E EE E EkT k k

E EE E

g g
I G x x I G x x

g G g
       

*
kT k k kT k k

kE EE E EE
E EkT k k

E EE E

g G g g G g
x x

g G g


   

  *

kT k k k
E EE EE k

E EkT k k
E EE E

g G G g
x x

g G g


   

 

 

2 * *
2 22 2

2

*

*
2

2*

2
.

k k k k
EE EE EE EEk k

E E E
k
E

k

k

k

G G G G
kg x x x x

MM g

O x x
x x

M

O x x

M

 
  









  

Secondly, we suppose that *k  . Similar first case, 
we conclude that 

 21 * *k kx x O x x    .  

Theorem 3.7. Suppose that (H1)-(H3) holds and let 
 kx  is the sequence generated by the FP algorithm 
starting . For sufficiently large k, the sequence 0x 
 kx  is converges to some point in *X   quad- 
ratically. 

4. Preliminary Numerical Experiments: 

This section reports some numerical results and com- 
parisons regarding the implementations of the new pro- 
posed idea of the present study with some other algo- 
rithms for small-scale problems. All codes are written in 

MATLAB 9 programming environment with double 
precision format by a same subroutine. In the experi- 
ments, the presented algorithms are stopped whenever 

  510 .kF x   

Test problems are as follows: 
1) Tridiagonal system linear is 

  ,F x Ax  

in where A is a n n  tridiagonal matrix given by 

 tridiag 1,8, 1 ,A     

and 

   
 
:,

:, , : 1, ,
:,

A i
A i i i

A i
    n  

2) Five diagonal system linear is 

  ,F x Ax  

in where A is a n n  five matrix given by 

 tridiag 1, 1,8, 1,1A     

and 

   
 
:,

:, , : 1, ,
:,

A i
A i i i

A i
    n  

3) Logarithmic function [8] 

   ln 1 , 1, , ,i
ii

x
F x x i

n
     n  

initial point:  0 1, ,1x   . 
4) Strictly convex function 1 [8]  f x  that is the gra-  

dient of  
1

e i
n

x
i

i

h x x


   

  e 1, 1, ,ix
i ,F x i    n  

initial point: 0 1 2
, ,

n
x

n n n
   
 

 . 

5) Strictly convex function 2 [8]  f x  that is the gra-  

dient of    
1

e
10

i
n

x
i

i

i
h x x



   

   e 1 , 1, ,
10

ix
i

i
F x i    n  

initial point:  0 1, ,1x   . 
6) Strictly convex function 3 [8]  f x  that is the gra-  

dient of  
1

e
10

i
n

x i

i

xi
h x

i

   
 

  

  1
e , 1, ,

10
ix

i

i
,F x i

i
    
 

 n  
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initial point: .  0 1, ,1x  
7) Linear function-full rank [8] 

 
1

2
, 1, ,

n

i i j
j

F x x x i
n 

    n  

initial point: .  0 100, ,100x  
8) Penalty function [8] 

   510 1 , 1, , 1,i iF x x i n      

  2

1

1 1
,

4 4

n

jn
j

F x x
n 

   

initial point: 0 1 1
, ,

3 3
x

   
 
 . 

9) Sum square function [9] 

  , 1, ,i i ,F x ix i   n  

initial point: .  0 1, ,1x  
10) Trigonometric exponential function [10] 

     1 1 1 2exp cos ,F x x h x x    

     1 1exp cos ,i i i i iF x x h x x x      

     12, , 1, exp cosn n n ni n F x x h x x     ,  

where 1h h n  . 
initial point: .  0 1.5, ,1.5x  
In this section, we compare the numerical results 

obtained by running Algorithms following: 

1) FP1   1k 

2) FP2 
   

kT k
k

kk k k k

g g

J g J g

 
   
 

 

3) DS (steepest descent direction, 

   
.

kT k
k

k Tk k k k

g g
d g

J g J g
   

in where the Jacobian matrix Jk is exact. In running the 
algorithm FP1 and FP2 takes advantages of the parame - 
ters 0 0 01, 1 ,g 


   0 00.005 ,g


  10   and 

max . The dimensions of problems are selected 
from 2 to 100. The results for small-scale problems are 
summarized in Table 1. 

1000k 

In Table 1, i  and n fn respectively indicate the total 
number of iterates and the total number of function eva- 
luations. Table 1 indicates the total number of iterations 
and function evaluations for some small scale problems 
with dimensions 2 to 100. Evidentally, one can see that 
FP2 performs better than the other presented algorithms 
in the sense of both the total number of iterations and the 
total number of function evaluations. From Table 1, we ob- 

serve that the proposed algorithm is the best one on the 
all of test problems. We can deduce that our new algo- 
rithm is more efficient and robust than the other con- 
sidered algorithms for solving small scale system of 
convex equations problems. In more details, the results 
of Table 1 in Figure 1 are interpreted thanks to the 
Dolan and More’s performance profile in [11]. 

In the procedure of Dolan and More, the profile of 
each code is measured considering the ratio of its com- 
putational outcome versus the best numerical outcome of 
all codes. This profile offers a tool for comparing the 
performance of iterative processes in statistical structure. 
In particular, let S is set of all algorithms and P is a set of  

 
Table 1. Numerical results for small scale problems. 

Problem Dim FP1 SD FP2 

  i fn n  i fn n  i fn n  

1 5 15/16 16/17 2/3 

 10 17/18 16/17 2/3 

 50 19/20 17/18 2/3 

2 10 2/3 14/15 2/3 

 15 2/3 15/16 2/3 

 50 2/3 23/24 2/3 

3 5 17/18 5/6 5/6 

 10 12/13 5/6 4/5 

 50 8/9 5/6 4/5 

4 5 32/33 4/5 8/9 

 10 32/33 4/5 8/9 

 50 32/33 4/5 8/9 

5 5 803/804 55/56 3/4 

 7 797/798 132/138 3/4 

 10 771/772 228/229 3/4 

6 2 844/845 5/6 7/8 

 3 865/866 5/6 7/8 

 2 844/845 5/6 7/8 

7 5 9/10 1/2 9/10 

 10 9/10 1/2 9/10 

 50 9/10 1/2 9/10 

8 5 240/241 5/6 5/6 

 10 484/485 5/6 5/6 

 20 972/973 5/6 5/6 

9 5 Over 1000 29/30 16/18 

 10 Over 1000 59/60 31/32 

 50 Over 1000 288/289 146/147 

10 30 7/8 7/8 8/9 

 50 7/8 5/6 7/8 

 100 8/9 4/5 8/9 

Copyright © 2012 SciRes.                                                                                  AM 



M. KIMIAEI, F. RAHPEYMAII 

Copyright © 2012 SciRes.                                                                                  AM 

1333

 

Figure 1. Performance profile for the number of iterates. 
 

test problems, with sn  solvers and pn  problems. For 
each problem p and solver s and ,p s  is the computation 
result regarding to the performance index. Then, the 
following performance ratio is defined 

t

 
,

,

,min :

p s
p s

p s

t
r

t s S



           (19) 

If algorithm is not convergent for a problem p, the 
procedure sets , failp s , where fail  should be strictly 
larger than any performance ratio (19). For any factor 

s
r r r

 , 
the overall performance of algorithm is given by s

   ,

1
size : .s p

p

p P r
n s      

In fact  s   is the probability of algorithm s S  
that a performance ratio ,p s  is within a factor r R   
of the best possible ratio. The function  s   is the 
distribution function for the performance ratio. 
Especially,  gives the probability that algorithm s 
wins over all other algorithms, and 

1s 
 

,p sr slim    
gives the probability of that algorithm s solve a problem. 
Therefore, this performance profile can be considered as 
a measure of the efficiency and the robustness among the 
algorithms. In Figure 1, the x-axis shows the number   
while the y-axis inhibits 

 , :1 .p s sP r s n    

From Figure 1, it is clear that FP2 had the most wins 
compared with the other algorithm while it solved about 
60% of the test problems with the greatest efficiency. If 
one concentrates on the ability of completing a run 
successfully, it can be seen that FP2 is the best algorithm 
among the considered algorithms because it reaches faster 
than the other. 

5. Conclusion 

In this paper, we have presented a new algorithm for 

small-scale systems of convex equations that blending 
steepest descent direction and fixed point ideas. 
Preliminary numerical effort on the set of small-scale 
convex systems of equations indicates that significant 
profits in both the total number of iterations and the total 
number of function evaluations can be achieved. 
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