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ABSTRACT 

Mathematics is the basis of all science for the simple fact that it allows us to measure, counting in its basic sense is 
measuring. Mathematics is most useful when it is accurate. When we look at the concept of infinity we get new insights 
into mathematics and how it can be more accurate. This paper endeavors to show that understanding infinity will lead 
scientists, including economists to take into consideration another classification of variables over and above the tradi-
tional classification of continuous and discrete variables. This classification is the dimension of the variable. This prob-
lem would never have come to light if knowledge was not given a unit, the knowl, giving anything a unit allows it to be 
studied in a scientific manner. One finds that knowledge behaves as if it is a three dimensional variable and at other 
times as if it has infinite dimensions, and the mathematics has to be modified to deal with knowledge as it behaves dif-
ferently. The reasons are explained hopefully fully in this paper to be grasped and understood. This paper is a follow up 
to a research note published in International Advances in Economic Research, titled “The Concept of the mathematical 
Infinity and Economics”. 
 
Keywords: Variable; Dimension of Variable; Derivative of Three Dimensional Variable; Continuous/Discrete Variable; 

Trans Dimensional Mathematics; Marginal Analysis 

1. Is It Obvious 

[1] “On a drizzly afternoon in 1886, Camille Jordan en- 
tered a small building behind the Pantheon in Paris to 
deliver a lecture to his mathematics class at the Ecole 
Polytechnique … He intended to prove a theorem by a 
means of a statement that he had always thought obvi- 
ously true, so he casually relayed it to the class. A vigi- 
lant student, seated in the last row, politely interrupted 
the great professor to ask for more evidence or a proof of 
what was claimed to be ‘obvious’. Professor Jordan 
scratched his head, stroked his beard, and rapidly 
blinked his eyes as he nervously removed his wire 
rimmed glasses from one ear at a time and thought about 
how he would convince the class that the simple state- 
ment he had made was, indeed, true. After pondering the 
statement more carefully for several minutes without 
saying a word, he concluded that perhaps it was not so 
obvious.” (Mazur) 

We will find in this paper that what is obvious needs 
logical and philosophical arguments, though the truth can 
be considered obvious. Further quoting from Joseph 
Mazur [1], “Jordan initially thought his statement was 
obvious. What could that mean? I suppose he thought it 
required no thought or consideration for the mind to ac- 
cept it. Perhaps he initially thought it hard not to easily 
sense its truth. To him, its truth was clear and apparent, 

as if he could sense it with his own eyes. But even truths 
that are seen through the eyes can be called into question. 
When Galileo discovered four new moons orbiting Jupi- 
ter, he was admonished because he had observed them 
through a telescope and had not deduced them from 
logical arguments. Here is a case in which someone is 
seeing the moons of Jupiter and is told what he is seeing 
cannot be true because logical argument is better than 
direct observation.” 

In a manner of speaking humans do not want their 
truths challenged and find any excuse for the status quo. 
What do numbers represent, what is the basis of numbers? 
Numbers are the basis of counting, without numbers we 
cannot count. A number according to the dictionary is a 
“word or symbol, or a combination of words or symbols, 
used in counting or in noting a total.” We need to be 
clear what counting is, the dictionary defines counting as, 
“to check over (the separate units or groups of a collec- 
tion) one by one to determine the total number; add up; 
enumerate: He counted his tickets and found he had ten.” 
Therefore a number is a word or symbol used for count- 
ing, and counting is done in order to determine a total 
number. 

Numbers are the basis of counting, counting that is 
done in order to determine a total number, meaning that 
counting is the basis of measuring. It follows that we 
cannot measure without counting and we cannot count 
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without numbers. Being able to count, 2 cups, 3 baskets, 
6 antelope, we are basically measuring. Every culture, 
humans to survive need a basic pattern to recognize a 
way to measure, two moons ago, my stomach is full be- 
cause I ate so much of an antelope. Then a human be- 
cause they can measure will understand portions, not the 
whole leg, but if you divide that leg into 5 equal parts, 
one of those parts will fill me up. From counting we can 
understand portions, very important because how else 
would humans share and reward each other. A portion is 
a measurement. 

Measurement is the basis of scientific thought, so 
much iron plus so much titanium and the alloy will be so 
strong, GNP is equal to so much is basically a tally, 
counting, what others think as more sophisticated meth- 
ods of counting, but counting nonetheless. Counting is 
counting be one using fingers or fancy notation. One 
sitting in an air conditioned office in downtown Manhat- 
tan counting billions of dollars in revenue is no different 
from a Babylonian merchant, or Mwenemutapa merchant 
in ancient times counting his revenue, or a Cavemen 
counting an antelope herd, they are all taking a tally, it is 
just counting. 

Given that numbers arose from our need to measure, 
once they existed they existed. It is when people settled 
down that they had time to do something more with 
numbers. Quoting from Dirk Struik [2], “little progress 
was made in understanding numerical value and space 
relations until the transition occurred from the mere 
gathering of food to its actual production, from hunting 
and fishing to agriculture … Fisherman and hunters 
were in large part replaced by primitive farmers. Such 
farmers remaining in one place as long as the soil was 
fertile, began to build more permanent dwellings …” 
This is not a paper on mathematical history, but hope-
fully one understands that with settlements people had 
time to look more carefully at the numbers and find rela-
tionships between numbers, multiplication instead of 
addition, then division, things that nomads would not 
have for example found the time for. 

With more understanding of relationships the notation 
could become more abstract, but was accepted as long as 
it was logically sound. Take the relationship a + b = c. It 
is just a relationship and breaks no laws of logic or 
mathematics. a and b can be any numbers, and their sum 
is equal to c. But though very abstract, the relationship 
still represents just counting, one is tallying a and b. 

All mathematical relationships essentially, in one way 
or another, represent measuring, r2 = A is the area of a 
circle, this is a relationship between  and r, where  is pi, 
r is the radius of the circle and A is the area of the circle. 
R, the radius of the circle, is not limited, it can be 1 cm or 
1 billion km, but we can get to the area because we un- 
derstand the relationship that determines the area of a 

circle. It is here for example that we enter into the di-
lemma of infinity. The area of a circle is being used here 
because it is assumed that anybody capable of reading 
and deciphering this paper was taught this relationship in 
their early teenage years. But first let us make sure we 
understand the concept of infinity in the mathematical 
sense. 

2. Cantor’s Logic 

[3] “It was Georg Cantor, a Russian-German mathema- 
tician, who resolved these seeming paradoxes that cir 
cled the notion of infinity. It was a brilliant piece of work. 
He defined infinity through infinite collections. Such col 
lections were characterized by the fact that you could 
subtract a finite number of elements from them without 
changing the size of the collection. You could even sub- 
tract an infinite number …” (Kaplan) 

Cantor’s logic was unique and correct, this paper does 
not seek in any manner to even suggest Cantor was 
wrong, he was right. The paper merely seeks to make 
clear the application of Cantor’s logic in the practical 
rather than in the abstract where Cantor’s logic remains. 
Cantor’s logic is great even today [3], “This proof—as 
simple and subtle as all great art—throws open the gates 
to what Hilbert called Cantor’s paradise.” (Kaplan). 
Being simple it is easy to understand. 

The application of Cantor’s logic outside the abstract 
can be found in Cantor’s thought and how he saw the 
world, in particular how the concepts of the continuum 
was looked at. [4] “Basic to the progress of all science, 
he felt was an acceptable concept of continuity. It’s na- 
ture and properties had always stimulated passionate 
controversy and great differences of opinion, though he 
was certain that the roots of were east to identify. Un- 
derlying the concept of the continuum, different features 
had always been stresses, but no exact or complete defi- 
nition had ever been given. He assigned original blame 
to the Greeks, who had been the first to study the prob- 
lem but in such ambiguous terms that myriad interpreta- 
tions were left open to later doxographers and commen- 
tators. For example, Cantor believed that Aristotle and 
Epicurus represented polar opposites on the subject of 
the continuum and its consistency. On the one hand, Ar- 
istotle and his followers believed in a continuum com- 
posed of parts which were divisible without limit. Epicu- 
rus by contrast, developed the atomist position and re- 
garded the continuum as somehow synthesized from atom 
which were imagined as finite entities.” (Dauben) 

Cantor did not agree with those who wanted a middle 
ground between the two, though at the end though Cantor 
would have been loath to agree, Cantor ultimately was 
closer to Aristotle than he was to Epicurus, though ulti- 
mately he agreed with neither. He for example did not 
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agree with Aristotle’s viewpoint that infinite numbers 
could “annihilate” finite numbers. 

 

Cantor’s proof is widely accepted, but there are always 
those dissenters though few in number who do not agree 
with Cantor’s proof. [5] “Mathematicians feel that 
mathematical existence is established only when one of 
the objects whose existence is in question is actually 
constructed and exhibited. The above proof does not es- 
tablish the existence of transcendental numbers by pro- 
ducing a specific example off such a number.” (Eves). 
Transcendental numbers are non algebraic numbers. 
Though Cantor did not come up with such a number his 
theory was proved in a logical and systematic manner. 
To understand Cantor’s logic it would be wise to read the 
book by the Kaplan couple entitled, “The art of the Infi- 
nite.” 

3. Is Infinity Practical Outside Pure  
Mathematics 

Cantor might have came out with an acceptable proof of 
infinity, one should read Chapter nine of the book, “The 
Art of the Infinite”. At the beginning of the Chapter the 
authors quote Galileo, [3] “In 1638 Galileo argued that 
“equal”, “greater”, and “less” can’t apply to infinite 
quantities because a line segment contains an infinity of 
points, so a longer line segment would have to contain 
more than that infinity, which is impossible.” Cantor 
would disprove this line of thinking by using set theory, 
sets of infinity within infinity, but infinity posses huge 
dilemma’s outside pure mathematics that Galileo perhaps 
was possibly anticipating, maybe often, equal, greater 
and less cannot apply to ‘infinite’ quantities. 

A twelve year old or even a six year old with reason- 
able mathematical abilities understands that numbers go 
on forever and any number followed by a decimal also 
goes on for ever, for example we can have 
0.134. ···9···n··· just as numbers run from 1, 2, 3 ··· n···, 
n being a very large number. Technically speaking, a 
radius of a circle can for example be 1 m, 1.5 m, 1.5333 
m, 1.533336777···m depending on the accuracy of our 
measuring instruments, what is important is that it is pos- 
sible. Therefore r follows the logic established by Cantor, 
r can be divided into infinite parts after the decimal for 
example. The radius say it falls between 1 and 2 m or cm, 
it can be for exams 1.5 cm or 1.59 cm or 1.599···cm, this 
cannot be debatable. 

Throwing a stone in the air, it will return to the ground. 
[6] We can for example with proper instruments know 
how far the stone is from the ground as illustrated in 
Figure intro. 

Does the concept of infinity hold in the example of the 
stone, say the stone is of the ground for n seconds. The 
stone after all cannot logically be of the ground for ever,  

 
0                              n 

Time 

Figure intro: Throwing stone from ground. 
 
there is the force of gravity therefore n, the number of 
seconds that the stone is off the ground cannot be forever 
whilst the radius of a circle can logically be infinitely 
large or at the least as big as the universe, a stone how- 
ever will normally come down in a matter of seconds, 
therefore logically speaking n cannot be infinitely large. 
Let us say that n is 4 seconds, therefore at anytime be- 
tween 0 and 4 seconds the stone is off the ground and in 
motion. It follows that at 3 seconds the stone is still in 
motion even at 3.9 seconds or 3.999, 3.99999, or 
3.999··· seconds the stone is still in motion. It follows 
that Cantor’s logic holds with the stone been thrown in 
the air. The stone is in constant motion until it hits the 
ground after n seconds, however each second that it is in 
the air can be split into as many parts as instrumentation 
allows us to measure, at 2.5 seconds the stone is off the 
ground, at 2.51 seconds the stone is of the ground, at 
2.511, 2.5111, 2.51111... seconds the stone is still of the 
ground and seconds logically can be split into infinite 
parts. Time is truly a continuous phenomenon and like 
distance can be broken into infinite parts. It is the quality 
of the continuous that allowed calculus to be discovered. 
Reading Dewdney’s book “A Mathematical Mystery 
Tour”, one will understand the logic of how Leibniz dis-
covered calculus. Some claim Newton discovered calcu-
lus but hid it for twenty years, but that is for Newton’s 
defenders, why hide your work and when somebody else 
publishes their work claim to already know that. When 
Leibniz discovered calculus he could do so because of 
the nature of the continuous. 

By seeing how far the stone is off the ground, with 
calculus we can see the rate of change, that is to say the 
velocity of the stone in this case. It works perfectly be- 
cause time follows Cantor’s logic and can be divided into 
infinite parts. Therefore at 2.2 seconds we can know the 
rate of change of the stone, to be more specific the veloc- 
ity as well as at 2.22 or 2.2267788 seconds we can know 
the rate of change of the stone because of the nature of 
time 2.2267788 seconds does exist logically and practi- 
cally. In fact differential calculus is very important in 
today’s world. [7] “The new calculus came to be applied 
to just about every conceivable type of motion or change 
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in the physical world. Often mathematicians or physicists 
would begin with an equation that involved differentials, 
moving by integration to an actual formula of position, ... 
Such equations called “differential equations”, have 
dominated physics ever since. They appear in Schrod- 
inger’s equation of the hydrogen atom and in Einstein’s 
theory of general relativity.” (Dewdney) 

The “new calculus” came to be applied to just about 
every conceivable type of motion or change because the 
changes being measured were/are seemingly instantane- 
ous, this seemingly instantaneous change is supported by 
and itself supports Cantor’s assertions on the concepts of 
the mathematical infinity. A stone thrown in the air and 
in 4 seconds hits the ground again it will be in motion in 
2 seconds, it will be in motion in and at all parts between 
2 and 3 seconds, because seconds can be broken into 
infinite parts. This seemingly instantaneous change de- 
pends on a large part on the unit. 

4. The Unit 

Cantor’s abstract conceptualization of the infinite seem- 
ingly defended the non abstract concept of a stone 
thrown into the air. Truly understanding the abstract con- 
cept laid down by Cantor is itself stretching the imagina- 
tion, but often it is easily applied in the real world. That 
between 0 and 1 there are infinite numbers as well be- 
tween 0 and 0.1. Between each real number there is a set 
of infinite sets, countless, but can this affirmation always 
be applied in the real world. 

Take a piece of wood say 10 cm wide, 10 cm high, and 
3 meters long. It is cut into two pieces, each piece 10 cm 
wide, 10 cm high but different lengths. One is 2 meters 
long the others is 1 meter long. Using Cantor’s abstract 
conceptualization that say there are infinite parts between 
0 and 1, 0 and 2, and, 0 and 3, infinity is everywhere in 
Cantor’s abstract, seemingly true with the variables such 
as time and distance but can it be true when we cut the 
two wood blocks above that have same height, and width 
but different lengths. Wood is basically made up of mo- 
lecules. It follows that the larger block of wood has more 
molecules than the smaller block of wood, though the 
molecules are similar since the two blocks where origi- 
nally one block that was cut into two blocks of varying 
sizes. The larger block has to have more molecules and 
they have to be a finite number, therefore Cantor’s ab- 
stract conceptualizations do not hold in this case. You 
can not break the molecules into infinite parts, once the 
molecules are broken it is no longer wood. 

The illustration above regarding wood does not follow 
Cantor’s mathematical abstraction of infinity in two very 
specific ways: 

1) With the wood the larger block has more parts, (the 
basic part being a molecule), than the smaller block; 

2) Both blocks being built by molecules have finite 
parts that they can be broken down to. 

The logic that there are infinite parts breaks down in 
the reality where molecules of wood are concerned for 
example. 

5. Why Cantor’s Mathematical Infinity  
Often Fails in the Material 

Why Cantor’s abstraction often fails is because of the 
nature of the material, for this it will be easier understand 
if we go and understand an acceptable scientific theory 
concerning the beginnings of the universe, we must go to 
the “Big Bang” theory. “The Big Bang theory is an effort 
to explain what happened at the very beginning of our 
universe. Discoveries in astronomy and physics have 
shown beyond a reasonable doubt that our universe did in 
fact have a beginning. Prior to that moment there was 
nothing; during and after that moment there was some- 
thing: our universe [8] ... According to the standard the- 
ory, our universe sprang into existence as ‘singularity’ 
around 13.7 billion years ago ... The pressure is thought 
to be so intense that finite matter is actually squished into 
infinite density.” (All About Science). The usually cliché 
is that the universe started as a small dot, what is impor- 
tant is the matter was finite contained in that small dot. 
There is so much matter in the universe, the matter might 
be transformed but it remains finite. One of the first real 
lessons one learns in science is that energy cannot be 
destroyed only transformed, you cannot increase the 
amount of energy in the universe, because it is finite, all 
those many billions of years ago contained in a small 
“dot”. 

Assuming all the energy in the universe amounted to N, 
you therefore cannot have more than or less than N 
amounts of energy. However one can count to N + 1, or 
N + 100, but N + 1 and N + 100 are just abstractions, the 
universe cannot have that amount of energy, there is a 
limit, just as a piece of wood is limited into how much it 
can be broken down, one will end up smashing mole- 
cules and atoms and getting completely different materi- 
als. 

The universe might be expanding but it has finite en- 
ergy and therefore how much matter it can contain and 
matter cannot always be broken into infinite parts. Num- 
bers were invented by human beings to aide counting and 
measuring, that we can find relationships in numbers 
aides in the measuring process. But because of nature 
itself we cannot apply the same logic to every variable in 
those relationships. Some variables will follow the logic 
of the infinite as expressed in mathematics and devel- 
oped by Cantor, variables like time, some will not, vari- 
ables like wood. 

Independent variables that follow Cantor’s obvious 
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logic, that is to say can be broken into infinite parts such 
as time, distance, been able to be broken into infinite 
parts can have change that is seemingly instantaneous in 
say differential calculus. Change from 3 seconds to 4 
seconds for example is meaningless, because there is 
something occurring at 3.5 seconds, 3.6 seconds, 3.9 
seconds, 3.99... seconds, the rate of change because of 
the nature of an independent variable such as time can be 
measured at exactly or near exactly 4 seconds. 

What however is the rate of change say not if the in- 
dependent variable is not so divisible, that is to say can- 
not be broken into infinite parts like time, or distance, 
what if the independent variable is addition of atoms of a 
certain element adding them from 3 to 4. We cannot have 
3.99... atoms, or 3.5 atoms it is illogical, Cantor’s logic 
cannot hold, the instantaneous change has a different 
meaning, in the case of the atom because it is an indivisi- 
ble variable, the instantaneous change is the resultant 
change from 3 atoms to 4 atoms. 

In economics a major variable is labor, add so much 
labor and output increases by so much for example. La- 
bor is not like time or liters that can be broken into infi- 
nite parts, a human is just that a human, we cannot have 
half a laborer, a laborer cannot be broken into parts let 
alone infinite parts. How then can the formulae/differen- 
tial calculus for rate of change for labor output where the 
variable labor cannot be broken into infinite parts, be the 
same as when time is the independent variable, whilst 
time can be broken into infinite parts, it should be obvi- 
ous that the differential calculus needs to be modified. 
The calculus invented by Gottfried Wilhelm Leibniz 
needs to be modified to deal with variables that cannot be 
broken into infinite parts. If the variable can be broken 
into infinite parts like time, there is without doubt no 
need to modify Leibniz’s work. It is mandatory to make 
these changes otherwise independent variables be they be 
able to be broken into infinite parts or not are being 
treated the same, that is misguided logic. 

Before moving further let us go back to the indivisible 
atom and indivisible laborer. Now there are people who 
will talk of atoms been divided and broken up, the atom 
bomb and nuclear power stations being the great exam- 
ples, however when atoms are broken up they become 
different elements, in theory if one for example had a 
way to add or subtract protons, neutrons and electrons 
they could literally create water from uranium, gold from 
lead, but adding or subtracting protons, neutrons, and 
electrons creates a different isotope or element. 

Returning to the indivisible laborer and atom, the cal- 
culus discovered by Leibniz has shortcomings if such 
variables were independent variables, however that can- 
not be true if they are dependent variables. If time is an 
independent variable for example and labor a dependent 
variable, the calculus of Leibniz must hold, because it 

will show a change at that particular moment. It is not 
illogical for example to say labor growth is predicted to 
grow at 1.5 laborers per day. True it is impossible to have 
0.5 of a laborer, but one can understand that every 2 days 
3 laborers are hired as the economy grows. It is the na- 
ture of the independent variable that is crucial in our de- 
bate. It is because a growth of 1.5 laborers per day on 
average is understandable, but what 1.5 laborers can 
produce is utter nonsense in the real material sense, the 
world, universe we exist in. 

Clearly there are different classes of the continuity, a 
mathematical expression or equation can represent two 
classes of the continuity depending on the quality of the 
independent variable. Take an equation like Y = X2, it is 
obviously continuous, for any number X no matter how 
large there is a Y value. However, if X represents a vari- 
able that can be divided like time and distance, it behaves 
very different to say if X represents labor or atoms, we 
shall discuss this further towards the end of the paper. 

6. The Rate of Change with Indivisible 
Variables: The Khumalo Derivative 

The equation Y = Xn illustrates a number relation, for 
every X, Y increases to the power of n of X. The deriva- 
tive of this equation, Y = nXn–1, is itself a number rela-
tion and no more. It is a number relation that tells us the 
rate of change for Y for every value of X of the original 
equation, Y = Xn. But we know that there are different 
classes of the continuous, the instantaneous change has 
different qualities, whilst some instantaneous changes are 
there at the moment say at 4 because of the nature of the 
continuous, it is not true for all, because we cannot have 
for example half a human being representing labor. 

The Khumalo derivative is the modification of the 
Leibniz derivative, at this stage, strictly concerning itself 
with polynomials. It is a modification concerning the 
derivative when the independent variable cannot follow 
Cantor’s logic like labor, labor cannot be broken into 
infinite parts, it is strictly a whole unit. A variable like 
labor can only be counted as natural numbers, whilst a 
variable like time can be split into infinite parts, and with 
a variable like time that can be split I to infinite parts, the 
Leibniz derivative needs no modification. 

Therefore in the original paper where the Khumalo de- 
rivative appeared entitled [6] “Revisiting the Rate of 
Change”, the author, though the mathematics was correct, 
was wrong to say in his conclusion that, “it is more pru- 
dent to use  f Xk , it is correct”, where  f Xk  is the 
Khumalo derivative. Evidently with greater insight, 
 f Xk  can only be used when the independent variable 

is indivisible at it’s basic unit like labor, an atom, mole- 
cules, and in many instances capital. What is half a ma- 
chine, let us say somebody owned a laundry business, 
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what is half of a washing machine, it is then illogical to 
use the traditional derivative as discovered by Leibniz, 
the traditional derivative in symbolic form dy/dx or 

. Notation after all is a way for all to understand, 
one fixated with correct notation form is not likely to be 
a true scientist, will not discover laws of the material, 
that is more important than being fixated on correct nota- 
tion, comma’s, and semi colons, it does not make sense. 

 f X

 n 1f X R 
 f X

 f X

 f X

This paper was not written in order to lay out the 
Khumalo derivative, that paper has already been written, 
this paper is written in order for us to appreciate the con- 
cept of infinity and its limitations in science, the material 
world outside abstractions, especially in this context in 
economics. The Khumalo derivative is merely a modifi- 
cation of the Leibniz derivative calculus, merely to cor- 
rect for indivisible independent variables, units. The Khu- 
malo derivative is left as a number series but need not be 
so, as one will understand on further reading. 

For example, we know from the paper [9] “Revisiting 
the Rate of Change”, that the Khumalo derivative 

k  to compensate for an in- 
dependent variable being indivisible.  being the 
traditional derivative. One truly gets different results. We 
can pick up any book on calculus to illustrate the point. 

   kf X =f X 

Take the function f(X) = X3 – 4X2 + 3X + 7. Let us say 
that X represents time and f(X) an increasing phenome-
non over time. What is the rate of change say at 5. Time 
can be divisible into infinite parts, it follows and is 
backed by Cantor’s view of the infinite, of the continu-
ous. The rate of change at 5 can be viewed as happening 
at 5, the traditional view as expressed by Leibniz, the 
only way to solve this is of course using the traditional 
derivative, . It follows that the relationship of 
numbers defining the rate of change, that is to be more 
scientific like, the derivative is  = 3X2 − 8X + 3. 
What is the rate of change at 5 seconds, it is  f 5  = 
3(5)2 – 8(5) + 3 = 38. 

On the other hand, what if the function f(X) = X3 – 
4X2 + 3 X + 7, was changed so the X represented labor 
and f(X) output in some production. What is the change 
of output at 5. Labor cannot be broken into infinite parts, 
the change logically can only be from 4 - 5. We have to 
use the Khumalo derivative. . From reading “Re-
visiting the Rate of Change”, we know that for the above 
function,  is: 

 f X

kf 


X

  2
k

2

f X  = 3X 3X + 1

= 3X 11X + 8 = 

    


8X 4  + 3

28.



 kf X
 f X

 

This is because: 
 of X3 = 3X2 – 3X + 1 

k

The properties of labor and time are different, the dif-
ferentiation cannot be the same, hopefully one can ap-
preciate these differences, the rest of the acceptance is 

not scientific but ideological and this paper is not dealing 
with that. 

 of 4X2 = 4[2X – 1] = 8X – 4 

7. Understanding the Continuous,  
Understanding Classes of the Continuous 

Looking carefully at the khumalo derivative, kd, we no-
tice it is a complex way of showing a simple logic, it is a 
relationships of number, and should be left as it is [9]. 
However, we will now try to explain the continuous fur- 
ther so that we understand that what the expression for 
the rate of change for one continuous variable cannot be 
the same as another, we have clearly identified two types 
of independent variables, ones that can be broken into 
infinite parts and others that just cannot as it will be 
meaningless. Logic must still apply in our analysis of 
variables. 

Take Figure 1, of Y = X2. It is obvious that Y = X2 is 
a continuous function, it goes on forever, when X = ∞, 
then Y = ∞2, if ∞2 can exist or mean anything. The idea 
is that we understand that Y = X2 is a continuous func-
tion by any standard of the word continuous. Figure 1, 
just goes up to X = 3 because that is all we need for the 
purposes of these demonstration. When X = 3, obviously 
Y = 9. Figure 2 shows the same function, Y = X2, but it 
allows us to see only what is happening between X = 2, 
and 3. We have not yet defined X, X and Y can be any 
variables, obviously X being the independent variable. 
What happens when we define X and Y? 

Let X represent time and Y change in some phenome-
non due to increasing time. Let us say X represents time 
in seconds, it could be hours or days, the properties of 
time will not change. This is represented by Figure 3. 
We can know what is happening at 2.5 seconds, s.s5 
seconds or even at 2.9 seconds. We merely look at cal-
culus and we know the derivative for Y = X2 is Y = 2X. 
At 2.25 the rate of change of the phenomenon that 
changes over time is 2(2.25) = 4.5, and at 2.9 it is 2 
 

Y

 X

Figure 1. Y = X2. 
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(2.9) = 5.8. That is the rate of change, the speed so to say. 
What if X represented labor as in Figure 4? 

We really do have a problem in logic, we cannot have 
2.25 of a laborer, or 2.5 or 2.75. We could just ignore this 
fact as most economists have done because of the battle 
is economics a science. To be a science one must use 
tools other scientists use even though the tools obviously 
sometimes do not make logical sense. This is the di-
lemma economists find themselves to be accepted, they 
must quote the “natural” sciences with no deviation lest a 
mathematician or physics says economics is not a science. 
But when economists look at a problem through scientific 
eyes, using tools of science, it is obvious that one cannot 
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Figure 2. Y = X2: between 2 and 3. 
 

X

Y 

3  

Figure 3. Y = X2: between 2 and 3 for X = Time. 
 

X

Y 

 

Figure 4. Y = X2: between 2 and 3 for X = labour. 

treat time and labor the same for instance, though the 
relationship Y = X2 remains continuous be X represent-
ing time or labor. Let us look at Y = X2 again from a dif-
ferent perspective as illustrated in Figure 5. 

Figure 5 is exactly the same Y = X2 as illustrated in 
Figure 1 except that it has been graphed differently. 
Figure 6 is the imposition of Figure 1 on Figure 5, 
however it is Figure 5 that we are interested in. In Fig-
ure 5, it is understood from one’s teen years that every 
point between say 1 and 2 represents 2, any point greater 
than 1 but less than or equal to 2, represents 2. In the 
early years of one’s mathematics we are taught there a 
different ways of showing the same information accord-
ing to how one wants to present their illustration. One 
can go further and say there are different ways of showing 

 

Y

 X

Figure 5. Y = X2. 
 

Y

X  

Figure 6. Y = X2. 
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information according to the characteristics of the inde-
pendent variable. Figure 5 would suite representing la-
bor as the independent variable because we cannot have 
say 1.5 laborers. The next number of laborers after 1 is 2, 
and Figure 5 clearly shows that. It looks more scientific 
to use Figure 1, but it is scientifically wrong to use Fig-
ure 1 and then interpret it like time, using Figure 5 one 
cannot make that mistake, if however one understands 
the different classes of the infinite, even using Figure 1 
they will not make that mistake. We can understand this 
phenomenon better by looking at Figure 7. 

Figure 7 shows what is happening between 2 and 3 
when X represents an independent variable like labor, or 
variables with the same kind of continuous, that is to say 
they cannot be divided into infinite parts. Between 2 and 
3 there is nothing, because nothing can exist, we cannot 
have 2.4 laborers, it is a factual impossibility, that is why 
after 2, and less than or equal to 3, all values are nine. 
Putting a line is merely connecting the points as illus-
trated in Figure 6, but, one must understand the nature of 
the variable. One can see the point been laid across even 
in Figure 7, after 2 all points are 9, but there is a line that 
can be placed uniting 2 and 3, it is just a line depending 
on how one wants to present their information. The line 
is meaningless until it is equal to 9 or 4, it is for illustra-
tive purposes. The mistake made is when one believes 
there is something there and starts finding the rate of 
change for 2.6 laborers, most unscientific. 

8. Classes of the Continuous 

To understand what the khumalo derivative, kd, really 
represents, and what is meant when one says it can only 
be used with a certain class of variables, with variables 
that cannot be divided into infinite parts but can be ex-
pressed in an infinite series like when we take X as labor 
in the equation Y = X2. We need to modify Figure 7 to 
Figure 8. What is the rate of change from 2 to 3 in Fig-
ure 7 or Figure 5, obviously there is no tangent to guide 
us, and a tangent cannot be found, it is impossible. 
 

X

Y 

 

Figure 7. Y = X2: between 2 and 3 for X = labour. 

Looking at Figure 8 we see the rate of change, and it 
is instantaneous but, we can only understand this instan-
taneousness from the nature of the graph. Every value 
greater than 2 but less than or equal to 3 is 9. That is to 
say 2 < X ≤ 3 = 9. This is because anything after 2 is 3. 
But in reality there is nothing in-between 2 and 3 hence 
the notation 2 < X ≤ 3 is itself misleading. To understand 
these we will have to look at the set of numbers, basic 
number lines should help us understand. The mind is also 
aided by visualization, visualization can help simplify 
what otherwise would be complex explanations. It is how 
we present say, a number line that affects in some part 
our understanding of numbers and therefore of infinity. 
Take Figure 9 as an example. 

Figure 9 shows a number line showing positive inte-
gers, 0 has been included. Figure 9 shows the number 
line up to 8 however we know it goes all the way into 
infinity. When we look at the number line we see there 
are spaces between every number, and we know that 
there are fractions and that the fractions fill up those 
spaces. In fact in those spaces there are infinite sets.  

Figure 10 illustrates what is happening in between 2 
and 3 on the number line. 

As we can see from Figure 10, in between 2 and 3 
there infinite sets, the number line can continuously be 
broken, this is infinity in mathematics as we generally 
understand it, it is this concept that backs up the work of 
mathematical models in most sciences. Hence we have a 
second for example that can be broken into infinite parts, 
we have a meter that also can be broken into infinite 
parts. What of those variables that can logically not agree 
 

Y

 X

Figure 8. Y = X2: between 2 and 3 for X = labour. 
 

 

Figure 9. Set of positive integers. 
 

 
2                          3 

Figure 10. Set between 2 and 3. 
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with the number line as represented in Figure 10, though 
Figure 10 is true. Our visualization of the number line 
does not allow us to understand that the number line 
above as represented in Figures 9 and 10 is only one 
class of the infinite, what if we changed Figures 10 and 
11, hopefully now we can understand another class of 
infinity, mathematics must also follow reality, reality 
must define mathematics not the other way round. 

Figure 11 shows part of a number line where there are 
no spaces between 2 and 3, in this number line you can-
not have 2.2 or 2.9, you have 2 and 3. Figure 12 shows 
the number line for this class of numbers with this prop-
erty. There are no spaces between the integers. Figures 
11 and 12 visually illustrate what is happening in Fig-
ures 5 and 8. Figures 11 and 12 illustrate the reality of 
certain variables like labor that cannot be divided into 
infinite parts. Because the number line in Figures 11 and 
12 cannot be broken into infinite parts, the calculus de-
veloped by Leibniz cannot possibly work because there 
are no tangents that can exist as illustrated in Figures 5- 
8.  

Therefore returning to Figure 8 above, the rate of 
change for adding one more laborer at 2 to get to three is 
5 given the function Y = X2. Surely no sensible answer 
exists except that, and the Leibniz derivative would give 
you 6, that is clearly wrong from the clarification of the 
infinite given above. In the real world, there are at least 
two classes of the infinite as represented by Figure 9 and 
12, one can only hope that this paper has shed some light 
on this interesting subject matter. It does not matter what 
anybody says, or what ideology they are infested with, 
you cannot break labor into infinite parts though you can 
do it with time and distance. 

Having established the fact that there are two classes 
of the infinite known to mankind we can name them. The 
first class as expressed by Cantor and Indian Mathemati-
cians centuries before him including Bhaskara who pre-
dates Leibniz by 500 years. Bhaskara used a form of 
calculus long before Leibniz. The class of infinity as 
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Figure 11. Set between 2 and 3. 
 

 

Figure 12. Another class of positive integers. 

known by Cantor, Leibniz and Bhaskara would be the 
infinite of the one dimensional, like time, and distance. 
One would use the differential as illustrated by Leibniz.  

The second class of the infinite covers the three di-
mensional, these variables can not be broken into infinite 
parts. One would use a derivative as illustrated by Bhe-
kuzulu Khumalo. 

9. Trans-Dimensional Mathematics 

Now we know the differential behaves differently ac-
cording to the dimension of independent variable, a 3 
dimensional independent variable has a different rate of 
change to a 1 dimensional independent variable. Inci-
dentally, for those who have read knowledge economics 
and understood the properties of knowledge, they will 
understand that the rate of change of adding units if 
similar quality concerning knowledge there is no change 
at all. One must clearly understand that the rate of change 
is affected by the characteristics of the independent vari-
able; this is the beginning of understanding of what is 
called trans-dimensional mathematics, a courtesy of stu- 
dying knowledge economics in the proper context. 

The above paper has outlined the beginnings of trans- 
dimensional mathematics. We must modify the differen-
tial for changes in dimensions of the independent vari-
able. 
 Leibniz differential for 1 dimensional independent 

variables. 
 Khumalo differential for 3 dimensional independent 

variables. 
 ? for 4 dimensional independent variables 
 ? for 5 - ∞ dimensional variables. 

Understanding the trans-dimensional properties and 
the differential for example, we understand that the 
higher the dimension of an independent variable the rate 
of change slows down, the rate of change is not as great 
as independent variables with lower dimensions. The 
derivative created by Leibniz and Bhaskara for example 
is not suitable for 3 dimensional independent variables, 
but then it follows the khumalo differentiation itself 
though suitable for 3 dimensional independent variables 
is not suitable for 4 dimensional independent variables. 
Therefore if one was to study a 4 dimensional phenome-
non, they would need to modify the Leibniz differentia-
tion for 4 dimensional phenomenon. Therefore to study 
existence as a whole, the existence we know, the 4 di- 
mensional universe of matter and time, one will never get 
the correct answer and proper analysis unless they mod- 
ify derivative mathematics to suite 4 dimensional phe- 
nomenon, and they will find the changes are not as rapid 
as they believe the changes are. But one can use the de- 
rivative for lesser dimensions to study phenomenon wi- 
thin the 4 dimensions we exist in. 
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The wonder of knowledge is that it exhibits properties 
of 1 dimension, 3 dimensions and infinite dimensions. 
But mostly it exhibits properties of 3 dimensions and 
infinite dimensions. It exhibits properties of infinite di-
mensions in that we can add the same knowledge and the 
result will be the same knowledge. I am assuming that is 
infinite dimensions because there is no change therefore 
dx/dy = 0 no matter how much similar knowledge you 
add from different people. It is the study of knowledge 
economics that has led us to understanding the need for 
different derivatives depending on the nature of the in-
dependent variable, and we have called these qualities 
trans-dimensional mathematics. 

In mathematical notation, for those who prefer 
mathematics, we take a polynomial function f(x) = Xn, 
then derivative is: 

 f X n 1
i = nX R 

n 1nX 

  n 1f X  = nX 

 kf X

 n 1
kf X R  

f 
f 

n 1nX  = 0 

f 

f

 

where R is the residue i the number of dimensions a 
variable has  the core derivative. 
 For 1 dimensional independent variables Ri = R1 = 0 

therefore the derivative is: 
  and this is equal to derivative of 

Bhaskara and Leibniz. 
 For 3 dimensional independent variables Ri = R3 = 

n 1 R  , therefore the derivative is: 

n 1
3 kf  = f  = nX   

where 3  = derivative of third dimensional independent 
variable or  the Khumalo derivative. k

 For an independent variable with infinite dimensions 
R∞ =  f X  therefore the derivative is: 

n 1
¥f  = nX , there is no change. 

 For a 4 dimensional independent variable the deriva-
tive would be expressed as 4f   and this derivative 
has not been discovered. The residual would be de-
scribed as R4.  

It should be clear that the statement i  and Ri, the i 
in this case stands for the dimension of the independent 
variable. The independent variable for example is 5  it 
follows the residual will be symbolized as R5 and the 
independent variable is of 5 dimensions, and so on. 

One can be sure that the same rules would apply to in-
tegration, but that has not been analyzed further. 

10. What Is Trans-Dimensional Mathematics 

Laid out above is the basic premise of transdimensional 
maths, transdimensional mathematics can be very simply 
defined as study of mathematics in different dimensions 
and comparing the results. It is clear from above that 
with increase of dimensions, the rate of change actually 
slows down, it has been proved. But there is a simple tool 
to prove it, take knowledge, if people know the same 

thing, there is no increase in knowledge when adding up 
knowledge, however, if they know different things, when 
you add up knowledge there is an increase in knowledge, 
because in one instance knowledge is behaving as a 
variable with infinite dimensions, therefore 1 + 1 = 1, 
meaning no rate of change, and in the other instance 
knowledge is behaving as a three dimensional variable, 
less than infinite dimensions, and 1 + 1 + 2 meaning 
there is a rate of change. 

Obviously above it is only the foundation there is still 
much work, we still need to calculate three dimensional 
variable derivative using logarithmic functions, exponen-
tial functions, as well as all the other functions, as well as 
working on the theoretical base of the integral function as 
dimensions get higher. 

Hopefully it is understood, the higher the dimension of 
an independent variable, the smaller the rate of change, 
the smaller the derivative, even if the equation is exactly 
the same. 

When considering transdimensional mathematics it 
will be easier, (talking about future as the discipline is in 
its very infancy), it will be easier to consider the Ɖ factor. 
The Ɖ factor can be considered as the quotient that de-
termines the rate of change as we move to higher dimen-
sions. Once the Ɖ factor can be found we can find the 
rate of change at any dimension. In mathematical nota-
tion the Ɖ factor can be expressed as: 

   n n 1f X  = Df X   

where 
0 < Ɖ < 1 

There are two scenario’s of Ɖ’s possible behaviour, Ɖ 
factor simply being the dimension factor. The first possi-
bility is that Ɖ is a constant, a constant like say π.  

Secondly Ɖ could be decreasing at a predictable rate, 
this is because there must be a time when Ɖ is zero, be- 
cause at infinite dimensions the rate of change is zero. In 
this scenario Ɖ can be notational represented as: 

0 ≤ Ɖ < 1 
Ɖ factor however will be explored in future mathe- 

matical papers, this is an economics paper. 

11. Mathematics and Economics 

This problem came about because of analyzing knowl-
edge as a commodity, a field I call knowledge economics. 
Having given knowledge a unit, the knowl, in order to 
study it in an appropriate scientific manner, one finds 
knowledge behaving as a 3 dimensional variable and a 
variable with infinite dimensions, this brought about the 
concerns about infinity. Economics is a science and 
should be treated as such. This problem would never 
have been found without treating economics as a science.  

As economics becomes and aspires to be more scien-
tific, mathematics will be used more and more as a sup-

Copyright © 2012 SciRes.                                                                                  ME 



B. KHUMALO 808 

porter of arguments. There is the premise by some that if 
you can not measure it, it is not science. But as econo-
mists we need to be careful that mathematics does not 
obscure economic theory and more importantly that 
mathematics is not used wrongly just for the sake of 
making economics look scientific, it already is scientific 
enough. Economists like Hayek rightly did not trust the 
overuse of mathematics in economics. 

Mathematics does not make anything more scientific 
or less scientific. Science is merely the demonstration of 
the laws of existence, science as defined by diction-
ary.com, “knowledge, as of facts or principles; knowl-
edge gained by systematic study”. Therefore it is a mis-
guided concept that mathematics makes something more 
scientific, especially when it is used wrongly. But this 
does not mean there is no room for mathematics, usually 
to solve a problem and to have a definite prove, mathe-
matics will be always crucial. Misuse of mathematics 
include saying from the blue that stocks behave like 
gases and using those equations for gases to predict the 
stock market, what is the assumption behind saying 
stocks behave like gases. Would it not be better to find 
out how stocks behave in general and then find an equa-
tion that defines that, that stocks are a result of human 
behavior, it means their behavior is natural and have their 
own laws that determine them rather than laws specifi-
cally for gases, we are just been lazy. 

Economics is essentially about demand and supply, 
mathematics will always be needed to give us a view of 
complex demand and supply conditions, and to allow us 
a guide of when supply will stop flowing and when de-
mand will slow down given certain prices in the market.  

Dealing with the concepts laid out in this paper, the 
derivative is concerned with marginal concepts in eco-
nomics, and these can be considered the basis of modern 
scientific economic theory by many. This paper should 
show that depending on the dimension of the independ-
ent variable, the derivative has to be altered, therefore the 
marginal value will be affected. If labor for example is 
the independent variable, the marginal increase given the 
same function will not be the same as if time was the 
independent variable. Therefore the mathematics pre-
sented in this paper should prove crucial to economics in 
the long run. 

However, it must always be remembered that mathe-
matics in economics can give greater accuracy, but can 
never be dead accurate, it gives us a trend, and trends are 
more important to economics as they give the general 
direction of the economy. Trying to be super accurate 
might end up in a model being too complex as there 
would be too many variables to include. What we need as 
economists is an accurate trend rather than a dead on 
figure, and using mathematics that suites the occasion 
will lead to more accurate trends. 

12. Economics Is a Science 

When treated properly I hope I have proved to many 
naysayers that economics is indeed a science. This prob-
lem of the dimension of a variable was discovered whilst 
studying and researching knowledge economics. Though 
discovered whilst researching knowledge economics, this 
mathematics is applicable to all sciences and fields that 
deal with mathematics. Economics has given back to 
science as a whole.  

13. Thanks 

Thanks to Guido Travaglini whose encouragement led 
me to show the whole series of what I called the Khu-
malo derivative, he immediately understood what the 
theory being postulated was all about. 

14. Books of Influence in Paper 

There are of course other writings that have directly 
helped in this paper though not quoted directly including 
[10] Benacerraf’s Philosophy of Mathematics, [11] Fati-
coni’s mathematics of infinity, [12] Dantzig’s Number: 
Language of Science, [13] Zaslavsky’s Africa counts, 
and, [14] Benson’s moment of proof. 
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