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ABSTRACT 

The goal of this study was to determine whe- 
ther climate has affected vegetation regrowth 
over the past decade (2000 to 2010) in post-fire 
forest ecosystems of the United States and 
Canada. Our methodology detected trends in 
the monthly MODerate resolution Imaging Spec- 
troradiometer (MODIS) Enhanced Vegetation 
Index (EVI) timeseries within forest areas that 
burned between 1984 and 1999. The trends in 
summed growing season EVI (composited to 8 
km spatial resolution) within all burned area 
perimeters showed that nearly 1.6% post-fire 
forest area declined in vegetation greenness 
cover significantly (p < 0.05) over the past 
decade. Nearly 62% of all post-fire forest area 
showed a non significant EVI regrowth trend 
from 2000 to 2010. Regression results detected 
numerous significantly negative trend pixels in 
post-fire areas from 1994-1999 to indicate that 
forest regrowth has not yet occurred to any 
measurable level in many recent wildfire areas 
across the continent. We found several note- 
worthy relationships between annual tempera-
ture and precipitation patterns and negative 
post-fire forest EVI trends across North Amer-
ica. Change patterns in the climate moisture 
index (CMI), growing degree days (GDD), and 
the standardized precipitation index (SPI) were 
associated with post-fire forest EVI trends. We 
conclude that temperature warming-induced 
change and variability of precipitation at local 
and regional scales may have altered the trends 
of large post-fire forest regrowth and could be 
impacting the resilience of post-fire forest eco- 
systems in North America. 
 
Keywords: MODIS EVI; Post-Fire Forest; Regrowth; 
Climate Change; North America 

1. INTRODUCTION 

In the first several decades following a stand-replacing 
wildfire, forest ecosystems typically follow a trend of 
increasing green vegetation cover and productivity [1-4]. 
Various environment and climate factors determine the 
specific rate of the post-fire vegetation recovery, inclu- 
ding geographic location, elevation, and extreme weather 
events [5]. Localized variations in weather conditions 
(precipitation, temperature, or solar radiation) may cause 
fine-scale (on the order of a few kilometers) heterogene- 
ity the forest recovery trends within individual wildfire 
boundaries. 

Evidence from historical data sets suggests that 20th 
Century climate warming may have been associated 
with increased rates of forest disturbance [6,7]. The 
increasing frequency and intensity of wildfire distur- 
bance produces potential feedbacks on climate through 
changes in albedo, forest succession, and carbon se- 
questration during regrowth [8-10]. The trend (positive 
or negative) in post-fire forest regrowth rates is of in- 
terest to both scientists and land managers who are to- 
gether assessing the sensitivity of natural forest ecosys- 
tems to climate change. 

Post-fire forest regrowth has increasingly drawn inter- 
est from the climate change and global warming research 
communities. Previous studies have focused mainly on 
variations in recovery rates of biogeochemical cycling 
and carbon sequestration [11-14] analyzed the seasonal 
and inter-annual variations of post-fire forest cover by 
using AVHRR-NDVI (Advanced Very High Resolution 
Radiometer-Normalized Difference Vegetation Index) 
time-series across boreal North America. They noted that 
temporal anomalies of NDVI were associated with vege- 
tation compositional changes consistent with early suc- 
cessional plant species and susceptibility to drought. [2] 
utilized a 19-year time-series of AVHRR-NDVI data, 
focusing on several hundred large fires across the west- 
ern United States. Their results suggested that the re- 
growth trends of post-fire forests were influenced by 
variations in surface temperature and precipitation. 
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Nonetheless, past climate change impacts on post-fire 
forest recovery processes are not well-understood. Re- 
generating forests require decades to reach mature stages 
and begin to show ecosystem resiliency in biomass pro- 
duction. In this study, we utilized over ten years of the 
MODerate resolution Imaging Spectroradiometer (MO- 
DIS) Enhanced Vegetation Index (EVI) data to examine 
the relationships between vegetation growth trends and 
climate factors during post-200 wildfire forest succes- 
sion. We conducted trend mapping for large wildfire ar- 
eas across all of North America, and detected break 
points in the recovery patterns of all forest areas burned 
since 1984. The results of these analyses for the years 
2000 to 2010 were intended to provide a baseline for 
long-term (>10 years) climate change and forest re- 
growth studies to come after the year 2010. 

2. STUDY AREA AND DATA SOURCES 

2.1. Study Area 

The time period of interest covered all of North 
America from 1984 to 2010 (Figure 1). Burned forest 
areas that we separated into five-year intervals showed  

an increasing frequency of wildfire since 1984 (Table 1 
and Figure 2). The historical data presented here were 
provided solely to identify MODIS pixels for post-2000 
forest regrowth analysis. We can draw no a priori conclu- 
sions whatsoever about the potential relationships be- 
tween climate change and wildfire frequency (from 1984 
onward) based on the data presented in Table 1 alone. 

2.2. Remote Sensing Datasets 

Collection 5 MODIS data sets beginning in the year 
2000 were obtained from NASA’s Land Processes Dis- 
tributed Active Archive Center site [15]. MODIS EVI 
values were aggregated to 8 km resolution from MOD 
13C2 (MODIS/Terra Vegetation Indices) products. MOD 
13C2 data are cloud-free spatial composites of the grid-
ded 16-day 1-kilometer MOD13A2 product, and were 
provided monthly as a level-3 product projected on a 0.05 
degree (5600-meter) geographic Climate Modeling Grid 
(CMG). Cloud-free global coverage was achieved by re-
placing clouds with the historical MODIS time-series EVI 
record. MODIS EVI was calculated from red, blue and 
NIR bands as described by [16]. 

 

 
Figure 1. Spatial distribution of forest fire perimeters (1984-1999) across North America. The forest fire polygon data were taken 
from MTBS (USA) and CNFDB (Canada). 
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(a) 

 
(b) 

Figure 2. Wildfire over time in North America. (a) Burned area; (b) Wildfire frequency. Data for this graph were de-
rived from MTBS (USA) and CNFDB (Canada). The curve in plot (a) is fitted using a regression model, and its 95% 
confidence band is the shaded light blue area. 

 
Table 1. Attributes of North American wildfire (1984-1999) that were sampled for post-2000 regrowth analysis. 

 
Frequency of wildfires 

per year 
Total annual wildfire area  

(km2·yr–1) 

Average area of  
individual wildfire  

(km2) 

Interval Frequency StdDev Area StdDev  

1984-1988 830 242 20,852 7559 25.1  

1989-1993 766 293 34,702 29,670 45.3 

1994-1999 1262 556 47,860 25,651 37.9 

 
2.3. Auxillary Datasets 

2.3.1. Wildfire Perimeters 
A complete North American wildfire history was com- 

piled from two national fire databases, the National Mo- 
nitoring Trends in Burn Severity (MTBS, USA) and the 
Canadian National Fire Database (CNFDB).  

The MTBS is a multi-year project designed to consis-
tently map the burn severity and perimeters of fires  

across all lands of the United States for the period span-
ning 1984 through 2010 [17]. The fire perimeters are 
vector polygons of the extent of the burned areas, in-
cluding the continental United States, Alaska, Hawaii 
and Puerto Rico. The CNFDB point and polygon data are 
a collection of forest fire locations and fire perimeters as 
provided by Canadian fire management agencies includ-
ing provinces, territories, and Parks Canada [18]. 
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Both of the two national wildfire databases were com- 
piled into a consistent data structure and only wildfire 
areas larger than 64 km2 (corresponding to MODIS 8 km 
spatial resolution) were used in this study. To control for 
time since stand-replacing forest disturbance, the data- 
base was split into three 5-year intervals (Table 1).  

2.3.2. Land Cover Databases 
NLCD2001 (National Land Cover Database 2001, 

USA, [19]) and LCC2000-V (Land Cover, circa 2000- 
Vector, Canada) were combined to determine the land 
cover fraction of non-burnable water bodies and bare 
ground in each 8 km MODIS pixel. 

2.3.3. Meteorological Data 
We used climate data from National Centers for Envi- 

ronmental Prediction/National Center for Atmospheric 
Research (NCEP/NCAR) Reanalysis (R1) database, dat- 
ing back to 1948 [20]. For the purposes of this study, 
monthly air temperature (2000-2010; mean, maximum, 
minimum), and monthly total precipitation (PPT, 1980- 
2010) were extracted from NCEP R1. Monthly potential 
evapotranspiration (PET) from global NCEP R1 sources 
[21] were also prepared for analysis. 

Annual climate indexes for each year 2000-2010 were 
calculated from these monthly meteorological datasets to 
use as independent explanatory variables for forest re-
covery trends from wildfire. The climate index selection 
was based on previous study results from [22], which 
showed that degree days, annual precipitation totals,  

and an annual moisture index together can account to 70% 
- 80% of the geographical variation in the global vegetation 
seasonal extremes. Selected indexes in this study included: 
the climate moisture index (CMI, [23]), growing degree 
days (GDD) base 0˚C, and the standardized precipitation 
index with time scale of 3 months (SPI, [24]). 

The CMI is an aggregate measure of potential water 
availability imposed solely by climate, which was de- 
nfined as: (PPT/PET)-1 if PPT < PET or 1-(PET/PPT) if 
PPT > PET. The CMI indicator ranges from –1 to +1, 
with negative values for relatively dry years, and positive 
values for relatively wet years. GDD is the number of 
days for which mean monthly temperature was greater 
than 0˚C. SPI is a probability index that can provide su- 
perior representation of abnormal wetness and dryness 
than the Palmer drought indices. SPI values are positive 
(or negative) for greater (or lower) than the median pre- 
cipitation amount. SPI values higher (or lower) than 2.00 
(or –2.00) can be considered extreme wet (or dry) events 
[25]. An extended precipitation history period of 1980 to 
2010 was used in this study for SPI calculation, since 
there is the requirement for fitting a 2-parameter gamma 
distribution. 

3. METHODS 

As an overview of our methodology (Figure 3), we 
developed maps of EVI trends across North America 
from 2000 to 2010, Forest areas disturbed by wildfires 
from 1984 to 1999 were separated by five-year age in 
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Figure 3. Flow chart of the methodology used to characterize the post-fire forest regrowth trends across North America 
from 2000 through 2010. Climate data sets are shown in checkered boxed and climate data comparisons with EVI are 
shown as dashed lines. 
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tervals. According to the values of the slope and the co-
efficient of determination (R2) of the EVI regressions, 
post-fire pixels were classified into three categories, i.e. 
Positive trend, Negative trend, and Non-significant trend. 
The “Breaks for Additive Seasonal and Trend” method 
(BFAST, [26,27]) was further applied to EVI for post-fire 
trend characterization. 

The least squares method was applied to calculate the 
linear trend line that best fit the EVI data values. We first 
resampled monthly MOD13C2 EVI data into 8 km areas. 
The EVI values were then summed across a six-month 
growing season period (May through September) for 
each year, 2000-2010. This resulted in a series of annu-
ally integrated EVI values representing the variability of 
vegetation productivity across North America for the past 
11 years. 

The EVI trend at each pixel was evaluated by re- 
gressing the integrated EVI values on time by using the 
simple linear regression model (Eq.1). 

EVI iT                 (1) 

where EVI is the integrated EVI values, Ti is the MODIS 
data capture year. An ordinary least squares estimate of β 
(EVI trend slope) and associated R2 were established for 
each pixel in the research region. The trends of annual 
climate indexes (CMI, GDD, and SPI) were also gener- 
ated following the abovementioned method. 

Wildfire perimeter databases (MTBS and CNFDB) 
were used to determine the post-fire forest areas and ages 
where wildfire occurred over the period of 1984-1999. 
All 8 km resolution MODIS EVI pixels falling entirely 
within the wildfire perimeters were defined as 100% 
post-fire vegetation cover and these were the only pixels 
included in our analysis. 

 In order to eliminate the influence from water bodies 
and bare ground on the results, land cover databases 
(NLCD2001 and LCC2000-V) with 30 m resolution 
were used to determine the fraction of non-burnable area 
in each 8 km pixel. Only pixels covered by burnable 
vegetation of more than 50% total area were considered 
burnable pixels and included in our analysis. All 
non-burnable pixels were masked out and excluded from 
our analysis dataset. 

The post-fire pixels were split into three EVI trend 
classes for the past decade (2000-2010): 1) Pixels with 
positive trend, where Slope > 0 and R2 ≥ 0.37 with a 95% 
level of significance for a two-tailed t-test. 2) Pixels with 
negative trend, where Slope < 0 and R2 ≥ 0.37. 3) Pixels 
with non-significant trend (R2 < 0.37, Slope > 0, or Slope 
< 0). 

 The BFAST (Breaks for Additive Seasonal and Trend) 
methodology was next applied for the EVI forest pixels 
found to belong in the negative trend class. BFAST was 
proposed by [26,27] for detecting and characterizing 

abrupt changes within a time series, while also adjusting 
for regular seasonal cycles. A harmonic seasonal model 
was implemented in BFAST to account for phenological 
changes. This methodology required fewer observations 
and was more robust against noise, compared to tradi- 
tional principal component analysis (PCA) [28], wavelet 
decomposition [29], and Fourier analysis. 

4. RESULTS 

4.1. Post-Fire Regrowth Trends 

Both the regression coefficient of determination (R2) 
and the slope of the linear regression line were retrieved 
for every MODIS pixel to show the spatial pattern of 
EVI variation across North America (Figure 4). Positive 
slope values would likely represent a regenerating vege- 
tation status of the burned forest ecosystem, while nega- 
tive slope values would likely indicate that vegetation 
may have slowed in regrowth or started to decline in 
green cover after disturbance.  

 A total of 103 post-fire forest locations with signify- 
cant negative EVI trends were found to be scattered 
across North America, with some clustering of the nega- 
tive trend class in Alaska and in boreal forest regions of 
the continental US and Canada (Figure 5). Out of a total 
of >6500 burned 8 km areas, nearly 1.6% of post-fire 
pixels from 1984-1999 were detected in the negative EVI 
trend class whereas 36.6% were detected in the positive 
trend class, and 61.8% in the non-significant trend class 
(Table 2). The percentage of pixels in the significant 
negative EVI trend class increased with the increase of 
post-fire forest age interval. In contrast, the percentage of 
pixels with a significant positive EVI trend decreased 
with the increase of post-fire forest age interval (see ar- 
rows in Table 2). 

 Yearly changes in average slope of growing season 
EVI over the period 2000-2010 in wildfire areas re- 
vealed that green vegetation cover has increased as the 
time since fire has decreased (Figure 6). This overall 
pattern could be attributed to a natural slowing of re- 
growth over 11 - 26 years of recovery from disturbance, 
although the detection of numerous significantly nega- 
tive trend pixels in post-fire areas from 1994-1999 in- 
dicated that forest regrowth has not yet occurred to any 
detectable level in many recent wildfire areas across the 
continent. 

We further identified the top 10 individual wildfires in 
North America (1984-1999) according to that largest 
negative EVI trend area within the burned area perime- 
ters (Table 3). Several of these large negative EVI trend 
areas were located in the province of Saskatchewan, 
Canada, along with large wildfire areas of North Caro- 
lina, California, New Jersey, and Florida in the United 
States. Between 40% and 100% of the burned area within   
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Figure 4. Continental maps of the slope and R2 values for the growing season EVI time-series from 2000- 
2010. R2 values ≥ 0.37 carry a 95% confidence level of significance for a two-tailed t-test. 
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Figure 5. Spatial distribution of trend classes in post-fire forest ecosystems across North America from 2000 
through 2010. 

 

 
Figure 6. Change in the EVI slope with time since wildfire. The red boxes show the mean and 95% confi-
dence interval of the growing season EVI slope. 

 
Table 2. Post-fire EVI trend dynamics according to post-fire forest age intervals. Positive and negative trends carry a 95% confidence 
level of significance. 

Wildfire Interval Forest age (yr) Pixel Number (8 km resolution) Positive trend (%) Non significant trend (%) Negative trend (%)

1984-1988 22 - 26 1059 17.56 77.15 5.29 

1989-1993 17 - 21 2071 22.79 75.62 1.59 

1994-1999 11 - 16 3458 50.73 48.81 0.46 

Total  6588 36.62 61.79 1.59 
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each of these wildfire perimeters showed a negative sea-
sonal EVI trend form 2000 to 2010. These wildfire areas 
in Table 3 were documented as the most relevant sites 
for future evaluation studies of the possible causes of 
delayed or arrested post-fire regrowth of forest vege- 
tation in North America. 

4.2. Break Point Detection of Negative EVI 
Trends 

We conducted break point analysis on all 103 pixels in 
North America with significant negative EVI trends 
(examples shown in Figure 7). About 15% of all nega- 
tive trend areas with zero break points implied that the 
EVI trends of these post-fire areas declined gradually 
and consistently during the MODIS observation period 
(2000-2010). The other 85% (Table 4) of all negative 
trend areas detected with one or more break point over 
past decade appear to have had vegetation recovery in- 
terrupted by some external factor (e.g., extreme weather 

events), commonly leading to a sudden decline in grow- 
ing season EVI (e.g., Figure 7(d)). 

4.3. Post-Fire Negative EVI and Climate 
Associations 

The linear trends from 2000 to 2010 in three annual 
climate indices (CMI, SPI and GDD) were examined 
together, pixel-by-pixel, with growing season MODIS 
EVI trends. In each set of Figures 8-10, we first plotted 
the slope of growing season EVI trends against the cli-
mate index trends for all post-fire pixel areas, and then 
for just the significant negative slopes of growing season 
EVI trends broken-out into the three post-fire age inter 
vals (Table 2). 

A strong association was observed between the trend 
of annual CMI and post-fire negative EVI trends (Figure 
8). More than 78% of significant negative EVI trends 
were associated with relative drying trends (i.e., negative 
CMI slope values). The older the post-fire forest, the 

 
Table 3. Top 10 wildfires in North America (1984-1999) ranked according to the negative EVI trend area within the wildfire perime-
ter. 

Fire name/CFS_POLYID* Date Location 
Area burned  

(Sq·Km) 
Percentage with negative EVI trend (%)

NORWOOD  Jul. 28, 1984 SK, CA. 719 44.53 

1984-ON-009* Aug. 2, 1984 ON, CA. 614 62.54 

ALLAN ROAD  Apr. 7, 1985 NC, USA 439 43.78 

OTTER Jul. 27, 1984 SK, CA. 364 52.74 

ENS Jul. 28, 1984 SK, CA. 306 100 

KING TITUS Aug. 30, 1987 CA, USA 289 66.4 

BURNOUT May. 25, 1999 FL, USA 129 99.56 

EASTSIDE Aug. 8, 1990 SK, CA. 129 99.02 

JOE Jul. 6, 1985 SK, CA. 89 100 

GREENWOOD STATE FOREST  Apr. 4, 1995 NJ, USA 84 100 

*Polygon ID from Canadian Forest Service. 

 
Table 4. Statistics of the BFAST break point results for post-fire pixels with significant negative EVI trends. 

Wildfire Interval 
Zero breakpoints,  

2000-2010 
1 breakpoint between  

2000-2005 
1 breakpoint between  

2006-2010 
Greater than 1 break point, 

2000-2010 

1984-1988 9 6 6 33 

1989-1993 4 4 3 22 

1994-1999 1 4 2 9 

Total 8 km pixels 14 14 11 64 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7. Negative EVI trend with break points detected by the BFAST methodology. Examples include: (a) No break points; (b) 
One break point; (c) Two break points; (d) Three break points. Yt is the time-series MODIS EVI value; St is the fitted seasonal com-
ponent; Tt is the fitted trend component; et is the noise component. 
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Figure 8. Associations of the trends (2000-2010) in 8 km EVI and annual CMI for all post-fire (1984-1999) pixel areas in North 
America. Significant negative EVI pixels are shown in red circles, while all other EVI pixels trends are shown in grey circles. 
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Figure 9. Associations of the trends (2000-2010) in 8 km EVI and annual SPI for all post-fire (1984-1999) pixel areas in North 
America. Significant negative EVI pixels are shown in red circles, while all other EVI pixels trends are shown in grey circles. 
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Figure 10. Associations of the trends (2000-2010) in 8-km EVI and annual GDD for all post-fire (1984-1999) pixel areas in 
North America. Significant negative EVI pixels are shown in red circles, while all other EVI pixels trends are shown in grey cir-
les. c  
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stronger the CMI association with the negative EVI trend. 
SPI is a ratio of the current precipitation to the historical 
average precipitation. As was the case with CMI, the 
older the post-fire forest, the stronger the SPI association 
with the negative EVI trend (Figure 9). 

The more positive the slope value of GDD (base 0˚C), 
the stronger the warming trend over the past decade 
(2000-2010) at the post-fire MODIS pixel locations. We 
found that the overall association between GDD trends 
and post-fire negative EVI trends was not as strong as 
the association with CMI trends. However, the more re-
cent wildfire areas (1989-1999) showed less scatter and a 
more consistent association between GDD trends and 
post-fire negative EVI trends than the older wildfire ar-
eas (1984-1988). 

5. DISCUSSION 

We have examined a decade of MODIS EVI trends in 
post-fire forests across North America to determine if 
vegetation regrowth trends can provide evidence of on- 
going climate change impacts. It is generally asserted 
that anthropogenic climate change will lead to wide- 
spread and more frequent forest fires [30]. The increas- 
ing wildfire frequency observed across North America in 
past a few decades can be seen in Figure 2 of our study. 
An increase in disturbance frequency is likely to increase 
the rate at which natural vegetation must respond (posi- 
tively or negatively) to future climate change. 

Climate factors may have indirect effects on the re-
covery of productivity in post-fire forest ecosystems. 
Insect outbreaks related to warming have been reported 
by [31,32]. These earlier studies suggested that insect 
populations were influenced by effects of climate warm-
ing and drying on plant community associations and 
host-tree vigor [32]. Post-fire forest areas are vulner- 
able and perhaps more sensitive than mature natural for-
ests to insect damage, although little evidence is avail-
able to quantify this explanation. Nonetheless, the results 
of CMI trend associations from our study are consistent 
with insect damage effects on EVI patterns. 

The Normalized Difference Vegetation Index (NDVI) 
derived from AVHRR time-series data has been used by 
previous studies for post-fire trends [2,8,14,]. Compared 
to the traditional AVHRR NDVI time-series product, 
there are advantages in using monthly MODIS EVI 
time-series dataset for the retrieval of post-fire forest 
trends. EVI has the ability to better eliminate canopy 
background and atmosphere noise, which are typical 
NDVI limitations [16]. EVI is an optimized index de-
signed to enhance the vegetation signal with improved 
vegetation monitoring ability. The EVI is more respon-
sive to canopy structural variations, including leaf area 
index (LAI), canopy type, plant physiognomy, and can- 
opy architecture, while NDVI is mainly chlorophyll- 

sensitive. The main limitation of using EVI time-series 
data is that MODIS data acquired only spans the latest 
decade. The first results from our study of the years 2000 
to 2010 can provide a baseline for long-term (>10 years) 
climate change and forest regrowth studies in years to 
come. 

6. CONCLUSION 

The MODIS EVI time-series data used in this study 
provided consistent large-scale metrics of post-fire forest 
regrowth trends across North America. Temperature 
warming-induced change and variability of precipitation 
at local and regional scales may have altered the trends 
of large post-fire forest regrowth and could be impacting 
the resilience of post-fire forest ecosystems in North 
America. The methodology developed for mapping and 
characterization of forest regrowth trends can be readily 
extended over the next decade of MODIS EVI data. The 
results from BFAST break point analysis provides an 
effective trend decomposition method for local scale 
studies with higher resolution satellite data. Further re-
search should be pursued in order to elucidate the devel-
oping relationship between post-fire forest regrowth and 
ongoing climate change. 
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