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Abstract 

The growing diffusion of pervasive collaboration environments and technical advancement of sensing technologies 
have fostered the development of a new wave of online services whose functionalities are based on users’ physical 
position. Thanks to the widespread diffusion of mobile devices (e.g. cell phones), many services can be greatly 
enriched with data reporting where people are, how they are moving, or whether they are close by specific locations. 
Geolocation of mobile terminals relies on the cellular network infrastructure and protocols to provide a reliable and 
accurate estimate of mobile terminals’ position, without the need of global positioning systems, such as GPS. In this 
paper, we present a novel lookup table correlation technique for geolocation, with multiple position estimations and 
optimal location techniques. Our approach provides high precise location and tracking of mobile terminals by 
exploiting advanced propagation models for mobile radio networks design, and by querying Geographical Information 
Systems (GIS), in conjunction with Kalman predictive filtering. 
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1. Introduction 

In the field of mobile networks, the term “geolocation” 
is used for denoting a variety of techniques aimed at 
mobility prediction, which is, computing and tracking the 
position of a mobile terminal. Mobility prediction can be 
exploited both at network and service level. At network 
level, mobility prediction and location support several 
crucial tasks, such as handoff management [1], efficient 
code division in 3G network [2], orthogonality factor 
prevision for WCDMA network [3], wireless routing 
management [4], system for QoS support [5][6] and 
resource allocation [7]. At service level, mobility 
prediction and location are tightly coupled with  number 
of location-based applications, such as, navigation, instant 
messaging [8], friend finder and point of interest services 
[9][10], emergency rescue [11], and many other safety 
and security services [12][13][14][15][16]. Although 
some of the above applications need only rough position 
estimation, many of them need precise tracking of mobile 
terminal position within cells to provide an adaptable 
quality of service.  

A first branch of research on mobile geolocation 
focuses on satellite-based positioning, i.e., GPS (Global 
Positioning System) [17], which is an interesting option 
for high-end applications, where location precision 

represents a critical requirement. However, standard GPS 
geolocation is not well suited for all contexts, as for 
instance in dense urban areas or inside buildings, where 
satellites are not visible from the mobile terminals. For 
these reasons, we claim that even leaving costs and 
impact on battery consumption aside, GPS techniques are 
not likely to be the key technologies for a number of 
interesting Location Based Services (LBSs), such as 
mobile tracking and path certification. Also, GPS systems 
are not suitable within urban areas, due to the high costs 
of their adaptation to urban settings. By contrast, our 
solution is based on traditional GSM/3G networks and 
does not involve any change to existing mobile network 
infrastructure being based on data collected by the 
cellular network. Our general purpose, low cost 
Positioning and Motion Tracking System (PMTS) for 
mobile networks provides mobility prediction both at 
network and service level [18]. 

In this paper, we discuss the importance of GIS 
information in Electro Magnetic Field (EMF) prediction 
for PMTS and propose a novel technique for high reliable 
mobile terminals location and tracking. Our proposal 
relies on additional information extracted from a GIS 
database covering the area of interest, used in conjunction 
with advanced predictive filtering. In general GIS maps 
can include information about the roadways (Type 1), to 



96                                                                            M. ANISETTI  ET  AL.                                                                         
 

Copyright © 2008 SciRes.                                                              I. J. Communications, Network and System Sciences. 2008; 1:1-103 

improve tracking and trajectory prevision, and about the 
environment (Type 2), used especially for EMF or time 
delay prediction (for a complete overview of location 
techniques see Section 2). Regarding Type 1, we classify 
the information extracted from GIS maps in three layers 
with increasing level of detail: i) layer 1 provides a 
coarse-grained subdivision of the mapped area into 
regions (e.g., pedestrian-only areas), ii) layer 2 provides 
information such as streets width and precise street 
conformation, iii) layer 3 provides highly detailed 
information (e.g., distance from crossroads, one-way 
street) and, when available, information on traffic and 
speed limits. Concerning environment-related information 
(Type 2), we consider two possible levels of detail: the 
absence of information (really diffuse in many GIS map), 
and the presence of terrain or buildings information.  

Our approach takes advantages of both from type 1 
and type 2 information of GIS maps; the more 
information is available, the more accurate the location 
will be. The level of location accuracy, in fact, depends 
on maps information and time constraints. 

Our novel contributions can be summarized as follows. 

• Improved database technique for multiple 
candidates’ localization. Our technique is based 
on a LookUp Table (LUT) signal strength 
approach where the lookup table is filled with 
path loss previsions of each antenna. These 
previsions take advantage from environmental 
information extracted by GIS map (Type 2), and 
consider the antenna’s shape to better fit real 
environments. The lookup table is then used to 
perform a multi-candidates selection. A local 
minimum management strategy is included to 
improve the precision in multi-candidates 
selection process. 

• Time-Forwarding Tracking (TFT). Our 
technique exploits GIS map (Type 1) 
information and predicts motion model to select 
one among all candidates’ locations. Each 
candidate is previously projected on the road to 
check whether the mobility model1 is compatible 
with the actual movement. TFT is also able to 
deal with EMF fluctuation building a time 
forwarding graph. 

• Constrained Advanced Filtering. We perform an 
advanced filtering for better enforcing other map 
constraints, such as, one-way streets.  

Finally, we validate our algorithm providing real 
experiments carried out in a complex urban environment, 
that is, the city center of Milan, Italy. 

                                                           
1We consider two basic types of motion models: pedestrian and vehicle. 
Other models could be introduced for special applications. 
 

2. Related Work 

Mobile location techniques are the topic of several 
studies in the area of mobile applications. Among the 
solutions used by GSM/3G technologies for location 
purposes, the most important and already standardized are 
propagation time and signal strength techniques.  

Propagation time-based methods (e.g. ToA [19], 
TDoA [20], E-OTD [21]) rely on time measurement. 
However, they have the main disadvantage of producing 
acceptable data only when the Line-Of-Sight (LOS) 
between terminal and based stations is guaranteed. 
Generally speaking, the main limiting factor of this class 
of techniques is that the accuracy of the estimated 
position depends mainly on the number of measurements 
done and on the geometric configuration. This problem is 
even worse in urban environments, where multipath 
propagations lead to very complicated scenarios without 
LOS between the mobile terminal and the base stations.  

Signal strength-based techniques instead are based on 
Received Signal Strength Indication (RSSI), which 
measures signal attenuation, assuming free space 
propagation and omnidirectional antennas, i.e., signal 
level contours around a base station are concentric circles, 
where smaller circles enjoy more powerful signals 
[22][23]. Although the same principle works well also for 
directional antennas, signal level contours are not 
concentric circles, but more complex geometrical shapes. 
Exploiting this assumption mobile antenna location 
problem is reduced to the well-known triangulation 
position problem which is similar to time-based and 
angular approaches. As a consequence, RSSI metric is 
also not well-suited for urban areas and the signal 
strength calculated with this approach is not more reliable 
than the one obtained by time-based approaches. The lack 
of precision in urban environments is then due to the fact 
that free space propagation assumption does not hold 
because of multipath propagation and shadowing, leading 
to complex signal shapes. Physical phenomena 
influencing radio propagation are mainly four: reflection, 
diffraction, penetration, and scattering. To solve these 
problems, deterministic (ray-tracing, IRT [24][25]), 
empirical (Hata-Okumura, Walfisch-Ikegami [26][27]), 
and hybrid techniques (Dominant Path [28][29][30]) for 
EMF prediction have been developed, for various 
environments. EMF prediction methods using signal 
strength can be profitable for location purposes. Even if 
path loss prediction techniques seem to achieve the best 
results, many problems still remain unsolved, including 
the intrinsic error of EMF prediction algorithms and 
fluctuations due to environmental changes. In this context, 
recently, an interesting approach has been proposed to 
deal with EMF fluctuations, by using support vector 
regression [31]. In a nutshell, regression techniques 
model the location problem as a checkpoint location, 
which can be solved as a machine learning problem. Our 
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approach, however, does not rely on a training phase, 
since real data sampling are not available everywhere. 
Furthermore, we focus on tracking and on dense 
localization, where checkpoint and neural network based 
strategies are not suitable. Specially, we rely on the basic 
techiniques outlined below. 

Database correlation. This technique relies on a 
database built on RSSI predictions or measurements. 
Mobile terminals positions are determined by evaluating 
RSSI measurements, which are performed by individual 
terminals or even by the BSs. The measurements are 
compared with the entries in the database. The 
corresponding correlation calculations find out the 
database entry that better matches the measurements lead 
to a location estimation [32][33]. Our approach basically 
relies on the principle of database correlation. Much in 
line with the RADAR system developed by Microsoft 
research [34] for wireless networks, our method uses a 
LUT for multiple candidates’ selection. Differently from 
RADAR, however, we select the number of candidates 
depending on the sensibility of the region and on GIS 
information.  

Filtering. Using triangulation and database correlation, 
the intrinsic location error of RSSI is never taken into 
account. Many recent works are aimed at overcoming this 
problem using Kalman filtering techniques with mobile 
motion model and RSSI triangulation. One interesting 
work [39] treats the problem of mobility in ATM network. 
It develops a hierarchical user mobility model that closely 
represents the movement behavior of a mobile user, and 
uses pattern matching and Kalman filtering, yielding to an 
accurate location prediction algorithm. Another work [40] 
proposes two algorithms for real-time tracking, location, 
and dynamic motion of a mobile station in a cellular 
network. This method is based on pre-filtering and two 
Kalman filters (one to estimate the discrete command 
process and the other to estimate the mobility state). The 
mobility model is built on a dynamic linear system driven 
by a discrete command process that was originally 
developed for tracking maneuvering targets in tactical 
weapons system [35][36]. The command process is 
modeled as a semi-Markov process over a finite set of 
acceleration levels, as in [37]. The filtering technique, 
presented in our work does not filter the location of 
mobile using RSSI [37][38], but it takes the most 
probable position filtered by our Time Forwarding 
Tracking (TFT) technique and tries to enforce the map 
and motion model constraints. Therefore, our filtering 
technique is well distinct from the ones introduced above, 
even if it exploits a similar motion model. 

3. EMF Prediction with Antennas’ Shape 

EMF prediction is a crucial task for those location 
strategies relying on triangulation or lookup table over 
RSSI. The amount of GIS information available (Type 2 

from GIS map) drives the choice among a number of 
applicable algorithms. In this paper, we adopt Hata-
Okumura [26] for prediction in absence of environmental 
information and COST231 Wallfisch-Ikegami [27] to 
take into account the shapes of the buildings. The statistic 
prediction model COST231 is only suitable for simulated 
environment where antennas are supposed to be omni-
directional. In our previous works, we adopted this 
approach for EMF prediction, obtaining very good results 
in a simulated urban environment [39][40]. In real 
environment, however, this omni-directionality cannot be 
assumed without a loss in EMF estimation quality, since 
real antennas’ shape have a big impact on EMF prediction. 
There are two ways to deal with real antennas’ shapes: i) 
use a deterministic ray-tracing, ii) introduce shapes in 
statistical EMF prediction. Here, we propose a variation 
of COST231 that includes a simple notion of antenna 
shape to better estimate the EMF. The deterministic ray 
tracing techniques in fact suffer of several problems, as 
for instance burdensome time-complexity need for a high 
precision antenna database, which make them not suitable 
for our approach.  We model the shape of the antenna as a 
simple function Sa of the direction angle, Sa:[0…360] → 
[0…Maxloss], where Maxloss is the maximum loss 
defined for a certain type of antenna. Function Sa(α) maps 
degree α to the loss due to the shape of the antenna a; 
such loss depends upon the angle of the point where the 
field is measured with respect to the antenna’s main axes.  

As an example, using our shape function inside 
COST231, the path loss of point p over the map, with 
respect to antenna a, is defined as follow: 

 badd llPATHLOSS +=  (1) 
where ladd=Sa(α) represents the additional loss produced 
by the shape of the antenna a, with α the angle identified 
by point p and the principal direction of antenna a, and lb 
is the component of canonical COST231 (i.e., either LOS 
or NLOS). Fig. 1 shows a comparison between EMF 
predicted with buildings structure and omni-directional 
antennas and EMF predicted with buildings structure and 
directional antennas.  

 
Figure 1. Comparison between omni-directional antennas 
and directional antennas. 

The availability of information about the shapes and 
directions of the antennas, as well as more information on 
the environment, allows of significantly improving the 
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accuracy of the prevision. Also, the knowledge of 
buildings heights and sizes greatly improves the quality 
of prediction. To assess this improvement, we performed 
several tests described in the experimental results in 
Section 7. Fig. 2 shows a comparison between real RSSI 
and the predicted ones using shape and COST231. 
Fluctuation is a typical problem of real environments; 
nevertheless the predicted trend is very close to the real 
one. 

 
Figure 2. Comparison between real RSSI in red and the 
estimated ones in black. 

4. Multiple Candidate Lookup Table 
Geolocation 

The core of our solution is based on a database 
correlation approach [33], where the position of a mobile 
terminal is determined by comparing the measurements 
performed by the mobile terminal itself (assuming it 
knows the signal strengths of the six bestserving antennas) 
with the entries in the lookup table. Our lookup table is 
defined in the area of interest, starting from the predicted 
path loss for all the antennas in the area. Using these 
prediction values, we obtain a matrix with the structure 
shown in Table 1. Every row in the matrix represents a 
single point within the coverage area (expressed in x, y 
coordinates, if 2D cartesian representation of area is used, 
or as a latitude and longitude pair, if GPS representation 
is used). The path loss predictions from the r-th base 
stations to each given point p are stored as entries in the 
row corresponding to point p.  

Table 1. Lookup table structure 

 
Of course, lookup table filling and updating can be 

done only once in a while, when major changes on the 
area of interest occur. In principle, all EMF prediction 
models can be used to compute the lookup table, 

depending on application requirements. Generally 
speaking, computing the lookup table for a given area 
consists in super-imposing a grid where field levels are 
quantized. The grid does not need to be uniform; rather, 
its sparseness can be controlled on the basis of the 
characteristics of the area of interest and of the cost 
constraints.  

During the process of locating a mobile device, the 
observed path loss on terminal is compared with all 
entries in the table. This comparison can be done with 
many different criteria (interesting examples can be found 
in [33]). Specifically, we used a sum of squared errors 
between the measured path loss Mj for each antenna j and 
the path loss defined by entry i in the lookup table Ei,j (see 
Equation (2)). Formally, we introduce the following 
equation. 

 ( )∑
=

−=
r

j
jij EMe

1

2
,  (2) 

The location of the mobile terminal is defined as the 
coordinates of the entry in the table that produces the 
smallest error e. Of course, this single-point location 
technique suffers of an intrinsic error; indeed, the 
estimated mobile terminal position using this kind of 
minimization hardly ever gives the correct geolocation 
due to discrepancy between real field strength and the 
predicted one. The main causes of error in predicting field 
strength are:  

i) intrinsic model error,  
ii)  imprecision in geographical database,  
iii)  variation in the antenna features,  
iv)  variation in weather conditions.  
Again, these errors are spread over all the area of 

interest. For these reasons, our approach produces a 
variable number n of position estimates, depending on a 
sensibility map analysis. Our sensibility map, built on 
map information and antennas positions, represents the 
error sensitivity of our multiple candidates geolocation 
method [40]. As expected, the higher the candidates 
number, the higher the probability of obtaining a better 
location. Nevertheless there is an unwanted side effect in 
increasing the number of candidates: the number of 
candidates taken into account increases the complexity of 
the candidate selection process described in the following 
section. 

5. Time-Forwarding Tracking (TFT) 

For validating candidates selected using the techniques 
introduced in the previous section, we developed a 
tracking method based on a time-forwarding algorithm. 
This algorithm uses m time position estimates and n 
nodes candidates at each time to define a directed acyclic 
graph, called Time Forwarding Graph (TFG). Every node 
p in the graph represents one of the possible positions of 
the mobile terminal, while edges, defined by the bounded 
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nodes (source and destination nodes), represent motion 
between them. Each edge has associated a weight that is 
computed based on reachability and map constraints. In 
our previous work [40], this weight was defined by taking 
into account the estimated velocity and acceleration at the 
source node, and by evaluating the reachable velocity and 
acceleration considering the position of the destination 
node. The obtained values were then compared with 
information inferred from the map. Of course, this type of 
advanced function works well when a reasonable upper 
bound to the position error can be assumed. Since in this 
paper we deal with real (as opposed to lab) environments, 
an acceptable error for every position cannot be 
guaranteed. Therefore the aforesaid weighting techniques 
cannot be applied. We then adopt a simpler weighting 
technique postponing the refinement to the filtering stage. 
At this stage, we only evaluate the edge weight to exclude 
the unreachable nodes. Therefore the weight function W 
is defined over an edge e = (pi,t, pj,t+k) as follows: 

⎩
⎨
⎧

∞+
≤

=
otherwise

kThmapeifmape
mapeW

)( ),( ),( 
),(

µµ
 (3) 

where i,j∈[1,…,n] and k∈[1,…,m]. The function µ 
calculates the real distance between two nodes pi,t and 
pj,t+k taking into account the map (presence of buildings, 
street curves and so on). The threshold Th(k) defines the 
maximum acceptable distance between each node and it is 
a function of the time variation k. Using this approach the 
weights of the edges are in linear relation with the nodes 
distances. Considering the real environment fluctuation 
and the fact that the sampling interval is very short (≈500 
ms), this assumption is realistic enough for TFT filtering 
purpose 2 . Summarizing each edge of the graph has a 
weight that defines the reachability between the bounded 
nodes. All maps and motion constraints are enforced by 
the weight function. By searching the minimum path on 
the graph (i.e., the path from time t to time t+m with 
minimum weight), we obtain a preliminary filtered 
position for the mobile (the nodes included in the 
obtained path). In our previous work, we used a different 
weight function that worked using k = 1, meaning that 
there were no edge between non-temporal consecutive 
nodes.  

Once again, we remark that, in real applications, the 
assumption of a bounded error is too restrictive, and a set 
of candidates’ nodes can be completely unreachable due 
to the fluctuation effect. Therefore our TFG needs to take 
into account also this noise effect. Every node p of the 
TFG is then associated with a set of nodes St at certain 
time t as follows: 
 [ ]tnttt pppS ,,2,1 ,,, L=   (4) 

                                                           
2 To the best of our knowledge the probability of having an overlapped 
estimation, over time, is high only in the case of stationary mobile 
device. 

St represents the set of the n candidates positions for time 
t. The distance from a node pi,t to a node pj,t+k is the same 
as the weight W among them. The distance can be also 
defined from a node pi,t and a set of nodes St+k as follow: 

 

[ ] )),,((min),,( ,,1, mapppmapSpM ktjtinjktti +∈+ = µL

 (5) 
where M is a distance function from node pi,t to set St+k 
according to the map. In our TFG graph, two types of 
edges exist:  

• edges e between two consecutive nodes, if 
W≠+∞. 

• forwarding edges e between two non temporal 
consecutive nodes. pi,t and pj,t+k, if 
M(pi,t,St+k,map)≠+∞  and  
minh=1..k-1(M(pi,t,St+h,map) =+∞. 

Fig. 3 shows the TGF. Note that in our approach, the 
choice of parameter m becomes critical. On the one hand, 
using a high m (i.e., long time prevision), we obtain a 
“strong trend” prevision that filters out any out-of-trend 
movement. This result is not acceptable in pedestrian-
only areas like a city square, where motion can well be 
chaotic without any prevalent movement trend. On the 
other hand, a value too small for m could cause an error 
dependency, which in turn could produce bad results in 
high trend-correlation areas like motorways or one-way 
streets. However, since layer 1 map information permits 
to distinguish between pedestrian-only areas and 
motorways, it becomes adequately possible to tune 
parameter m.3 In this way, we obtain a map correlation of 
our first-level movement estimates, and we can 
substantially improve the tracking quality of our lookup 
table technique (see Section 7 for details). 

 

Figure 3. Graph through example for time-forwards 
tracking. In red the selected position nodes and the selected 
path, in black the possible position nodes. The dotted line 
shows an example of an edge between two non consecutive 
nodes. 

                                                           
3  A similar dynamic tuning of parameter m can be based on the 
characteristics of user’s vehicle. 
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Our time-forwarding tracking technique takes full 
advantage from all available GIS information, such as 
area classification, so that validation of candidates’ 
locations depends on map constraints. In many cases, the 
additional information provided by the map is poor or 
absent; when this happens, our technique is able to 
dynamically build an information database by estimating 
all relevant knowledge including speed and acceleration. 

6. Tracking with Constrained Kalman 
Filtering 

Using the time-forwarding tracking technique 
explained in the previous section, we obtain a trusted 
location measurement zk at time k, which complies with 
all map constraints taken into account by TFT. This 
location zk can be associated with a state Xk=[x,y,x',y']T of 
our mobile device at certain time k,  where x and y are the 
position coordinates and x' and y' define the velocity 
vector. In general, this state defines a movement trend 
that already has high confidence and low error, if 
compared with the actual mobile antenna path (see Fig. 5). 
To increase its quality, this movement trend is filtered 
with constrained Kalman filter (CKF) [41], obtaining a 
robust error and time-deep prevision tracking (Fig. 4 
shows our CKF architecture). 

The Kalman filter module (the white box in Fig. 4) has 
the following input: i) state position measure zk from TFT 
that use map layer 1, ii) the uk-1 control input provided by 
HSMM (Hidden Semi-Markov Model) module, used also 
in [40], and defined using also map layer 3, iii) 
constrained function defined on map layer 2. One of the 
main advantages of this filtering is that it takes into 
account both measurement error and system error; besides, 
this one previous-state dependency filtering becomes very 
usable in real time tracking environment. The Kalman 
state equation shown in Fig. 4 is defined using the 
following fundamental matrixes: 
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where T is the time interval between two consecutive 
observations. 

The work [40] proposes to use simple Kalman filtering 
with HSMM module for location in wireless network. 
The main difference between this approach and ours is 
that we filter only motion errors and inertia oversight, but 
we do not filter the error introduced by signal strength 
prevision. Indeed, the position estimate used to correct 
the Kalman prevision is already compatible with map 
constraints and motion characteristics of the mobile 
antenna. Using this filtering, we improve the accuracy of 
the mobile terminal’s location. 

 
Figure 4. Constrain Kalman filtering architecture. 

7. Experimental Results 

Using three different cellular phones and a GPS 
antenna, we performed five trips in downtown Milan, 
over a month of experimentation. The city area we chose, 
which is near the railway station called Milano Centrale, 
includes a non-uniform urban environment, with a park 
and some skyscrapers. All trips were performed both by 
car and on foot, and had duration varied from 5 minutes 
to 1 hour. During these trips, information related to 
serving and neighboring cells coupled with GPS latitude 
and longitude were collected every 480 ms. We 
performed two different types of testing, one for 
evaluating EMF prediction quality and another for 
assessing geolocation quality with respect to the actual 
position of a moving cellular phone. Specially, we 
emphasize the relation between the amount of available 
environmental information and the quality of predicted 
EMF. Environmental information is costly to collect and 
is not likely to be available everywhere. 

Since our aim is to locate mobile phones, we also 
investigated the relation between EMF prediction and the 
amount of filtering. More specifically, in the first type of 
experiments, we computed EMF using different 
combinations of information taken from our Type 2 GIS 
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map. Selected combinations are: i) antenna’s shape with 
no environmental information (LOS), ii) some 
environmental information (buildings structure, with 
fixed elevation) but no antenna shape (NLOS), iii) 
environmental information and antenna’s shape 
(NLOS+S), and iv) all information, including buildings 
elevation and shape (NLOS+S+E). 

 

Figure 5. A comparison between some of lookup table 
candidate(square symbol), geolocation after filtering (cross 
symbol) and real position presented in black dot. 

The results presented in Table 2 show that the quality 
in EMF prediction depends on the amount of type 2 GIS 
information available. When all information is available, 
the mean and variance of the error in EMF prediction is 
highly reduced.  

Table 2. Comparison of Mean Error in EMF Prediction. For 
sake Of Conciseness, Mean and Variance (in Db) are 
presented considering a subset of our experimens also 
number of involved antennas (Ant.) and duration of the trip 
(Dur) are presented. 

 
In the second type of experiments, we present our 

results in terms of location quality, showing their relation 
with the available information and thus with the predicted 
EMF. In our previous work [43], we investigated the 
quality of our location approach in a simulated 
environment achieving encouraging results. Here, we 
evaluate the relation between quality of location and 
amount of information available. Table 3 shows our 
results; it is clear that our filtering strategy, which relies 
on map information, can be fruitfully applied only when 
all environmental information is available. 

Table 3. Comparison of Mean Error Using our Location 
algorithm 

 

To conclude, the overall precision of our location 
techniques is suitable for many location-based services 
and applications even in a highly diverse urban 
environment.   

8. Conclusion 

We have investigated the problem of mobile terminals 
location in urban environments, analyzing some existing 
location algorithms, and proposing a novel way to 
improve location accuracy. Our approach employs a time-
forward tracking algorithm with GIS map constraints and 
a constrained Kalman filtering for error correction 
purposes. A complete experimentation confirms that 
detailed GIS information can produce highly precise 
location even using a simple statistical EMF prediction. 
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