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ABSTRACT 

Rank determination issue is one of the most significant issues in non-negative matrix factorization (NMF) research. 
However, rank determination problem has not received so much emphasis as sparseness regularization problem. Usu-
ally, the rank of base matrix needs to be assumed. In this paper, we propose an unsupervised multi-level non-negative 
matrix factorization model to extract the hidden data structure and seek the rank of base matrix. From machine learning 
point of view, the learning result depends on its prior knowledge. In our unsupervised multi-level model, we construct a 
three-level data structure for non-negative matrix factorization algorithm. Such a construction could apply more prior 
knowledge to the algorithm and obtain a better approximation of real data structure. The final bases selection is 
achieved through L2-norm optimization. We implement our experiment via binary datasets. The results demonstrate that 
our approach is able to retrieve the hidden structure of data, thus determine the correct rank of base matrix. 
 
Keywords: Non-Negative Matrix Factorization; Bayesian Model; Rank Determination; Probabilistic Model 

1. Introduction 

Non-negative matrix factorization (NMF) was proposed 
by Lee and Seung [1] in 1999. NMF has become a 
widely used technique over the past decade in machine 
learning and data mining fields. The most significant 
properties of NMF are non-negative, intuitive and part 
based representative. The specific applications of NMF 
algorithm include image recognition [2], audio and acous-
tic signal processing [3], semantic analysis and content 
surveillance [4]. In NMF, given a non-negative dataset 

M NV R  , the objective is to find two non-negative fac-
tor matrices M KW R  and K NH R 

. . 0, 0V WH s t W H  

 

. Here W is 
called base matrix and H is named feature matrix. In ad-
dition, W and H satisfy 

       (1) 

K is the rank of base matrix and it satisfies the inequality 
K MN M N  . 

For NMF research, the cost function and initialization 
problems of NMF are the main issues for researchers. 
Now the rank determination problem becomes popular. 
The rank of base matrix is indeed an important parameter 
to evaluate the accuracy of structure extraction. On the 
one hand, it reflects the real feature and property of data; 
on the other hand, more accurate learning could help us 
get better understanding and analyzing of data, thus im- 

proving the performance in applications: recognition [5,6] 
surveillance and tracking. The main challenge of rank 
determination problem is that it is pre-defined. Therefore, 
it is hard to know the correct rank of base matrix before 
the updating process of components. As the same as the 
cost function, there are no more priors added to the algo-
rithm in previous methods. That is why the canonical 
NMF method and traditional probabilistic methods (ML, 
MAP) cannot handle the rank determination problem. 
Therefore in this paper, we propose an unsupervised 
multi-level model to automatically seek the correct rank 
of base matrix. Furthermore, we use L2-norm to show the 
contribution of hyper-prior in correct bases learning pro-
cedure. Experimental results on two binary datasets dem-
onstrate that our method is efficient and robust. 

The rest of this paper is organized as follows: Section 
2 provides a brief review of related works. In Section 3, 
we describe our unsupervised multi-level NMF model in 
details. The experimental results of two binary datasets 
are shown in Section 4. Section 5 concludes the paper. 

2. Related Work 

As we mentioned above, rank determination problem is a 
new popular issue in NMF research. Actually, there are 
few literatures discussing this issue. Although the author 
in [7] proposed a method based on sampler selection, it  
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needs to pass through all the possible values of rank of 
base matrix to choose the best one. Obviously, this method 
is not impressive enough for unsupervised learning. In 
[8], the author proposed a rank determination method 
based on automatic relevance determination. In this method, 
a parameter is defined relevant to the columns of W. 
Then using EM algorithm to find a subset, however, this 
subset of bases is not accurate to represent true bases. 
Actually, the nature of this hyper-parameter is to affect 
the updating procedure of base matrix and feature matrix, 
thus affect the components’ distributions.  

The only feasible solution is fully Bayesian models. 
Such kind of methods have been proposed in [9]. In this 
paper, the author addresses an EM based fully Bayesian 
algorithm to discover the rank of base matrix. EM based 
methods are an approximation solution. In comparison, a 
little more accurate solution is Gibbs sampling based 
methods. Such approach is utilized to find the correct 
rank in [10]. Although such kinds of methods are flexible, 
it requires successively calculation of the marginal like-
lihood for each possible value of each rank K. The 
drawback is too much computation cost involved. Addi-
tionally, when such methods are applied to real time ap-
plication or some large scale dataset based applications, 
the high computation load is impractical. Motivated by 
the current condition, we propose a low computation, 
robust multi-level model for NMF to solve rank deter-
mination problem. Our unsupervised model with multi- 
lever priors only calculate once of the rank of base ma-
trix and is able to successfully find the correct rank of 
base matrix given a large enough rank K. Therefore, our 
method involves less computation. This will be discussed 
in details in next section. 

3. Unsupervised Multi-Level Non-Negative 
Matrix Factorization Model 

In our unsupervised multi-level NMF model, we intro-
duce a hyper-prior level. Hence, there are three levels in 
our model: data model, prior model, hyper-prior model. 
The model structure is shown in Figure 1. We will seek  

 

 

Figure 1. Unsupervised multi-level non-negative matrix fac-
torization model. 

the solutions through optimizing the maximum a poste-
rior criterion. Our approach could be depicted by the 
following equation, here c  denotes equality up to a 
constant,   is the prior of both W and H. 

    
   

, , log log

log log

cMAP p p

p p

 

 

 

 

W H V WH W

H
  (2) 

The difference between our approach and the tradi-
tional MAP criterion is that in traditional one there is no 
hyper-prior added to the model. Moreover, in our model 
we attempt to update the hyper-priors recursively, but not 
just set it as a constant. 

3.1. Model Construction 

In NMF algorithm, the updating rules are based on the 
specific data model. Therefore, the first step is to set a 
data model for our problem. Here, in our experiment we 
assume that the data follows Poisson distribution. Con-
sequently, the cost function of our model will be gener-
alized KL-divergence. So given a variable x, which fol-
lows Poisson distribution with parameter  , we have 
   1xp x e x     . Thus, in NMF algorithm, 

given dataset V, we have the likelihood 

     1p e  VWHV WH WH V       (3) 

The generalized KL-divergence is given by: 

     log mn
KL mn mn mnmn

mn

v
D v v wh

wh

  
         

V WH (4) 

Thus, the log-likelihood of the dataset V can be re-
written as: 

 
 

   

log

1 log log 1

KL

mn mn mn
m n

p

D

v v v

 

      

V WH

V WH    (5) 

From (2) and (5) we could conclude that maximizing a 
posterior is equivalent to maximizing the log-likelihood, 
and maximizing the log-likelihood is equivalent to mini-
mizing the KL-divergence. Thus, maximizing a posterior 
is equivalent to minimizing the KL-divergence. Therefore, 
it is possible to find a base matrix W and a feature matrix 
H to approximate the dataset V via maximizing a poste-
rior criterion. 

In data model p V WH  we regard WH as the pa-
rameter of data V. With respect to the base matrix W and 
the feature matrix H, we also introduce a parameter   
as a prior to them. Moreover, we define an independent 
Exponent distribution for each column of W and each 
row of H with prior k  because exponent distribution 
has sharper performance. It is no doubt that we can 
choose other exponential family distributions such as 
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Gaussian distribution, Gamma distribution, etc. There-
fore, the columns of W and rows of H yield: 

  k mkwp w e         mk k k      (6) 

 kn kp h k knh
k e               (7) 

Then the log-likelihood of the priors cou
te

ld be rewrit-
n as: 

   k k mkp w        (8) log log
m k

 W

 log log
k n

 H

Compare to setting 

 k k knp h         (9) 

  as a constant, the diversity of 

k  and recursively upd ting of ka   enable the inference 
ocedure to converge at the stationary point. Through 

calculating the L2-morm of each column of base matrix 
W, we could discover that the data finally emerges to two 
clusters. One cluster contains the points of which the 
L2-norm are much larger than 0, whereas in the other 
cluster the L2-norm values are 0 or almost 0. 

In order to find the best value for k

pr

 , here we intro-
duce hyper-prior for k . Since k  is he parameter of 
Exponent distribution e defin k

 t
e , w   follows Gamma 

distribution which is the conjugate rior for Exponent 
distribution. 

 p

   , exp k kb    (10) 

k k r-priors of k

11

( ) k

a
k k k ka

k

p a b
a b

  

 

Here a  and b  are the hype  . Thus, 
th oe log-l lihood f ike   is given as: 

 
    og k k kb 

(11) 

3.2. Inference 

hment of data model and the deduction 

log p 

log log 1 lk k k k
k

a b a a      

After the establis
of log-likelihood of each prior, we can gain the maxi-
mum a posterior equation: 

 
   

 
 

 

 

   

log 1 log 1

log

log

log log 1 log

mn mn mn
m n

KL k mk k
m k

k kn k
k n

k k k k k k k
k

v v v

D w

h

a b a b a b

 

 



       

   
  

      

, ,MAP



V WH (12) 

Since the first factor in (12) has nothing to do with the 
pri

W H

ors, and we have discussed the relationship between 
the posterior probability and KL-divergence, here we 
minimize the second factor to seek the solutions for this 
criterion. In our paper, we choose gradient decent updat-

ing method as our updating rule. Although multiplicative 
method is simpler, it has no detailed deduction about 
why the approach works. On the contrary, gradient de-
cent updating will give us clear deduction about the 
whole updating procedure. We utilize this method to in-
fer the priors W and H, as well as the hyper-priors   
and b. First we find the gradient of the parameters: 

T Tf
W

    


V H H
WH

        (13) 

T Tf

H


    


VW W

WH
       (14) 

 1 1mk kn k k
m n

k

f
w h b N M a




        


  (15) 

2
k k

k kk

af

b bb


  


             (16) 

Then we utilize gradient coefficient to get rid of the 
subtraction operation during the updating procedure for 
W and H to guarantee the non-negative constrain. The 
parameters k  and kb  are updated by zeroing. 

The updating rules listed as follows: are 

 
mnv

kn
n

mn
mk mk

kn k
n

h
wh

w w
h


 






 
  

         (17) 
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
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
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        (18) 

1

1
k

k
mk kn k

m n

M N a

w h b


  


   
        (19) 



k
k

k

a
b

 



              (20) 

Then we find the correct bases and determine the order 
of the data model by: 

1
R B                 (21) 

where B is defined as 

 2 2
, 0k kw w            (22) 

R is the rank of base matrix. 

4. Experimental Results and Evaluation 

B 

In this section, we apply our unsupervised multi-level 
NMF algorithm on two binary datasets. One is fence 
dataset, and the other is famous swimmer dataset. Both 
of the experiment results demonstrate the efficacy of our 
method on the rank determination issue. 
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4.1. Fence Dataset 

We first performed our experiments on fence dataset. 

f 
ra

Here I defined the data with four row bars (the size is 1 × 
32) and four column bars (the size is 32 × 1). The size of 
each image is 32 × 32 with zero-value background, and 
the value of each pixel in eight bars is one. Each image is 
separated into five parts in both horizontal direction and 
vertical direction. Additionally, in each image the num-
ber of row bars and the number of column bars should be 
the same. For instance, there are two row bars in a sam-
ple image, then there should be two column bars in this 
image. Hence, the total number of the fence dataset is N = 
69. The samples of Fence dataset are shown in Figure 2. 

Here, we set the initial rank K = 16 (the initial value o
nk K needs to be larger than the value of real rank of 

base matrix), the hyper-parameter a = 2, 
 10.05 0.05k K

b


  . Figure 3 shows t
learned via our unsupervised multi- 

level NMF approach, we could see that the data is sparse, 
especially the base matrix. In both images, the color parts 
denote the effective bases or features, and the black parts 
denote irrelevant bases or features there. In addition, 
from image processing perspective, we can conclude that 
compared to the values of effective bases and features, 
the values of irrelevant bases and features are very small, 
since the color of such pixels are very dark. We could 
clearly find that there are eight color column vectors in 
the first image. Additionally, among the eight color vec-
tors, four are composed of several separated color pixels, 
whereas the other four are composed of assembly pixels. 
Actually, the former four vectors are row bars, and the 
latter four vectors are column bars. We resize the dataset 
in columns during factorization procedure. Hence the 
row bars and column bars have different structures. Fur-
thermore, there are also eight rows in the second image, 
which are the corresponding coefficients of the bases. 

 

he base matrix 
ure matrix and feat

 

Figure 2. Sample images of fence dataset. 
 

   

Figure 3. Base matrix W an ature matrix H learned via

how the bases clearly, we draw the bases 
in 

4.2. Swimmer Dataset 

tial rank is set to K = 25, 
th

d fe  
our algorithm. 

In order to s
Figure 4. Since we set the initial rank of base matrix K = 

16, however, only eight images have non-zero values. 
Moreover, the eight images show 4 row bars and 4 col-
umn bars appearing in different positions. The results are 
perfectly consistent to the design of Fence dataset. 
Therefore, we could get the conclusion that our algorithm 
is very powerful and efficient to find the real basic com-
ponents and the correct rank. 

The other dataset we used is the swimmer dataset. 
Swimmer dataset is a typical dataset for feature extrac-
tion. Due to the clearly definition and composition of 16 
dynamic parts, it is quite appropriate to the unique char-
acteristic of NMF algorithm, which is to learn part-based 
data. As we know, however, the swimmer dataset is a 
gray-level image dataset. In our experiment, we focus on 
binary dataset, so first we need to convert this gray-level 
dataset to binary dataset. Then apply our approach to 
perform inference. In this swimmer dataset, there are 256 
images totally, each of which depicts a swimming ges- 
ture using one torso and four dynamic limbs. The size of 
each image is 32 × 32. Each dynamic part could appear 
at four different positions. Figure 5 shows some sample 
images of the swimmer dataset. 

In this experiment part, the ini
e initial values of hyper-parameters are a = 2,  

 10.05 0.05k K
b


  . Figure 6 shows the experiment 

 

 

Figure 4. The bases obtained by our algorithm on fence

 

 
dataset. 

 

Figure 5. Sample images of the swimmer dataset. 
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resul  

ages and the 
co

ts for the swimmer dataset. It could be observed that
as for this dataset, we also could find out the correct 
bases via our algorithm. In this figure there are 25 base 
images. The black ones correspond to irrelevant bases, 
and the other 17 images depict the torso and the limbs at 
each possible position. We can see that the correct torso 
and limbs are discovered successfully. 

The differences between the black im
rrect base images are shown in Figure 7. Figure 7 

depicts L2-norm of each column of the base matrix. The 
total number of points in this figure is the same to the 
initial rank. Obviously, the points are classified into two 
clusters. One is zero-value cluster, and the other is lar-
ger-value cluster. Thus the rank of base matrix in swim-
mer dataset is 

1
17R B  . The results of L2-norm of 

base matrix not ow we could find the correct 
bases, but also tell us how we could determine the correct 
rank of base matrix. 

only tell us h

 

 

Figure 6. The bases of swimmer dataset learned by our al-

 
gorithm. 
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Figure 7. L2-norm of base vectors. 

supervised multi-level non- 

[1] D. D. Lee and he Parts of Objects 

5. Conclu

We have presented an un

sion 

negative matrix factorization algorithm which is power-
ful and efficient to seek the correct rank of a data model. 
This is achieved by introducing a multi-prior structure. 
The experiment results on binary datasets adequately 
demonstrate the efficacy of our algorithm. Compare to 
the fully Bayesian method, it is simpler and more con-
venient. The crucial points of this method are how to 
introduce the hyper-priors and what kind of prior is ap-
propriate to a certain data model. This algorithm also 
could be extended to other data models and noise models. 
Although our experiment is based on binary dataset, this 
algorithm is suitable to other datasets such as gray-level 
dataset, colorful dataset, etc. 
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