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ABSTRACT 

Electrochemical machining (ECM) could be used as one of the best non-traditional machining technique for machining 
electrically conducting, tough and difficult to machine material with appropriate machining parameters combination. 
This paper attempts to establish a comprehensive mathematical model for correlating the interactive and higher-order 
influences of various machining parameters on the predominant machining criteria, i.e. metal removal rate and surface 
roughness through response surface methodology (RSM). The adequacy of the developed mathematical models has also 
been tested by the analysis of variance (ANOVA) test. The process parameters are optimized through Nondominated 
Sorting Genetic Algorithm-II (NSGA-II) approach to maximize metal removal rate and minimize surface roughness. A 
non-dominated solution set has been obtained and reported. 
 
Keywords: Electro Chemical Machining; Metal Removal Rate; Response Surface Methodology; Surface Roughness; 
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1. Introduction 

Electrochemical machining (ECM) is one of the non- 
traditional machining techniques; it can achieve a wanted 
shape of a surface using metal dissolution by electro- 
chemical reaction and can be applied to metals such as 
high-strength, heat-resistant and hardened steel. ECM 
has been used in industry for cutting, deburring, drilling 
and shaping [1]. In ECM electrical current passes be- 
tween the cathode tool and the anode workpiece through 
an electrolyte solution. The workpiece is eroded in a way 
that can be described by Faraday’s law of electrolysis. 
ECM is suitable for the machining of components of 
complex shape and high strength alloys, as typically 
found in the semiconductors industries [2]. Metal Matrix 
Composites (MMC’s) are relatively new class of materi- 
als characterized by lighter weight and greater wear re- 
sistance than those of conventional materials. These ma- 
terials have been considered for use in automobile brake 
rotors and various components in internal combustion 
engines. The machining of MMCs is very difficult due to 
the highly abrasive nature of the reinforcement [3]. Tra- 
ditional edged cutting tool machining processes are un- 
economical for such materials as the attainable degree of 
accuracy and surface finish are quite poor. Machining of 
complex shapes in such materials by traditional processes 
is still more difficult. To meet these demands, ECM pro- 
cesses has now emerged [4]. The present paper, therefore,  

emphasizes features of the development of comprehend- 
sive mathematical models for correlating the interactive 
and higher-order influences of the various machining 
parameters on the most dominant machining criteria, i.e. 
the metal removal rate and surface roughness phenomena, 
for achieving controlled ECM. The investigation into 
controlled ECM has been carried out through response 
surface methodology (RSM), utilizing the relevant ex- 
perimental data as obtained through experimentation. 
The adequacy of thedeveloped mathematical models has 
also been tested by the analysis of variance test. The 
process parameters were optimized using Non-Domi- 
nated Sorting Genetic Algorithm-II (NSGA-II) to maxi- 
mize MRR and minimize Ra. 

2. Experimental Planning 

Experiments were conducted on METATECH ECM 
equipment. The dimensions of the specimens were 30 
mm in diameter and 6 mm in height. The tool was made 
up of copper with a square cross section. Electrolyte was 
axially fed to the cutting zone through a central hole of 
the tool. The electrolyte used for experiment was fresh 
NaCl solution, because of the fact that NaCl electrolyte 
has no passivation effect on the surface of the job. The 
test specimens of LM25 Al/10%SiCp composites were 
produced through stir casting. The machining has been 
carried out for fixed time interval. The observations were 
made by varying predominant process parameters such as *Corresponding author. 
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applied voltage, electrolyte concentration, electrolyte flow 
rate, and tool feed rate. MRR was measured from the 
weight loss. The surface roughness of the machined test 
specimens was measured using a Talysurf tester with a 
sampling length of 10 mm. 

3. Response Surface Methodology 

Response surface methodology (RSM) is the procedure 
for determining the relationship various between process 
parameters with the various machining criteria and ex- 
ploring the effect of these process parameters on the 
coupled responses [5], i.e. the material removal rate and 
surface roughness phenomena. In order to study the ef- 
fects of the ECM parameters on the above-mentioned 
two most important machining criteria, the metal re- 
moval rate (MRR) and surface roughness phenomenon 
(Ra), a second-order polynomial response surface mathe- 
matical model can be developed as follows to evaluate 
the parametric effects on the various machining criteria 

2

1 1

n n n

u o i i ii i ij i j
i i i j

Y a a x a x a x x 
 

      


   (1) 

where Yu is the corresponding response, e.g. the MRR 
and Ra created by the various process variables of ECM 
parameters. ai represents the linear effect of xi, aii repre- 
sents the quadratic effect of xi and aij reveals the lin- 
ear-by-linear interaction between xi and xj. The second 
term under the summation sign of the polynomial equa- 
tion i.e. Equation (1) attributes to linear effects, where as 
the third term of the above equation represents the higher 
order effects and lastly the fourth term of the above equ- 
ation includes the interactive effects of the process pa- 
rameters. In the response surface methodology each vari- 
able is coded in a manner so that the upper level is taken 
as +2 and lower level as −2 for designing the experiment 
and the test observations in an optimized way. The actual 
and coded parametric values for each parameter are listed 
in Table 1. 

A well-designed experimental plan can substantially 
reduce the number of experiments. For determining the 
 
Table 1. Actual and corresponding coded values for each 
parameter. 

Levels 
Parameters 

−2 −1 0 1 2 

Electrolyte concentration, 
X1 (g/lit) 

10 15 20 25 30 

Electrolyte flow rate, 
X2 (lit/min) 

5 6 7 8 9 

Applied voltage,  
X3 (Volts) 

12 13 14 15 16 

Tool feed rate,  
X4 (mm/min) 

0.2 0.4 0.6 0.8 1 

equation of the surface integrity, experimental designs 
have been developed with an attempt to formulate the 
mathematical relations using the smallest number of ex- 
periments possible. Keeping in view of the present re- 
search objectives, response surface methodology has 
been utilized in order to develop the mathematical rela- 
tionship between the response, Yu i.e. MRR and surface 
roughness and the predominant machining parameters 
are electrolyte flow rate, electrolyte concentration, ap- 
plied voltage and tool feed rate according to the experi- 
mental plan based on central composite rotatable second 
order design as shown in Table 2. 
 
Table 2. Different controlling parametric combinations and 
test results. 

Ex.No. X1 X2 X3 X4 
MRR 

(g/min) 
Ra 

(µm) 

1 −1 −1 −1 −1 0.124 10.274 

2 1 −1 −1 −1 0.098 9.952 

3 −1 1 −1 −1 0.245 8.752 

4 1 1 −1 −1 0.278 8.196 

5 −1 −1 1 −1 0.197 8.851 

6 1 −1 1 −1 0.219 8.248 

7 −1 1 1 −1 0.197 9.324 

8 1 1 1 –1 0.342 7.724 

9 −1 −1 −1 1 0.194 9.247 

10 1 −1 −1 1 0.299 9.987 

11 −1 1 −1 1 0.249 7.972 

12 1 1 −1 1 0.389 8.131 

13 −1 −1 1 1 0.482 6.386 

14 1 −1 1 1 0.472 6.265 

15 −1 1 1 1 0.529 6.729 

16 1 1 1 1 0.656 6.583 

17 −2 0 0 0 0.173 10.925 

18 2 0 0 0 0.324 9.647 

19 0 −2 0 0 0.214 8.689 

20 0 2 0 0 0.299 7.854 

21 0 0 −2 0 0.099 9.548 

22 0 0 2 0 0.286 7.136 

23 0 0 0 −2 0.299 9.597 

24 0 0 0 2 0.721 6.845 

25 0 0 0 0 0.227 6.389 

26 0 0 0 0 0.287 6.253 

27 0 0 0 0 0.295 6.054 

28 0 0 0 0 0.245 6.921 

29 0 0 0 0 0.268 6.824 

30 0 0 0 0 0.226 6.354 

31 0 0 0 0 0.289 6.542 
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4. Development of Empirical Models Based 
on RSM 

After knowing the values of the observed response, the 
values of the different regression coefficients of second 
order polynomial mathematical equation i.e. Equation (1) 
have been evaluated and the mathematical models based 
on the response surface methodology have been deve- 
loped by utilizing test results of different responses ob- 
tained through the entire set of experiments by using a 
computer software, MINITAB.14. 

On Equation (1), the effects of various machining 
process variables on MRR and Ra has been evaluated by 
computing the values of different constants of Equation 
(1) utilising the relevant experimental data from Table 2. 
The mathematical relationship for correlating the MRR 
and Ra the considered machining process parameters is 
obtained as follows: 

   
     
     
    
     

1 2

2
3 4 1

2 2 2
2 3 4

1 2 1 3 1 4

2 3 2 4 3 4

2

MRR

1.6538 0.0334 X 0.0417X

0.3976X 5.0188X 0.00008X

0.00002X 0.01602X 1.5837X

0.00442 X X 0.0004 X X 0.01175 X X

– 0.00575 X X 0.015 X X 0.2493 X X ,

R  95.77 %

   

  
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Ra 150.225 0.977X 11.29X

12.74X 7.388X 0.035X

0.367X 0.384X 8.855X

0.0023X X 0.031X X 0.232X X

0.439X X 0.268X X 1.983X X

R = 96.05%

  

  
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
  (3) 

5. Optimization 

To optimize cutting parameters in the machining of 
Al/SiCp composites, a non-dominated sorting genetic 
algorithm was used. The objectives set for the present 
study were as follows: 

1. Maximization of the metal removal rate (MRR) 
2. Minimization of average surface roughness (Ra) 
The two-objective genetic algorithm optimization me- 

thod used is a fast, elitist non-dominated sorting genetic 
algorithm (NSGA-II) developed by Deb [6]. This algo- 
rithm uses the elite-preserving operator, which favors the 
elites of a population by giving them an opportunity to be 
directly carried over to the next generation [7]. The 
NSGA-II is a modified version, which has a better sort- 
ing algorithm, incorporates elitism and does not require 
the choosing of a sharing parameter a priority. The flow 

chart of the NSGA-II is shown in Figure 1. 

5.1. Description of NSGA-II Algorithm 

The steps involved in the solution of optimization prob-
lem using NSGA-II are as follows. 

5.1.1. Population Initialization 
The population is initialized based on the problem range 
and constraints if any. 

5.1.2. Non-Dominated Sort 
The initialized population is sorted based on non-domi- 
nation. The fast sort algorithm is described as below  
- For each individual p in main population P  
- Initialize Sp = 0. This set would contain all the indi-

viduals that is being dominated by p. 
- Initialize np = 0. This would be the number of indi-

viduals that dominate p. 
- For each individual q in P 
- If p dominates q then. add q to the set Sp i.e.  

 Up PS S q  
- Else if q dominates p then increment the domination 

counter for p i.e. np = np + 1 
- If np = 0 i.e. no individuals dominate p then p belongs 

to the first front; Set rank of individual p to one i.e 
Prank = 1. Update the first front set by adding p to 
front one, i.e.,  1 1UF F q  

- This is carried out for all the individuals in main 
population P. 

- Initialize the front counter to one, i = 1 
- The following is carried out while the ith front is non- 

empty i.e. 0iF   
- Q = 0. The set for storing the individuals for (i + 1)th 

front. 
- For each individual p in front Fi 
- For each individual q in Sp (Sp is the set of individuals 

dominated by p) 
- If nq = nq − 1, decrement the domination count for 

individual q. 
- If nq = 0 then none of the individuals in the subse- 

quent fronts would dominate q. 
- Hence set qrank = i + 1. Update the set Q with individ- 

ual q i.e. UQ Q q . 
- Increment the front counter by one. 
- Now the set Q is the next front and hence Fi = Q. 

This algorithm is better than the original NSGA [8] 
since it utilize the information about the set that an indi- 
vidual dominate (Sp) and number of individuals that 
dominate the individual (np). 

5.1.3. Crowding Distance 
Once the non-dominated sort is complete the crowding 
distance is assigned. Since the individuals are selected 
based on rank and crowding distance all the individuals  
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Figure 1. Flow chart of NSGA-II program. 
 
in the population are assigned a crowding distance value. 
Crowding distance is assigned front wise and comparing 
the crowding distance between two individuals in diffe- 
rent front is meaningless (Raghuwanshi et al., 2004). The 
crowing distance is calculated as below 
- For each front Fi, n is the number of individuals.  
- Initialize the distance to be zero for all the individuals 

i.e. Fi(dj) = 0,where j corresponds to the jth individual 
in front Fi. 

- For each objective function m 
- Sort the individuals in front Fi based on objective m 

i.e. I = sort(Fi,m). 
- Assign infinite distance to boundary values for each 

individual in Fi i.e.  1I d    and  nI d    
- For k = 2 to (n – 1) 

       
max min

1 1
k k

m m

I k m I k
I d I d

f f

m    
 


 

- I(k)·m is the value of the mth objective function of the 
kth  individual in I 

- The basic idea behind the crowing distance is finding 
the Euclidian distance between each individual in a 
front based on their m objectives in the m dimen- 
sional hyper space. The individuals in the boundary 
are always selected since they have infinite distance 
assignment. 

5.1.4. Selection 
Once the individuals are sorted based on non-domination 
and with crowding distance assigned, the selection is 
carried out using a crowded-comparison-operator (αn). 

(1) Non-domination rank prank i.e. individuals 

The comparison is carried out as below based on 

in front 
Fi

- rank 
 belong to the same front Fi then Fi(dp) > 

urna- 
m

5.1.5. Genetic Operators. 
ed Binary Crossover (SBX) 

lates the binary cross-
ov

 will have their rank as prank = i. 
(2) Crowding distance Fi(dj) 
p < nq if 
prank < q

- Or if p and q
Fi(dq) i.e. the crowing distance should be more. 

The individuals are selected by using a binary to
ent selection with crowed- comparison-operator. 

Real-coded GA’s use Simulat
operator for crossover and polynomial mutation [8]. 

1) Simulated Binary Crossover. 
Simulated binary crossover simu
er observed in nature and is given as below. 

   1, 1, 2,

1
1 1

2k k k k kc p p        

   2, 1, 2,

1
1 1

2k k k kc p  kp       

th thwhere ci,k is the i  child with k  component, pi,k is the 

 t
selected parent and k (  0) is a sample from a random 
number generated having he density 

   1 1 , if 0 1
2

c
cp        

    2

1 1
1 , if

2 ccp   
  1    

This distribution can be obtained from a uniformly 
sampled random number u between (0,1). c is the dis- 
tribution index for crossover. That is 

     
1

12u u   

 
   

1

1

1

2 1

u

u 





  

 

2) Polynomial Mutation: 
is performed by The polynomial mutation 

 δu lc p p p    k k k k k

where ck is the child and pk is the parent with p u being k

the upper bound on the parent component, l
kp  is the 

lower bound and k is small variation which is calculated 
from a polynomial distribution by using 

 
1

1δ 2 1, if 0.5mk k kr r     

 
1

1δ 1 2 1 , if 0.5mk k kr r        

rk is an uniformly sampled random number bet een (0,1) w
and m  is mutation distribution index. 
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5.1.6. Recombination and Selection 
The offspring population is combined with the current 

erformed to set 

est performance. The parameters are: Prob- 
ab

ariance (ANOVA) and the F-ratio test 
ed to justify the goodness of fit of the 

aining an optimal solution. 
H

points in the pareto solution set. The non- 
do

rresponding objective 
fu

generation population and selection is p
the individuals of the next generation. Since all the pre- 
vious and current best individuals are added in the popu- 
lation, elitism is ensured. Population is now sorted based 
on non-domination. The new generation is filled by each 
front subsequently until the population size exceeds the 
current population size. If by adding all the individuals in 
front Fj the population exceeds N then individuals in 
front Fj are selected based on their crowding distance in 
the descending order until the population size is N. And 
hence the process repeats to generate the subsequent 
generations. 

The control parameters of NSGA–II must be adjusted 
to give the b

ility of gross over Pc = 0.9 with distribution index ηc = 
20, mutation probability Pm = 0.25 and population size Pz 
= 100. It was found that the NSGA-II with those control 
parameters produces better convergence and distribution 
of optimal solutions located along the Pareto optimal 
solutions. The 1000 generations are quite enough to find 
the true optimal solutions. 

6. Discussion 

The analysis of v
have been perform
developed mathematical models. The results of the 
analysis of variance are presented in Table 3. The calcu- 
lated values of F-ratio for the lack of fit are found to be 
lesser than the standard percentage point of F distribution 
for 99% confidence limit is 7.87 for MRR and Ra. Also, 
values of R2 of regression analysis have been calculated 
to test whether data is fitted in the developed model and 
these values show that data for each response are fitted in 
the developed models. The P-value for the model MRR 
and surface roughness is lower than 0.05 (i.e. p= 0.05, or 
95% confidence) indicates that the model is considered 
to be statistically significant. 

A single objective optimization algorithm will nor- 
mally be terminated upon obt

owever, for most of the multi-objective problems, there 
could be a number of optimal solutions .Suitability of 
one solution depends on a number of factors including 
user’s choice and problem environment, and hence find- 
ing the entire set of optimal solutions may be desired. 
Among the Pareto optimal solutions, none of the solu- 
tions is absolutely better than any other solution and 
hence this solution is called as non-dominated solution 
[9]. GAs can find good solutions to linear and nonlinear 
problems by simultaneously exploring multiple regions 
of the solution space and exponentially exploiting prom- 
ising areas through mutation, crossover and selection 
operations. In general, the fittest individuals of any po- 

pulation are more likely to reproduce and survive to the 
next generation, therefore improving successive genera- 
tions. Non dominating Sorting GA (NSGA-II) by Deb 
and Goel (2002) is of the best methods for generating the 
Pareto frontier and is used in this study. The NSGA-II 
algorithm ranks the individuals based on dominance. The 
fast non dominated sorting procedure allows us to find 
the non domination frontiers where individuals of the 
frontier set are not dominated by any solution. The crow- 
ding distance is calculated for each individual of the new 
population. Crowding factor gives the GA the ability to 
distinguish individuals that have the same rank. This 
forces the GA to uniformly cover the frontier rather than 
bunching up at several good points by trying to keep 
population diversity. The comparison operator (<n) is 
used by the GA to sort the population for selection pur-
poses [10]. 

The procedure was repeated ten times to get greater 
number of 

minated solution set obtained over the entire optimiza- 
tion process is shown in Figure 2. 

This shows the formation of the pareto front leading to 
the final set of solutions. The co

nction values and decision variables of this non-domi- 
nated solution set are given in Table 4. The 31 out of 100 
sets were presented since none of the solutions in the 
non-dominated set is absolutely better than any other; 
any one of them is an acceptable solution. The choice of 
one solution over the other depends on the requirement 
of the process engineer. If a better surface finish or a 
higher production rate is required, a suitable combination 
of variables can be selected from Table 4. From the ex- 
perimental results presented in Table 2, the parameters 
listed in the experiment number 25 leads to minimum Ra 
of 5.021 µm and the corresponding MRR of 0.358 
gm/min, where the electrolyte concentration, electrolyte 
 

 

Figure 2. Optimal chart obtained through NSGA-II for com- 
posite Al/10%SiCp composite using NaCl. 
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t results for the developed models. 

p-value 

 
Table 3. Analysis of variance tes

Sum of squares Mean sum of squares F-value 
Source D.f 

 MRR Ra MRR Ra MRR Ra MRR Ra

Linear 4 0.4 73 10.6 68 0.000 000 168 25.7 0.0175 2.4213  15.  0.

Square 4 7.  6  4  0  

In  

L t 

0.1314 1034 0.0328 .8048 19.88 4.07 0.000 .000

teraction 6 0.0505 2.4704 0.0084 1.1839 5.10 7.67 0.004 0.001 

ack of fi 10 0.0211 1.8967 0.0021 0.1896 2.4 1.98   

Error 6 0.0052 0.5737 0.0008 0.0956     

Total 30 0.6253 62.566       

 
Table ptim inatio arameters for ECM  Al/10%Si  composite using NaCl. 

Sl No. m) 

 4. O al comb ns of p of Cp

X1 X2 X3 X4 MRR (g/min) Ra (µ

1 10 6.589 5 16 1.0 0.248 

2 10 5 16 1.0 0.240 6.624 

3 21 5 16 1.0 1.178 4.733 

4 18 5 15 0.9 0.312 6.333 

5 13 5 15 1.0 0.517 5.670 

6 18 5 15 1.0 1.041 4.805 

7 16 5 15 1.0 0.831 5.020 

8 15 5 15 1.0 0.764 5.131 

9 14 5 15 0.9 0.592 5.478 

10 15 5 15 1.0 0.751 5.152 

11 11 5 15 0.9 0.391 6.052 

12 19 5 15 1.0 1.070 4.785 

13 17 5 15 1.0 0.916 4.918 

14 16 5 15 1.0 0.786 5.093 

15 12 5 15 1.0 0.439 5.897 

16 16 5 15 1.0 0.822 5.047 

17 13 5 15 1.0 0.553 5.576 

18 16 5 15 1.0 0.865 4.979 

19 10 5 16 1.0 0.270 6.498 

20 15 5 15 1.0 0.732 5.187 

21 10 5 16 1.0 0.290 6.420 

22 13 5 16 1.0 0.568 5.537 

23 14 5 15 0.9 0.618 5.418 

24 11 5 16 0.9 0.379 6.092 

25 13 5 15 1.0 0.578 5.512 

26 12 5 15 1.0 0.421 5.955 

27 14 5 15 1.0 0.678 5.292 

28 15 5 15 0.9 0.578 5.512 

29 19 5 15 1.0 1.143 4.749 

30 11 5 15 1.0 0.719 5.152 

31 18 5 16 1.0 0.998 4.838 
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Table 5. lidation tes ults for Al/1 SiCp composite NaCl. 

R (gm/min) Ra (µm

 Va t res 0%  using 

MR ) 
# 

yte 
concentration, 

gm/lit 

ectrolyte 
flow rate, 
Lit/

plied 
Tool feed 

rate,  
ed Actual %Error

Electrol El

min 
voltage, Volts 

mm/min Predicted Actual %Error Predict

Ap

1 16 15 0.831 0.810 2 5.020 5.131 3 5 1.0 

 
flow rate, d volt  t a /li
7 lit/min, 1 lts and 0 min pectively. By op- 

mizing using NSGA-II, the Ra value is very close to the 

etween these performances. From
th

imized by
ted sorting genetic algorithm (NSGA 

inated solution set is obtained. The 

RR  ha   us ul - 
ve o ation thod, omin sortin ge- 

netic algorithm-II. A pareto-optimal set of 100 solutions 

in an Air-Lubricated Hydrodynamic Bearing,” 
International Journal of Advanced Manufacturing Tech- 
nology, Vol. 2 726.  
doi:10.1007/s0

applie age and ool feed rate re 20 gm t, M
4 vo .6 mm/  res

ti
experimental value has been selected from the Table 4, 
trail no: 7. The Ra value is 5.020 µm and the corre- 
sponding MRR is 0.831 gm/min and the pertinent pa- 
rameters are electrolyte concentration, electrolyte flow 
rate, applied voltage and tool feed rate are MRR is 0.831 
gm/min and the pertinent parameters are electrolyte con- 
centration, electrolyte flow rate, applied voltage and tool 
feed rate are 16 gm/lit, 5 lit/min, 15 volts and 1.0 
mm/min respectively. This indicates that values obtained 
from the NSGA-II optimization technique are in close 
agreement with the experimental values and more or less 
the same parameter settings. In this study, after deter- 
mining the optimum conditions and predicting the re- 
sponse under these conditions, a new experiment was 
designed and conducted with the optimum values of the 
machining parameters. Verification of the test results at 
the selected optimum conditions for MRR and Ra are 
shown in Table 5.  

The predicted machining performance was compared 
with the actual machining performance and a good agree- 
ment was obtained b  

e analysis of Table 5, it can be observed that the cal- 
culated error is small. The error between experimental 
and predicted values for MRR and Ra lie within 2% and 
3%, respectively. Obviously, this confirms excellent re- 
producibility of the experimental conclusions. 

7. Conclusion 

The ECM process parameters have been opt  
using non domina
II), and a non dom
second order polynomial models developed for MRR and 
Ra have been used for optimization. The choice of one 
solution over the other depends on the process the engi- 
neer. If the requirement is a better Ra or higher MRR, a 
suitable combination of variables can be selected. Opti- 
mized value obtained through NSGA-II, is 5.020 µm and 
the corresponding MRR is 0.831 gm/min and the perti- 
nent parameters are electrolyte concentration, electrolyte 
flow rate, applied voltage and tool feed rate are 16 gm/lit, 
5 lit/min, 15 volts and 1.0 mm/min respectively. Optimi- 
zation will help to increase production rate considerably 
by reducing machining time. The objectives such as 

is obtained. 
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