
Advances in Internet of Things, 2012, 2, 106-109
http://dx.doi.org/10.4236/ait.2012.24013 Published Online October 2012 (http://www.SciRP.org/journal/ait)

Application of Full Text Search Engine Based on Lucene

Rujia Gao1, Danying Li2, Wanlong Li1, Yaze Dong3
1Computer Science and Technology, Changchun University of Technology, Changchun, China

2Changchun Rural Commercial Bank, Changchun, China
3Software Vocational and Technical College, Changchun University of Technology, Changchun, China
Email: gaorujia723@126.com, Shadow_519@126.com, lwl@mail.ccut.edu.cn, DongYaze@mail.edu.cn

Received August 12, 2012; revised September 28, 2012; accepted October 10, 2012

ABSTRACT

This paper introduces us the full-text search engine based on Lucene and full-text retrieval technology, including in-
dexing and system architecture, compares the full-text search of Lucene with the String search retrieval’s response time,
the experimental results show that the full text search of Lucene has faster retrieval speed.

Keywords: Full Text Search Engine; System Architecture; Lucene

1. Introduction

With the rapid development of Internet and with the ex-
plosive growth of Web information, Internet users how to
remove the impurities and retained the essence quickly
and easily to gain the information they need in the vast
ocean of information to become a hot research topic in
this field.

The core of information search is the full-text retrieval
technology. Full-text search technology provided us with
the information retrieval tool according to the content of
data rather than the external features based on a variety
of computer data such text, sound, image as processing
object [1]. Create all the possible terms in the index
which are searched by network users as well as help peo-
ple to manage and order extensive information and en-
able network users to quickly and easily retrieve any in-
formation they need. Lucene is a pure Java software pro-
ject which is mature, free and open source. In recent
years, Lucene has become one of the most highly praise
and most popular information retrieval library.

2. The Process of Full Text Search

2.1. Build a Text Database

Firstly, we should build a text database which is used to
store all information retrieved by the user, then determine
text model of retrieval system. The model has an identi-
fiable and low degree of redundancy [2]. Once the model
is confirmed, we should not make further more changes
any longer.

2.2. Create Indexing

Create index with the model according to the text of

database. Indexing can greatly improve the speed of in-
formation retrieval. Which way do you use depends on
the scale of information retrieval system. Large-scale
information retrieval systems such as Google, Baidu take
advantage of the approach of inverted index.

2.3. Search

After indexing the documents, you can start to search
information you need. Search requests are submitted by
the users and information retrieval systems to preprocess
and search the information eventually return user the
information.

2.4. Filter and Sort the Results

After the information retrieval system search the infor-
mation that the users need and it will filter or sort the
information by making a certain rule and then return the
user related information [3].

3. Full Text Search Engine of Lucene

Lucene is one of the Jakarta projects of Apache Software
Foundation which is an open source full text search en-
gine toolkit, it’s not a full text search engine [4], but a
full-text search engine framework that can provide users
complete query engine, text indexing engine and part of
the analysis engine, it can also provide a simple but
powerful API interface so that people can conveniently
and quickly develop the search engine.

3.1. Systematic Systematic Structure of Lucene

Lucene is an excellent full text search engine, its struc-
ture has a strong object-oriented features. Lucene source

Copyright © 2012 SciRes. AIT

R. J. GAO ET AL. 107

package has seven modules, the five main modules are as
follows [5]:

1) Org.apache.lucene.analysis Analyzer, Its primary
role is to segment the document and remove the stop
words which are no help for retrieve but occurrence fre-
quency is very high such as “and” “ah” further separate
semantic search words such as Chinese phrase, English
words and E-mail address. Lucene can also provide us
with two parsers such as SimpleAnalyzer and Standar-
dAnalyzer.

2) Org.apache.lucene.document Document Manage-
ment, Document is similar to a record in relational data-
base, it mainly responsible for the management of fields,
and it divided into text field and date field.

3) Org.apache.lucene.index Indexing Management,
including the establishment of index, inserts records and
deletes records. Indexing package is the core of informa-
tion retrieval system, the purpose of full text search is to
adopt the terms which are separated to create index so
user can search the information only to those have in-
dexed but not the full text search further greatly improve
the efficiency of information retrieval.

4) Org.apache.lucene.search Search Management, ac-
cording to the query to obtain the results of retrieval.

5) Org.apache.lucene.queryParser queryParser, pars-
ing the user query and then pass the searcher.

3.2. The Indexing of Lucene

In Lucene, an index is composed of segments, a segment
is made up of documents, a document is composed of
fields, and many terms consist of a field. The index
process of Lucene is started from the add Document
method of IndexWriter, as shown in Figure 1 [6].

In Figure 1, introduce a new class is DocumentWriter.
In the API of Lucene, the main role of IndexWriter is to
add documents to the indexing which provides us with
the main interface for indexing. But writing process of
indexing is completed by DocumentWriter. Separating
data source and calculating the frequency and location of
keywords as well as writing process of indexing is the
most complicated thing in Lucene, which are actually
occurred in the class of DocumentWriter.

Except for adding documents to indexing, Lucene will
go further judge some cases about indexing and then
merge indexing [7].

4. Examples of Lucene Retrieval Application

Lucene full text search is mainly composed of analysis,
indexing and searching three modules. Analysis module
is responsible for preprocessing document information;
the principal role of indexing module is to enhance the
speed of retrieval; searching module is mainly used for
interacting to users [8].

Create DocumentWriter object

Named for the Segment

Call DocumentWriter approach of

addDocument and add documents to

Save segment information, if there are

more than one segment to determine

whether merge it or not, then merge it if

IndexWriter:addDocument()

Figure 1. Indexing process of Lucene.

4.1. System Implementation

This paper employed the toolkits of Lucene to simulate
two documents retrieval in the Eclipse development en-
vironment [9]. Lucene Development Kit version is LU-
CENE-CORE-2.0.0. JAR and its word tool is JEAN-
ALYSIS-1.4.0.JAR, it can also require java runtime en-
vironment above JDK1.6 version and need to import JAR
package into Eclipse [10].

1) Preprocessing Module: Before using Lucene we
need to preprocess the prepared text documents. The
mainly role of preprocessing is to convert full-width
characters into half-width characters. In order to better
display the use of Lucene, this paper will divide the large
documents into small documents and assign a unique ID
number for each document. Main codes are as follows:

public class FilePreprocess {
public static void preprocess (File file1, String out-

putDir)
splitToSmall (characterProcess (file,outputDir + “out-

put.all”), outputDir)
public static File character Process (File file1, String

destFile)
private static String replace (String line)
public static void splitToSmall (File file1, String out-

putpath)
}
The replace method is used for storing full-width char-

acters and half-width characters by creating a HashMap
and then traverse HashMap, if full-width characters are
found we can replace it and finally return replaced char-
acters. The characterProcess method is to convert
full-width characters into half-width characters and re-
turn new files. The splitToSmall method is to call char-
acterProcess to complete the replacement of full-width
characters and half-width characters and finally return
new file as splitToSmall method’s first parameter, new
files named for “output.all” and stored it into outputDir.

Copyright © 2012 SciRes. AIT

R. J. GAO ET AL. 108

Then the splitToSmall method is to divide new files into
several small files and stored it into the directory of out-
putDir.

2) Indexing Module: After processing the document,
you can use Lucene to process relevant information.
Firstly, create indexing for processing documents. Sec-
ondly, build query object; Lastly, search in index. At first
create a new IndexProcessor class for the document, the
main code are as follows [11]:

public class IndexProcesser{
private String INDEX_STORE_PATH = “e:\\index1”
public void createIndex (String inputDir)
Directory dir = new SimpleFSDirectory (new File

(INDEX_ STORE_PATH))
IndexWriter writer = new IndexWriter (dir, new Stan-

dard-Analyzer(),
true,IndexWriter.MaxFieldLength.UNLIMITED)

Document doc = new Document ()
doc.add (new Field (“filename”, files [i]. getCanoni-

calPath(),
Field.Store.YES,Field.Index.NO_NORMS,Field.Term

Vector.YES))
doc.add(new Field (“content”, new FileReader (files

[i])))
writer.addDocument (doc)
writer. close()
}
First of all, creating IndexWriter object which used

StandardAnalyzer as an analysis tool, in order to generate
indexing and store it into directory. IndexWriter. Max-
Field-Length. UNLIMITED shows that IndexWriter cre-
ates indexing for fields in the Document and the length
of field has no limitations; secondly, creating Documents
as well as Fields and adding fields like file name, file
contents to Documents; Field.Store.YES indicates that it
will store the field of file name; Field. Index. NO_
NORMS shows that it can indexing but not analyze file
name; Field.TermVector.YES will store terms of field;
FileReader (files [i]) stands for adding values to Fields
by using the approach of FileReader; Finally join the
document into indexing and use close method to close
indexing and write all the data in the cache memory to
the disk, close all the data flow. If not closed, the ex-
perimental results show that only one segment file in
indexing directory.

3) Searching Module: After indexing, system will es-
tablish a search class, the class will provide us with two
approaches, index-Search approach is used to search in-
dexing which are built by Lucene. However, string-
Search approach used java long String to search informa-
tion. You can also use the delete approach to delete op-
eration on the preprocess text document. Main codes are
as follows:

public class Search {

//search information with Lucene
public void indexSearch(String searchType,String

searchKey)
Directory dir = new SimpleFSDirectory(new

File(INDEX _STORE_PATH))
IndexSearcher is = new IndexSearcher(dir)
QueryParser parser = new Query-

Parser(Version.LUCENE_ CURRENT, searchType, new
StandardAnalyzer (Version. LUCENE_CURRENT))

Query query = parser.parse(searchKey)
Date beginTime = new Date ()
is.search(query, collector)
Date endTime = new Date ()
long timeOfSearch = endTime.getTime()-beginTime.

getTime()
//search information with String
public void stringSearch(String keyword, String

searchDir){
Date beginTime=new Date ()
……
Date endTime=new Date ()
Long timeOff-

Search=beginTime.getTime()-endTime.getTime()
public void delete()
IndexReader reader = IndexReader.open (new Simple-

FSDirectory (new File (INDEX_ STORE_PATH)),
false)

String a1= "E:\\testfolder\\output3.txt"
Term term=new Term("title",a1)
int a2= reader. deleteDocuments (term)
System. out.println(a1+a2)
reader. deleteDocument(2150)
reader. close()
}
First give the search path then parse the string and

generate query object to search information. The three
main modules are the general process of all information
retrieval.

4.2. Experimental Results

Based on searching for two documents’ keywords to ob-
tain retrieval results by comparing Lucene retrieval with
String retrieval [12]. The number of the first document is
250,000 words, the former time is 75 ms, and the latter
time is 1988ms; when the number of the document in-
creased to 40 million words, the former time is 108ms,
and the latter time is 5688ms. So we can see Lucene’s
retrieval time-consuming is superior to String retrieval
time-consuming. If string retrieval was applied to a large-
scale information retrieval system, the search speed will
be intolerable when the information storage capacity
reaches TB level.

The instance support document indexing and retrieval for
the form of txt. If there is a need of practical applications,

Copyright © 2012 SciRes. AIT

R. J. GAO ET AL.

Copyright © 2012 SciRes. AIT

109

you can use PDFBox to process PDF documents and use
POI to process Excel and Word and use Jacob to deal
with word documents, as long as put data source into a
Document object, you can search the information you
need.

5. Conclusion

Lucene is a full text indexing engine toolkit written in
Java, multi-user support access, quickly visit indexing
time and can cross-platform use [13]. This paper in detail
analyze the analysis of Lucene, indexing and searching
three main modules from system architecture and com-
pare the Lucene full text search with the String retrieval’s
response time, the experimental results show that the
Lucene full text search has faster retrieval speed.

REFERENCES
[1] T. Hong, J. H. Li, P. Zhou and C. S. Gao, “Lucene IN

ACTION,” Electronics Industry Press, Beijing, 2007.

[2] L. Zhong, H. Wang, R. T. Li and H. Z. Song, “Research
and Development of Full Text Search Engine Based on
Lucene,” Computer Engineering, Vol. 33, No. 8, 2007, pp.
282-284.

[3] X. Zhang and Y. Zhou, “Improvement of an Algorithm
for Ranking Pages Based on Lucene,” Computer System
Application, Vol. 18, No. 2, 2009, pp. 155-158.

[4] B. Y. Lin, R. Zhao and L. C. Chen, “Research and Appli-
cation of Full-Text Search Engine Based on Lucene,”

Computer Technology and Development, Vol. 17, No. 5,
2007, pp. 184-187.

[5] W. He, S. J. Xue, M. R. Kong, et al., “Design and Im-
plementation of Full-Text Search Engine Based on Lu-
cene,” Information Science, Vol. 3, No. 9, 2006, pp. 88-89.

[6] Y. C. Li and H. F. Ding, “Research and Application of
Full-Text Search Engine Based on Lucene,” Computer
Technology and Development, Vol. 20, No. 2, 2010, pp.
4-56.

[7] T. Liu, B. Qin, Y. Zhang and W. X. Che, “Introduction to
Information Retrieval System,” China Machine Press,
Beijing, 2008.

[8] Q. Zhao, “Information Retrieval,” China Machine Press,
Beijing, 2008.

[9] C. Dong, “In the Application to Add Full-Text Search
Function-Lucene Full-Text Indexing Engine Based on
Java, [EB/OL],” 2012.
http://www.chedong.com/tech/html

[10] X. W. Lang and S. K. Wang, “Research and Development
of Full Text Search Engine Based on Lucene,” Computer
Engineering, Vol. 32, No. 4, 2006, pp. 95-99.

[11] J. C. Cai, Y. P. Guo and L. Wang, “Design and Imple-
mentation of School Search Engine Based on Lucene
Net,” Computer Technology and Development, Vol. 16,
No. 11, 2006, pp. 73-75.

[12] Z. Qiu, T. T. Fu, “Develop Its Own Search Engine Lu-
cene2.0 + Heritrix,” People Post Press, Beijing, 2007

[13] J. Luan and J. F. Li, “Research and Application of Full
Text Search Engine Based on Lucene,” Computer & Di-
gital Engineering, Vol. 38, No. 2, 2010, pp. 184-195.

