
Journal of Information Security, 2012, 3, 281-294
http://dx.doi.org/10.4236/jis.2012.34035 Published Online October 2012 (http://www.SciRP.org/journal/jis)

MAMNID: A Load Balance Network Diagnosis Model
Based on Mobile Agents

Thomas Djotio Ndié1, Claude Tangha2, Guy Bertrand Fopak1
1Lirima/Masecness, University of Yaounde 1, Yaounde, Cameroon

2Lirima/Aloco, University of Yaounde 1, Yaounde, Cameroon
Email: tdjotio@gmail.com, ctangha@gmail.com, fopakgb@gmail.com

Received May 14, 2012; revised June 29, 2012; accepted July 16, 2012

ABSTRACT

In this paper, we propose MAMNID, a mobile agent-based model for networks incidents diagnosis. It is a load-balance
and resistance to attack model, based on mobile agents to mitigate the weaknesses of centralized systems like that pro-
posed by Mohamed Eid which consists in gathering data to diagnose from their collecting point and sending them back
to the main station for analysis. The attack of the main station stops the system and the increase of the amount of infor-
mation can equally be at the origin of bottlenecks or DDoS in the network. Our model is composed of m diagnostiquors,
n sniffers and a multi-agent system (MAS) of diagnosis management of which the manager is elected in a cluster. It has
enabled us not only to reduce the response time and the global system load by 1/m, but also make the system more tol-
erant to attacks targeting the diagnosis system.

Keywords: Diagnosis; Incident; Intrusion; MAMNID; MAS

1. Introduction

The popularization of new strategies of systems attacks
mobilizes more researchers for the development of ade-
quate defense strategies. That is how we assist today to
an explosion of incident diagnosis methods in computer
systems generally group into two main classes [1,2]: the
behavioral-based approach and the scenario-based ap-
proach. Among these methods, others are based on mo-
bile agents. The first is based on the research of known
intrusion signature in audit data trail. The second hy-
potheses that normal activity of the system can be model-
ed after its observation during a sufficient period of time
or according to the instructions of the adopted security
policy, and that computer attacks generate abnormal ac-
tivities that are different from known normal activities.
These methods give satisfaction but the increasingly high
volume of information, as well as unceasingly crescent
network bandwidth puts in badly these last which cannot
any more give efficient result at relatively reasonable
time. These reports resulted in thinking that a good or-
ganization of data to be diagnosed could reduce this time.

Mohamad Eid proposed a mobile agents-based distri-
buted diagnosis model [3]. It consists in deploying the
diagnosis system in a central point of the network. This
model integrates a manager agent whose role is to create
mobiles agents which are going to collect data at the local
level (a network node where a sniffer captures net-

work traffic) and send them to a central point for diagno-
sis purpose. By analyzing this model, we wonder about
the availability and response time of the central diagnosis
system. Indeed, if the central system is attacked, the whole
system disappears. Moreover, the increase of the number
of sniffers considerably augments the load of the system
and therefore its response time. That can lead to two
problems: the scalability and the denial of service (DoS).
Considering the importance of diagnosis system in the
information availability, integrity and confidentiality, we
are interested in the implementation of a network size
and bandwidth independent, highly available and fast
diagnosis system. Our aim in this paper is to present a
load-balance diagnosis model based on mobile agents
which consists of several diagnostiquors and a balance
manager elected in a cluster.

The rest of the paper is structured in 4 sections. In
Section 2 we make a brief overview of related agent-
based works in incident/intrusion diagnosis systems. Sec-
tion 3 is dedicated to the presentation of our load-bal-
ance diagnostic model based on mobile agents. The ana-
lysis of our model is presented in Section 4 by focusing
on its advantages compared to the one proposed by Mo-
hamad Eid in [3]. Before concluding, we proposed in
Section 5 a prototype built using Snort open source IDS
and JADE (Java Agent Development Framework), to
show the operational of our model.

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 282

2. Related Works in Network Diagnosis

The term diagnosis can be defined as a process of data-
gathering in order to build, rebuild, discover, prove or
understand a fact or information. In the network area, this
term is strongly associated to detection and prevention
terms. We will particularly focus on the detection aspect
and especially we will address the diagnosis in intrusion
detection system (IDS). Several diagnosis methods are
integrated in IDSs. We start this section by firstly pre-
senting a brief review on diagnosis methods. We will
then state a point on network intrusions diagnosis in dis-
tributed systems. We will finally present diagnosis tech-
niques based on multi-agent systems (MAS) and distri-
buted systems.

2.1. Intrusion Diagnosis Methods

There are two main approaches of intrusions diagnosis:
scenario-based and behavioral-based [1,2,4]. The first is
focused on the search for already-known intrusion sig-
nature in audit data. A scenario indicates detailed de-
scription of actions and elementary steps constituting an
intrusion. A signature indicates all concrete traces left by
the attack during its execution. The main drawback of
this diagnosis approach is its inability to detect new in-
trusions. To challenge this drawback, the behavioral ap-
proach proposes an alternative based on the modeling of
the normal activity and any deviation will be interpreted
during the diagnosis process like a possible intrusion.
This approach hypotheses that the normal activity of a
system can be modeled after its observation during a suf-
ficient period of time or following instructions of the
adopted security policy.

Finally, the diagnosis principle is based either on the
research of anomalies and/or abnormal activities in com-
parison with known models of activities, or on the re-
search of signatures of known intrusions. Another idea
consists in making a coupling of both methods to have a
hybrid method which benefits from advantages of both
approaches. Besides, the introduction of agents in diag-
nosis systems can make us profit from their properties.
We briefly introduce agent concepts in the following
paragraph.

2.2. MAS, Distributed Systems and Diagnosis of
Network Intrusions

2.2.1. Agents and Multi-Agents Systems (MAS)
The MAS concept proposes an answer framework to
applications and objects distribution in order to satisfy
users while it guarantees more autonomy and initiative in
different software modules. There is no consensus yet, as
for the definition of the word “agent”; nevertheless, we
retain here that it is an autonomous, real or abstract entity,

that is able to act on itself and on its environment which,
in a multi-agents universe, can communicate with other
agents, and behavior of which is the consequence of its
observations, knowledge and its interactions with other
agents [5]. An agent is characterized by its goals and
means of reaching them, it is rational, cooperative and
adaptive. A mobile agent is an agent which can move
through a heterogeneous network under its own control
[6]. A MAS is a set of agents interacting according to
cooperation, competition and/or coexistence modes. It is
generally characterized by the total absence of system
control, of data decentralization, asynchronous calcula-
tion and possession by each agent of a local knowledge
of the environment with limited capacity of problem
solving [7-9].

2.2.2. Distributed Systems and Peer-to-Peer Systems
A distributed information system is a collection of autono-
mous stations or calculators interconnected by means of
communication network. Each host executes components,
for example sequences of calculations, resulting from the
splitting of a global calculation project. It uses a middle-
ware which deals with activating components and coordi-
nating their activities so that a user perceives the system
like a single integrated system [10]. The consequence to
distribute tasks on network computers increases the avai-
lable resources. Thus, incidents diagnosis system must
necessary be distributed to efficiently and pertinently
succeed in diagnosing the great amount of network in-
formation and to resist faults. This motivated us to pro-
pose a distributed architecture-oriented model.

The characteristics of distributed systems are the fol-
lowing: transparency, interoperability management, scala-
bility, faults, heterogeneity and security management.
The Amdhal and Gustafson law is a function which de-
termines the gain in terms of speed which will bring the
parallelization of a calculation or more generally of an
activity according to the number of nodes used or in-
volved. In the expression of acceleration hereafter, f
represents the fraction in percentage of the task which
must be sequentially executed. The smaller is this frac-
tion, the more the addition of a node will increase the
execution speed. This law is written as follows [11].

Acceleration time with 1 processor time with

processors 1 1

N N

N N f

Unfortunately, the increase of the speed is not linear.
At the level of a critical point, the addition of a node will
instead marginally increase the execution speed. After
the critical point, it is not beneficial to add nodes. We
thus see all the importance of the distributivity of a net-
work diagnosis system. Moreover, for the high availabil-
ity of the system, we found it better to make groups of

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 283

equivalent nodes: peer-to-peer (P2P). A P2P network is a
network composed of group of entities in which each can
play indifferently the role of client and/or of server. P2P
networks are a type of distributed systems, and one dis-
tinguishes pure P2P networks, hybrid P2P networks and
those based on structured virtual networks [3].

The P2P helps in file-sharing, using various algo-
rithmic techniques for file access (the first problem is to
find the file), and equally applying on the same file tech-
niques of equal share (to ensure the files persistence in
time and a fast and reliable download). However, the P2P
is not only for file-sharing, it also has many other appli-
cations. To quote only some of them: 1) The sharing of
computing power and memory capacity; 2) Instant mes-
saging and IP telephony software; 3) Mailing lists with
persistent research mechanisms. In this paper, we use the
P2P in our load-balance diagnosis principle among IDS
instances to increase fault-tolerance. In the next subsec-
tion, we will explore aspects which twin distributed sys-
tems, MAS in networks incidents diagnosis.

2.3. Agent-Based IDS and Agent-Based
Distributed IDS: Our Positioning

Historically, the network intrusions diagnosis dated from
1980 and developed with intrusions detection model
presented by Denning [12]. Until there, diagnosis sys-
tems are centralized. One station installed at a strategic
point of the network reads and analyzes systems logs,
what gives the possibility to an attacker to destabilize the
station and to reach the network with complete freedom.
It is to correct this defect that was born distributed sys-
tems of diagnosis. In the majority of these systems,
agents and especially mobile agents play a central role
[3]. For this reason, we have Karima Boudaoud works on
the design of MAS-based IDS for fast and effective in-
trusions diagnosis [13]. The principle in her work is
based on a coordinating agent that interacts with the ad-
ministrator who specifies attacks schemas to be detected
and distributes them to deployed agents that are intended
to supervise each network area (set of equipments). Each
local agent analyzes the traffic and filters attacks accord-
ing to these schemas and informs the coordinator.

Jean-Marc Percher and Bernard Jouga in [14] pro-
posed a security architecture for ad hoc networks. In this
architecture, each node (computer, PDA…) is equipped
with a local IDS (which detects by analysis of MIB in-
formation) and autonomous mobile agents are imple-
mented, if necessary, to collect information (by SNMP
agents) stored on other nodes, proposes an architecture
for the diagnosis of distributed intrusions based on MAS.
This system consists in collecting data coming from each
host to diagnose, this last being in fact a combination of a
host-based IDS (HIDS) and a network-based IDS (NIDS).

The problems raised by this architecture can be: network
extensibility, performance, security and the administra-
tion interface. Moreover, the possibility of automatically
adding and withdrawing agents in the system gives a new
form of attack which can consist in automatically inject-
ing a hacker agent in the system. Fopak in [4] presents a
completely distributed system where the collected data
are locally diagnosed without referring to a central mana-
gement system. Mohammad Eid [3] proposes a distri-
buted diagnosis system based on agents mobile. Its sys-
tem, intended to detect internal as well as external attacks,
is based on the following principle: distant sniffers are
controlled via a mobile agent created and controlled by a
central station responsible at the same time to diagnose
the data gathered by mobile agents and coming from dis-
tributed probes. Its prototyping consists in deploying
Snort on the central machine to diagnose data from dis-
tributed probes and gathered by the mobile agents.

We presented in this section some concepts relating to
the construction of our model. Distributed systems are
going to enable us to distribute IDS instances and com-
ponents of our system in the network. Agents constitute
the base of our system. P2P systems will be used to en-
sure the evolution of managers in a cluster in order to
guarantee the system availability. After a rapid panorama
of agents-based IDS, we saw that the concern of diag-
nosing all data in the network in spite of their response
time led to agents-based distributed models. Mohammad
Eid [3] thus proposed a system coordinated by a central
agent with the responsibility of diagnosing network data
gathered by distributed probes and transported towards
this central agent by mobile agents. This system solves
the problem of full network data diagnosis while reveal-
ing certain concerns namely: 1) The availability. Indeed,
if the central agent breaks down, the entire supervised
sub network becomes again vulnerable; 2) The whole
network data overloads the IDS and increases its re-
sponse time. In the optics of staging these problems, we
propose a mobile agents-based model which consists in
deploying several diagnostiquors (in relation to network
size), several probes and at any moment, an elected
manager undertakes the diagnosis load balance between
different available diagnostiquors. The following section
presents this model in detail.

3. MAMNID: Mobile Agent Based Model for
Network Incident Diagnosis

Here we present our load balance network diagnosis
model based on mobile agents which overcomes over-
load and response time problems that currently face diag-
nosis systems in a distributed context. Our distributed
mobile agents-based diagnosis model is consisted of di-
agnosis units (IDS), of data-gathering units (sniffers) and

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 284

a MAS for data transfer towards diagnostiquors (sen-
sors).

3.1. Model Elements

3.1.1. Diagnosis Unit (DU)
In our model, a diagnosis unit diagnoses the flow of data
in the network. This diagnosis consists in data analysis
coming from sniffers to look for attacks signatures. In
case of detection, all diagnostiquors log intrusions traces
in the same database in order to facilitate the administra-
tion task. Let us mention that the system can have several
diagnostiquors according to the network size and band-
width, and of a desired response time. The DU will be for
us an instance of IDS.

3.1.2. Data-Gathering Unit (DGU)
A data-gathering unit (DGU) is mainly made up of a
sniffer whose role is to collect the traffic at its installed
point to send it to the diagnosis manager (an agent) which
cares of redirecting the data gathered towards the most
available diagnostiquor that we will thereafter qualify.
This action is ensured by a mobile agent. As for DUs, the
system can have several sniffers according to the net-
work size.

3.1.3. A Multiagent System for Data Transfer
(MAS-DT)

A MAS is consisted of a the MAS platform and agents in
the following manner:
 Each participating station to the system hosts an agent

platform. They are machines equipped with sniffers,
diagnostiquors and machines hosting manager agents;

 Each machine hosting a sniffer has a sniffer agent to
create a mobile agent for each data unit;

 The traffic manager has of a redirection agent of a
mobile agent and an election agent of the manager.
Let us recall that for needs for the manager security, a
set of eligible agents for this role (manager) existing
in a cluster;

 Each machine equipped with a DU has a diagnostiquor
agent which gets, kills the mobile agent, and transfers
received data to the UD in this case Snort IDS.

3.2. Genaral Architecture of the Model

This diagram (Figure 1) shows how the information cir-
culating in the network is collected and introduced into
the model thanks to the sniffer (a) and how results are
logged if positive match (e). The diagram equally shows
how the sniffer send data to be analyzed to load balance
SMA (b) and how the SMA passes data to IDS (c). The
MAS is mainly made up of four agents (sniffer agent,
manager agent, diagnostiquor agent and mobile agent)
that are going to be described more in detail in the fol-

Figure 1. Data gathering process.

lowing sections.

3.2.1. Description Model Agents
Here we describe agents of our MAS.
 Sniffer agent: this agent is in charge of requesting the

load-balancer agent to get parameters of the most
available diagnostiquor agent. It has a queue of data
units to diagnose. After the reception of parameters of
the most available diagnostiquor agent, it creates a
mobile agent to convey the data unit. Characteristics
of the sniffer agent are the following: its state (pa-
rameter for requesting the load-balancer (IP, DNS…),
a queue of data units.); its behavior (to transform the
data flow sent by the sniffer into data units, to receive
parameters of load-balancer agent, to request load-
balancer agent for parameters of the diagnostiquor
agent, to create mobile agents, to launch the mobile
agent);

 Note: here we define the data unit as a complete in-
formation bloc for a diagnostiquor (an instance of
IDS);

 Mobile agent: this agent’s role is to transport a data
unit to the most available diagnostiquor. It has the
data unit ontology in its state and in its behavior; it
has the possibility of initiating communication with
the diagnostiquor agent to transfer to him the data
unit it carries;

 Load-balancer agent: this agent is in charge of diag-
nosis load balancing. Its characteristics include 1) Its
state constituted of its parameters (IP, DNS…), active
load balancer parameters (IP…), and balance man-
agement queue. It is a queue (of size of diagnos-

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 285

tiquors) in which each node contains the number of
data units transferred to the diagnostiquor, connection
parameters to the diagnostiquor and an indicator bit
that indicates if the diagnostiquor is functional or not.
It is set to 0 when one sends a data unit to the diag-
nostiquor and it will later come to set it to 1 when it
finished processing the data unit; 2) Its behavior is
consisted of the following methods: answering the
sniffer request and updating the queue (++number of
data unit to transfer), taking part in the load-balancer
election, receiving indications about diagnostiquors
activities, broadcasting its parameters to sniffers.

 Diagnostiquor agent: its role is to transfer the data
unit it receives to an IDS. Its state is consisted of its
operation indicator which is a bit it sends to the
load-balancer agent 1) and a queue of data units. Its
behavior comprises in: transforming a data unit into
flow to send to IDS, receiving data unit, sending its
activity indicator and to kill mobile agents.

The diagram (Figure 2) below shows how: a) a diag-
nostiquor is managed at one moment by one and only
one manager agent whereas a manager can manage sev-
eral diagnostiquors; b) A sniffer can create several mo-
bile agents and at each creation, an instance of its DU is
made; c) An diagnostiquor receives several mobile agents
whereas a mobile agent is intended for one and only one
diagnostiquor.

Note: here, the diagnostiquor represents the diagnosis
unit (Snort in our case) whereas the diagnostiquor agent
is in charge of gathering information to diagnose from
the system for diagnosis unit. Also, the sniffer (Wire-
shark for example) captures network information to be
diagnosed and send it to the sniffer agent for the diagno-
sis system (MAS for diagnosis management).

3.2.2. Operation of the Model
Here we present the functioning of MAMNID. We will
particularly focus on its components and interaction dia-
gram. These components are the following:
 Sniffer: software able to collect or capture network

data. In our model, the sniffer agent takes data gather-
ed from this latter and splits them into data unit.

Figure 2. The MAS AUML diagram.

 MAS platform: software environment in which an
agent can be created and evolve. We will thus use a
platform to deploy our different agents.

 Agent: in our model, an agent represents a software
entity that will be developed. Each agent will later
contributes to the implementation of the diagnosis
load balance in our model.

 Database: will help to store attacks traces.
The interaction schema (Figure 3) shows how differ-

ent system components interact together in the model.
For the implementation of MAMNID, a participating
machine in the model must have as mentioned above
following elements: sniffer and MAS platform for
agents’ evolution for a host which only collects data. On
the host able of diagnostic load-balancing, one can have
in addition a manager agent (or load-balancer agent)
whose role will be described further in the operation sec-
tion. A host able of data diagnosing will have an IDS.

From the interaction diagram, from bottom upwards,
we have a double-direction link (p) which represents
exchanges between a station of data collection and the
active load-balance station, with aim of having parame-
ters of the most-available diagnostiquor. Links (d) repre-
sent information transfers between the data collection
host and the host of the most-available diagnostiquor.
Links (e) represent exchanges of activity indication be-
tween the diagnosis manager and diagnostiquors. Links (l)
represent log of attacks in databases in case of detection.
The link (a) symbolizes the result analysis. A host may
not have a manager; but if it has some, this last can be
active or not. In the whole system, only one manager
must be active at a time. In addition, a manager or diag-
nostiquor host may not have a sniffer.

3.3. Algorithms Description

We argue in this paragraph how agents of MAMNID
operate to balance loads and to ensure the network data
diagnosis.

3.3.1. Starting of the Manager: The Clustering
In MAMNID, the manager agent has the role of redirect-
ing traffic coming from a sniffer towards the most-
available diagnostiquor which we will thereafter qualify.
As several hosts can play the manager role, we present
here the election principle of the active manager: 1) At
the starting of a platform equipped with a manager
(agent), this last broadcasts a message to all other mana-
gers. If it receives no feedback, it therefore becomes the
active manager and it broadcasts its parameters (IP ad-
dress, domain name…) to all other platforms; 2) If there
is one active manager, each manager draws a random
latency random (1,X) to the end of which it remakes a
broadcasting to test the presence of an active manager. If

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL.

Copyright © 2012 SciRes. JIS

286

Figure 3. Interaction diagram of MAMNID.

once more it receives no answers, it becomes active
manager and broadcasts its parameters to all platforms.
Let us note here that X is the maximum latency. We sig-
nal that these two points constitute the principle of man-
ager election; 3) The manager knowing the parameters of
all diagnostiquors redirects in a cyclic way towards the
latter, mobile agents carrying data to be analyzed. It re-
sults from this that the most-available diagnostiquor is
that of the next index in the cycle modulo number of di-
agnostiquors.

The algorithm of redirection (daemon) is the following:
let m be the number of diagnostiquors, we have parame-
ters of these diagnostiquors in a list of m elements.

While True
For integer i from 1 to m do

Receive the request of obtaining parameters of the
most available diagnostiquor from a sniffer,
Send parameters of the diagnostiquor of node i of
the list of diagnostiquors,

EndFor
EndWhile.

3.3.2. Sniffer Agent and Mobile Agent
At the starting of the sniffer agent, it requests the mana-
ger for its parameters. For each ∆d data unit sniffed, each
sniffer agent creates a mobile agent which will transport
this data unit towards the most-available diagnostiquor

(that of which parameters were received from the mana-
ger). During the transport of the information from one
host towards the diagnostiquor station, if the mobile
agent does not find the diagnostiquor station, it gets back
to its origin with the data unit.

3.3.3. Diagnostiquor Agent and Diagnosis
At the start-up, each diagnostiquor agent broadcasts its
parameters to managers until it receives an acknowl-
edgement. At the reception of a mobile agent, the diag-
nostiquor agent extracts mobile agent’s data, sniffer’s
parameters and kills the mobile agent. Data are then de-
posited in the traditional diagnostiquor (IDS) queue; in
our case, the Snort queue.

3.3.4. Diagnosis Sequence Diagram
To summarize, we show with the following sequence
diagram (Figure 4), how a data unit k is diagnosed by the
diagnostiquor i% m (i modulo m) where m is the number
of diagnostiquors, and i the sequential variable of the
diagnostiquor’s selection.

In this section we presented our mobile agent-based
model for networks incidents diagnosis (MAMNID). This
model is in the continuation of the one of Mohammad
and corrects the overload and the diagnosis delay in this
last. In the following section, we will illustrate MAM-
NID advantages compared to the Mohammad model.

T. D. NDIÉ ET AL. 287

Figure 4. Diagnosis sequence diagram.

4. Analysis of MAMNID

It is question in this section of showing the relevance of
MAMNID compared to an existing model. Here, we took
as reference model, the one of Mohammad Eid. Let us
recall that he presents a centric mobile agent model in
which mobile agents are created and controlled by a central
station at the same time in charge of diagnosing data
gathered from remote sniffers and distributed probes. Its
prototyping consisted in deploying Snort on the central
machine to diagnose data from the distributed probes.
For this comparison, we will make a diagnosis time-saver,
overload and availability analysis. We will also present
the limits of our model.

4.1. Diagnostic Time-Saver Analysis

Here we make an analysis in time of our model. If we
suppose that the processing time of a data unit in the
Mohammad Eid model is t, we will have for t probes a
processing time of O (tn). In our case we will have for n
probes and m diagnostiquors, a processing time of O
(tn/m). Thus a time-saver out of O (tn [1 − 1/m]). So far,
we will equally note that, more m will tend towards n,
more we will gain in processing time. It also appears that
if n = m one obtains an almost constant processing time.
Moreover, if we are in a network with high bandwidth,
volumes of data to be diagnosed become important. In
this case, if we are in a small network with high band-
width with 1 probe and m diagnostiquors, we obtain a
response time of about O (t/m). Let us mention that in
this case, each machine plays the role of a diagnostiquor.

We make a theoretical presentation of these time-savers
in the summary Table 1 in which one has on the first line,
the number of data units to be diagnosed and on the first

column, the number of diagnostiquors in the system. By
hypothesizing that a data unit is diagnosed in a unit of
time, each box represents the time necessary to diagnose
the corresponding number of data units on the first line
with the corresponding number of diagnostiquors of the
system on the first column.

Figure 5 graphically highlights the time-saver on the
basis of theoretical data contained in Table 1. We repre-
sent there time variations according to the number of data
unit projected on 1, 2, 4, 8, 16 diagnostiquors of our
model. Each curve of the graph corresponds to a line of
the table.

4.2. Overload Analysis

Let us see now what our model brings for the reduction
of an IDS load. Indeed, if for 1 diagnostiquor, the work-
load at one moment t is k data units, we will have a re-
duction at k/m with m diagnostiquors. This means a re-
duction of k (1 − 1/m). Once more, we notice that more m
tends towards n more this reduction is important. Here
are Tables 2 and 3 of theoretical reduction in the IDS
load. In these tables, we suppose that we have k data
units at each time unit.

Table 2 represents the case where m < k; i.e. the case
where the number of diagnostiquor is inferior to the
number of data unit at a time unit. Table 3 presents the
case where m ≥ k.

As consequence, according to obtained results; the
number of diagnostiquors must be lower or equal to the
round part from the division of network bandwidth by the
size of a data unit: m ≤ [D/T] where D = network band-
width of and T = size of a data unit. Figure 6 represents a
pace of load reduction compared to the number of

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 288

Table 1. Reduction of the diagnosis time with the number of diagnostiquors.

Data units 1 2 3 4 5 n – 1 N

1 1 2 3 4 5 . . . n – 1 N

2 1/2 1 3/2 2 5/2 (n – 1)/2 n/2

3 1/3 2/3 1 2/3 5/3 (n – 1)/3 n/3

 . .

 . .

 . .

m – 1 1/(m – 1) 2/(m – 1) 3/(m – 1) 4/(m – 1) 5/(m – 1) (n – 1)/(m – 1) n/(m – 1)

Number of diagnostiquors

m 1/m 2/m 3/m 4/m 5/m (n – 1)/m n/m

Figure 5. Time of diagnostic according to the number of diagnostiquors.

Table 2. Diminution of the diagnostic load: case where m < k.

Number of diagnostiquors 1 2 3 4 5 m – 1 m

Diagnosis theorical load k k/2 k/3 k/4 k/5 ··· k/m – 1 k/m

Table 3. Reduction of the diagnosis load: case where m ≥ k.

Number of diagnostiquors 1 2 k – 1 k k + 1 m – 1 m

Diagnosis theorical load k k/2 ··· k/(k – 1) 1 1 ··· 1 1

diagnostiquors at a fixed time T for a load k = 16 data
units.

Noting the amount of data received by each instance of
Snort server (diagnostiquors), we see that this charge
decreases that it adds instances of Snort. So, the schema
in Figure 6 represents this decrease when adding the

number of snort server instances. Note to fully under-
stand that the dependent ordinate is assessed in the unit
of data (more small indivisible, complete and indivisible
that can be analyzed). You can see for example that if in
one snort instance 16 data unit are analyzed, it will only
concern 8 for two diagnostiquors.

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 289

Figure 6. Load according to the number of diagnostiquors.

4.3. Availability

We can affirm that MAMNID is more available com-
pared with the model proposed by Mohammad. Indeed,
contrary to his approach which has one diagnostiquor on
a host which is at the same time responsible for the crea-
tion and management of mobile agents, we have a system
of agents manager which evolve in a cluster and a com-
pletly decentralized creation of mobile agents. In fact, it
is each data collecting point which creates its mobile
agent. It is therefore important to highlight that event in
the case of a manager loss; the system remains available
because another will be directly elected.

We presented in this section advantages of our model.
However, we can note some doubts for borderline cases.
Indeed when the number of diagnostiquors is equal to the
number of probes, one can note a waste of time of infor-
mation transfer in the network whereas a host-based di-
agnostiquor would do the work. Moreover as it is pro-
bable that several data units resulting from one source are
analyzed by different diagnostiquors, distributed attacks
on several data units could escape our system.

5. Implementation of MAMNID [6]

We present in this section an implementation of MAN-
NID based on Snort IDS and agents from JADE platform.
Snort is signatures-based IDS. It has several components
that work together for attacks detection. Among these

components, principal ones are the following: packet
decoder; preprocessors; detection engine; logging and aler-
ting system, output modules.

5.1. Realization of Snort Decoupling
Preprocessor

The Snort IDS offers various functions that help to im-
plement a preprocessor. Mainly these functions are: SetUp
and Init. To these functions one can add functions which
allow to manipulate packets and to possibly carry out
preliminary operations to analysis.

5.1.1. The SetUp Function
This function is called at a preprocessor’s initialization. It
helps to record the preprocessor’s identifier, because in
Snort, any preprocessor has a single identifier which will
be setup in the configuration file snort.conf. The follow-
ing code is an illustration of the SetUp function of our
preprocessor: we will call it linkjade. The SetUp function
of the file spp_java_agen.c is the following:

#include “spp_template.h”
void Setuplink_jade()
{
 RegisterPreprocessor(“link_jade”, link_JadeInit);
 DebugMessage (DEBUG_PLUGIN,” Preproces-
sor: Template is setup...\n”);
}

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 290

The first line of the program allows including the
header file which contains declarations specific to each
preprocessor and will be used by Snort as shown in the
following example:

#ifndef __SPP_LINKJADE_H__
#define __SPP_LINKJADE_H__
void Setuplink_jade ();
#endif /* __SPP_LINKJADE_H__ */

5.1.2. The Init Function
It is in this function that one has the possibility of making
reference to other functions for data or network packets
processing. It is thus thanks to this function that func-
tions specific to a processor will be added to the list of
Snort preprocessors.

5.1.3. Snort Part Which Feeds the MAS (Snort Client)

Here is C language code of our preprocessor, which will
allow sending Snort packets (here playing the snifer role)
towards the MAS. This code is shown below:

 connect(sock, (SOCKADDR *)&sin, sizeof(sin));
 convert 123 to string [buf]
 itoa(num, buf, 50);
 printf(“valeur :
%d”,(packet->orig_tcp_header)->checksum);
 send(sock, buf, sizeof(), 0);
 send(sock,”Sending of TCP header \r\n”,14,0);
 sendValue = htonl(*(packet->pkt_data));
 send(sock, (char const*)&sendValue, sizeof
sendValue, 0);
 send(sock, “\r\n”, 2, 0);
 recv(sock, buffer, sizeof(buffer), 0);
 closesocket(sock);
 WSACleanup();

5.1.4. Snort Part Which Takes MAS Packets for
Analysis (Snort Server)

Here is C language code of our preprocessor at the diag-
nostiquor side, which will allow receiving packets sent
by a MAS analyzer. It must then be present on all hosts
which will have to receive certain number of packets
coming from the MAS.

 if ((sock = socket(AF_INET, SOCK_STREAM,
0)) == -1) {
 perror(“Socket”);
 exit(1);
 }
 if (set-
sockopt(sock,SOL_SOCKET,SO_REUSEADDR,&tru
e,sizeof(int)) == -1) {
 perror(“Setsockopt”);

 exit(1);
 }
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = htons(5000);
 server_addr.sin_addr.s_addr =
INADDR_ANY;
 bzero(&(server_addr.sin_zero),8);
 if (bind(sock, (struct sockaddr
*)&server_addr, sizeof(struct sockaddr))
 == -1) {
 perror(“Unable to bind”);
 exit(1);
 }

 if (listen(sock, 5) == -1) {
 perror(“Listen”);
 exit(1);
 }
 printf(“\nTCPServer Waiting for client on
port 5000”);
 fflush(stdout);
 while(1)
 {
 sin_size = sizeof(struct sockaddr_in);
 connected = accept(sock, (struct
sockaddr *)&client_addr,&sin_size);
 printf(“\n I got a connection from
(%s ,%d)”,inet_ntoa(client_addr.sin_addr),ntohs(client
_addr.sin_port));
 bytes_recieved =
recv(connected,recv_data,1024,0);
 recv_data[bytes_recieved] = '\0';
 if (strcmp(recv_data , “q”) == 0 ||
strcmp(recv_data , “Q”) == 0)
 {
 close(connected);
 break;
 }
 else
 printf(“\n RECIEVED DATA = %s
\n” , recv_data);
 fflush(stdout);
 break;
 }
 close(sock);

5.2. Realization of the MAS

The MAS of our application includes three resident agents
(the Sniffer agent, the Manager agent, and the Analyzor
agent) and a mobile agent.

5.2.1. The Sniffer Agent
This agent directly communicates with JADE platform,

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL.

Copyright © 2012 SciRes. JIS

291

5.3.1. Snort Configuration for which it has a socket for listening Snort client in
charge of sending packets. The implementation of this
package is done using SnifferAgent, SnifferBehaviour
and SnifferFrame UML classes as shown in the diagram
(Figure 7):

We start by installing Snort and Winpcap for Windows
(Figure 10). After the modification (addition of our pre-
processor) and compilation of the Snort sources, we ob-
tain a set of DLL generated in the Snort’s folder lib\
snort_dynamicpreprocessor. We copy and paste our pre-
processor’s DLL in the Snort’s DLLs folder. In the Snort
configuration file, in the “configure dynamic loaded li-
brary” section; we indicate the path of the DLL there
containing our preprocessor of connection to the MAS.
Finally, Snort is launched.

As we can note on the diagram (Figure 7), the Sniffer
agent has a cyclic behavior; thus the agent execution
does not end. At the reception of an address sent by the
manager agent, it creates a mobile agent which will be
given the responsibility to transport the packet towards
an analyzer.

5.3.2. MAS Launching and Visualization 5.2.2. The Manager Agent
While launching our MAS, we start MAMNID. We can
indeed see the supervision interfaces: Figure 11 for
managing the supervisor and Figure 12 for snifer agent.
The supervision of Analyser agent is similar.

The Manager agent (Figure 8) is in charge of indicating
to the agent towards which network host it must send the
packet so that it is analyzed. For that, at the reception of
the packet, it sends a message to the Manager agent
which in its turn will answer.

5.3.3. Results Analysis
The principle is the following. On the client machine we
install the Snort client with winPcap to read and sniff the
network. We also install jade and the client part of our
MAS. On the server machine, are installed: Snort server,
JADE and the server part of our MAS. At the start of the
4 modules (snort client and server, MAS client and
server), each instance will operate on the port 1099 as
long as it runs. Thus, WinPcap from the client machine
that is strongly coupled to Snort client will capture traffic
and file on port 1099. The MAS_Client will read this
port to put the paquet in the MAS. The latter will do the
work of redirection to find the most available MAS_Server.

5.2.3. The Analyzor Agent
It is the Analyzor agent which is going to undertake the
packet analysis and to redirect it towards a host in wait-
ing of the packet. For that it has a client which is going to
be connected to the Snort server in waiting of a packet.
The following AUML diagram (Figure 9) is obtained:

5.3. Compilation and Launching of MAMNID

MAMNID is implemented in NETBEANS 6.7 IDE, while
the snort source code is modified with the Microsoft
Visual C++ 6 IDE.

Figure 7. Diagram of Sniffer agent.

T. D. NDIÉ ET AL. 292

Figure 8. Diagram of Manager agent.

Figure 9. Diagram of the Analyzor agent.

The latter will therefore retrieve packet and position it on
port 1099 of the machine. The Snort server listening on
this port retrieves it to analyze. Note that the part value is
customizable; its default value is 5000.

After start of snort (Figure 10), one stops on screens
that inform us about the status of snort client and server

and indicate on which port they are listening (Figures 11
and 12). The representation of the MAS sequences in
JADE (Figure 13) translates the background communi-
cation activity that takes place between the client and the
server. It is noted that the final server behavior will de-
pend on its configuration file i.e., log data for detection

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL. 293

Figure 10. Starting of Snort.

in a file or in a database.

6. Conclusions and Perspectives

The aim of our paper was to propose a mobile agent model
for network intrusions diagnosis (MAMNID). After a
literature review, we saw that the concern of diagnosing
all the data of the network in spite of the response time of
IDS led to the distributed models. Mohammad Eid pro-
posed a system coordinated by a central agent which un-
dertakes the responsibility of diagnosing network data
gathered by distributed probes and relayed to this last by
mobile agents. The limits of this system led us to propose
a more profitable model in terms of response time, load
and availability of the diagnostiquor. Proofs of time-
savings, better availability and better overload manage-

Figure 11. Manager supervision’ interface.

Figure 12. Snifer agent supervision interface.

ment were illustrated compared to the Mohamed’s model
considered in our context as reference model.

As future works, we have the resolution of data trans-
fer problem of information if the case where the number
of diagnostiquors is equal to the number of probes by the

Copyright © 2012 SciRes. JIS

T. D. NDIÉ ET AL.

Copyright © 2012 SciRes. JIS

294

Figure 13. MAS sequences in JADE.

addition of another behavior to the manager and sniffer
which would enable them to stop any transfer as soon as
the number of diagnostiquors is equal to the number of
probes.

REFERENCES
[1] W. Lee and S. Stolfo, “A Framework for Constructing

Features and Models for Intrusion Detection Systems,”
ACM Transactions on Information and Systems Security,
Vol. 3, No. 4, 2000, pp. 227-261.
doi:10.1145/382912.382914

[2] K. Tabia, “Graphical Models and Behavioral Approaches
for Intrusions’ Detection,” Ph.D. Thesis, University of
Artois, Arras, 2008.

[3] M. Eid, “A New Mobile Agent-Based Intrusion Detection
System Using Distributed Sensors,” American University
of Beirut, Department of Electrical and Computer Engi-
neering, Washington DC, 2004.

[4] G. B. Fopak, “MAMDIR: A Mobile Agent Model of Net-

work Incidents Diagnosis,” Master 2 of Research Thesis,
National Advanced of Engineering, Unviersity of Yao-
undé 1, Yaounde, 2011.

[5] J. Ferber, “Multi-Agent Systems. An Introduction to Dis-
tributed Artificial Intelligence,” Addison Wesley, Boston,
1999.

[6] M. Tchikou, “A Multiagents Design Environment for the
Piloting of Production Systems,” Master’s Thesis, Uni-
versity of Pau and Pays de l’Adour, France, 2004.

[7] G. Picard, “Development Methodology of Adaptative
Multi-Agents Systems and Design of Software with
Emerging Functionalities,” Ph.D. Thesis, University Paul
Sabatier of Toulouse III., France, 2004.

[8] J. B. Voron, “Automatic and et Particularized Construc-
tion of Intrusion Detection Systems for Parallel Systems
Based on Petri Networks,” Ph.D. Thesis, University Pi-
erre et Marie Curie, France, 2009.

[9] S. F. Wu, et al., “JiNao: Design and Implementation of a
Scalable Intrusion Detection System for the OSPF Rout-
ing Protocol,” IEEE Workshop on Information Assurance
and Security, West Point, June 2001, pp. 91-99.

[10] W. Emmerich, “Engineering Distributed Objets,” John
Wiley & Sons Ltd., Chichester, 2000.

[11] J. P. Sansonnet, “Parallel Architectures Online Course,”
2011.
www.limsi.fr/~/enseignementtutoriels/archi/archi.html

[12] D. E. Denning, “An Intrusion-Detection Model,” IEEE
Transactions on Software Engineering, Vol. SE-13, No. 2,
1987, pp. 222-232. doi:10.1109/TSE.1987.232894

[13] K. Boudaoud, “Networks Security Management: A New
Approach by Multi-Agents System,” University of de
Geniva, Geniva, 2001.

[14] Percher, et al., “Intrusions Detection in Ad Hoc Net-
work,” West Higher Ectronic School (ESEO), France,
2004.

http://dx.doi.org/10.1145/382912.382914
http://dx.doi.org/10.1109/TSE.1987.232894

