
International Journal of Intelligence Science, 2012, 2, 96-102
http://dx.doi.org/10.4236/ijis.2012.24013 Published Online October 2012 (http://www.SciRP.org/journal/ijis)

Accurately Measuring Inspection Time with Computers

A. Kym Preiss1, Nicholas R. Burns2
1School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia

2School of Psychology, University of Adelaide, Adelaide, Australia
Email: nicholas.burns@adelaide.edu.au

Received June 5, 2012; revised August 5, 2012; accepted August 16, 2012

ABSTRACT

Accurately measuring inspection time (IT) with computers requires several considerations. They are: 1) Screen redraw
period; 2) Synchronous and timely image presentation; 3) Stimulus duration timing; 4) Image scale invariance; 5) Stan
dardized presentation format (of which image scale invariance is a part). The first consideration dictates a minimum
duration available for measuring IT. The second and third are necessary for accurate stimulus duration. The fourth is
necessary to provide scale invariant images, that is, images with the same visual angle at a given viewing distance on
any computer. And the fifth ensures that participants everywhere respond to the same task. Our computer program em-
bodies these elements and we make it freely available to any interested party. Data to establish validity and reliability
are presented, and normative data on 2518 participants aged 6 to 92 years are available.

Keywords: Inspection Time; Mental Chronometry; Intelligence; Mental Speed

1. Introduction

Inspection time (IT) is reckoned to index the speed of
early stages of information processing. It was conceived
and developed by Vickers [1-3] as a component of Vick-
ers’ accumulator model of decision making. IT was con-
sidered to estimate the time required for a person to make
one observation of sensory input [4], and its implementa-
tion has been mainly limited to the visual modality. In
the accumulator model, such a quantum of time is said to
sum until a critical threshold is reached in favor of a de-
cision. This implies that a decision can be made upon one
clean observation of sensory input; albeit with less cer-
tainty as the number of discrete samplings is re duced.
Over the long term, IT has been shown to correlate about
–0.5 with IQ-type measurements [5]. IT is considered an
important part of the inventory for measuring individual
differences, not the least because it is arguably culture-
fair (i.e., not influenced by education or socialization).
Moreover, the potential of IT as a bio marker for patho-
logical cognitive ageing has been recently raised [6] and
investigated [7].

IT measurement has traditionally been implemented
by presenting a “pi-shaped” stimulus that has one leg
about half the length of the other. The display consists of
a brief exposure of an orientating cross (or some such)
followed by the stimulus. After some precisely computed
interval, the stimulus is masked, and the mask is extin-
guished upon expiration of a fixed interval (see Figure 1).
These are displayed centrally in full-screen mode on a

black background (although the use of black stimuli on a
white background has been reported [8]). The mask is
included to preclude the stimulus iconic afterimage.

The shorter leg of the stimulus is presented with equal
probability for either side, and the task is to discriminate
on which side the shorter (or longer) leg appeared before
being masked. When a participant registers a decision,
the sequence reiterates after a one second delay. Re-
sponse time is irrelevant; participants can reasonably take
as long as they like to register a decision. The stimulus is
presented for shorter millisecond-periods for correct re-
sponses and longer millisecond-periods for incorrect re-
sponses, and the algorithm effectively measures the
temporal threshold at which a participant can discrimi-
nate a difference.

2. Technology

Our program was developed with Microsoft Visual Basic,
running under the Windows XP operating system, and
exploits the Windows Application Programming Inter
face (API) to perform many routines made available
through Dynamic Link Libraries (DLLs). These are used
by the operating system, and are reused by other applica
tions. They provide an efficient solution to many pro
gramming tasks. We have also produced an installation
package, which ensures that required DLLs, media files
and bitmaps are available on a system.

We particularly exploit DirectX, which is an extension
of the Microsoft Windows operating system. DirectX is a

Copyright © 2012 SciRes. IJIS

A. K. PREISS, N. R. BURNS 97

set of low-level APIs that provide Windows programs
with high-performance hardware-accelerated multimedia
support. Among the DirectX APIs, Microsoft Direct
Draw provides fast access to the accelerated hardware
capabilities of a computer’s video adapter.

2.1. Screen Redraw Period

IT can only be measured on a computer in increments of
time inversely equal to screen refresh rates. This works
because inspection times are characteristically greater
than even relatively long screen redraw periods. If the
screen is redrawn 100 times per second, say, then the
least time a stimulus image can exist before the mask is
presented is 10 msec. Hence image duration must be the
sum of 10 msec intervals, and image presentation can
only occur at the boundary of an interval.

Minimum image duration corresponds to the fastest
refresh rate of which a system is capable. Our program
enumerates the video card for maximum refresh rate.
However, for the program to be effective the monitor
needs to be compatible with the computer, that is, it
needs to be capable of handling the fast modes of the
video card. Notebook computer screens are compatible
by design, but a badly matched desktop system may not
be compatible.

Our program sets the screen resolution, determined by
the video card, for a clear image. When the native screen
resolution—best image clarity—does not coincide with
maximum refresh rate the program sets the video card to
the finest resolution that will operate at maximum refresh
rate. Before doing these things, however, it stores the
original video card settings and, afterwards, restores
them at program termination (see Figure 2). We declare
Public dx As New DirectX7, dd As DirectDraw7, ddsd
As DDSURFACEDESC2 and then invoke dd. GetDis
playMode ddsd, which lists all display modes for the
graphics card, from which our program selects the opti-
mal mode.

Figure 3 shows a maximum screen refresh rate of 75
frames per second, with the smallest image duration set
to 13 msec (actually, 13.33 msec but rounded forth
with). SOA stands for stimulus onset asynchrony; that is,
the asynchrony between onsets of two stimuli. Here, it is
the duration between stimulus onset and mask onset.

The “Confirmation of settings” box was included so
that we could intervene if a computer does not meet the
requirements of the IT task. If the user does not click the
OK control, the “Confirmation of settings” box persists
until the Ctrl-Alt-Esc sequence is pressed. This termi-
nates the program after returning the system to its previ-
ous settings. However, this situation is not common, and
the program proceeds to the next step at each OK re-
sponse.

(a) (b) (c) (d)

Figure 1. Sequence of stimuli presented in the IT task. (a)
Orientating cross; (b) Stimulus (left leg shorter form); (c)
Mask; (d) Mask blanker.

Figure 2. Upon video card enumeration, the message box
displays the current screen settings and declares the trial
settings.

Figure 3. This message box confirms the trial settings and
declares the computed minimum image duration.

2.2. Synchronous and Timely Image Presentation

The second consideration is synchronous and timely
presentation. It would be wrong to present the stimulus,
or mask, at the instant the screen is halfway through a
refresh cycle, for example. The images are centrally lo-
cated, hence the early part of the last half of the refresh
cycle would draw the bottom half of the image and the
late part of the first half of the next refresh cycle would
draw the top half of the image in that order (and then
continue as normal, refreshing the image at the refresh
rate). This would interfere with stimulus duration. Even
synchronous presentation starting on a given scan line
well off the image, for example, does not suffice. Al-
though the image would be drawn all in one go, starting
the stimulus timing here would yield the wrong result
because of the extra time to scan to the top of the image
before presentation. Hence our images are presented
when the screen scan line is one line above that which
draws the top of the image.

2.3. Stimulus Duration Timing

The third consideration is stimulus duration timing. It

Copyright © 2012 SciRes. IJIS

A. K. PREISS, N. R. BURNS 98

would be wrong to start stimulus duration timing at im
age presentation, then when the calculated multiple of
time intervals terminates, present the mask. The operat-
ing system has many demands that result in servicing
interrupt requests and allocating time slices to tasks,
which would suspend and resume the IT task in a manner
normally too quick to detect, but, nevertheless, upset
stimulus duration. Before specifically dealing with this,
we use timeGetTime in winmm.dll as our program timer.
The program sets it to 1 msec update intervals by the call
to timeBeginPeriod 1 at the beginning of the actual trial
routine. (The timer provided by the program develop
ment platform does not allow change of update intervals,
and does not have such a fine update interval.) For the
time-critical part of the code that displays the stimulus—
which we do not want interrupted—we increase our pro-
gram’s process and thread priorities to maximum by the
call to PumpUpTheThreadPriority in perfpres.dll, and, as
stated above, start timing when the scan line is one line
above that which draws the top of the image. This is de
termined by the DirectDraw7.GetScanLine method, which
retrieves the scan line that is currently being drawn on
the screen. We retrieve these in a program loop until obj-
Draw7Line = rPrimary.Top-1; that is, the scan line num-
ber equals the scan line number for the image top minus
one. The Windows message loop may delay the frame in
which the stimulus is presented, but does little to inter-
fere with timing once the stimulus is presented under
maximum process and thread priorities.

The thread priority is restored immediately after mask
offset; not after mask onset at stimulus duration timeout
because this would compromise a consistent mask dura-
tion constituted of the least multiple of minimum image
durations sufficient to cover 350 msec. The mask is
blanked by a plain black bitmap, which matches the
screen background. Thread priority is restored by the call
to RestoreThreadPriority in perfpres.dll.

We only elevate the thread priority during this critical
bit of code so as to ensure that Windows performs its
operating system tasks, but not during execution of the
time-sensitive period. After this, and pending participant
response, the trial display sequence reiterates. Upon
completion of the trial routine, before writing individual
and collective participant files, the program restores the
update period of timeGetTime to whatever it was origin
nally by the call to timeEndPeriod 1.

For TFT/LCD systems, pixels are activated synchro-
nously hence there is no need to check scan lines. How-
ever, there is no critical overhead or problem in doing so.
Our software satisfies both old and new type displays,
and we have found it useful to employ CRT displays in
some instances because the fastest are often faster than
TFT/LCD systems. Moreover, there is no point in quot-
ing pixel response times for any given TFT/LCD system

when they can be different for different systems. As long
as they are within the computed screen refresh time for a
system, we consider that to be sufficient.

Xie et al. [9] report timing accuracy to within 200 μsec
on Windows XP systems. PumpUpTheThreadPriority, in
conjunction with timeGetTime and timeBeginPeriod,
achieves timing to within 1 msec accuracy on Windows
XP platforms running Visual Studio development sys-
tems.

2.4. Image Scale Invariance and More Stimulus
Duration Timing

The fourth consideration is image scale invariance,
which is the size and shape part of a standardized pre-
sentation format. If an older computer system can only
display 800 × 600 pixels of screen information, and a
newer one, 1280 × 1024 pixels, then we do not want im-
ages to be displayed in different sizes or aspect ratios
between the systems. This is overcome by a device that is
also essential for timing accuracy. But first, if we gen-
erate images using the draw facility of the program de-
velopment platform (and generate screen messages by
the print facility), then these are dimensioned according
to screen resolution; never mind that generating stimulus
images upsets timing because of the unknown time taken
to generate the images as opposed to outputting them to
the screen. Since generation and output are encapsulated
in one development platform operation, we could only
start stimulus duration timing at the start of image gen-
eration. The solution is to write a relatively simple pro-
gram to generate all active trial images and screen mes-
sages, and then screen-copy them to bitmap images using
any one of many third-party applications.

Our program preloads these bitmap images onto re-
spective off-screen surfaces of video card memory as an
instance of VBDXSurface exposed by DirectDraw. From
here, the image required for display is selected as the
primary display surface of video memory and is blit (bit-
block image transfer) to screen with negligible delay.
Video memory is significantly faster than system mem-
ory, however we do not copy an off-screen surface to the
primary display surface; which would take a little extra
time. Our images are displayed by using the hard ware’s
ability to flip the visible video surface to an off-screen
surface so that the selected image now be comes visible.
The off-screen surface becomes the visi ble video surface
and the previously displayed video buffer is now the off-
screen buffer. This is called page flipping, and is very
fast. It is also the other essential feature regarding mask
presentation that is necessary for accurate stimulus tim-
ing.

Last, we toggle image dimensions between two dif-
ferent presets; one for message display and the other for
active trial images. The program does this by selecting

Copyright © 2012 SciRes. IJIS

A. K. PREISS, N. R. BURNS 99

corresponding primary display dimensions via our in
stance of DDSURFACEDESC2, and the images exhibit
the same size and aspect ratios across different screen
resolutions and different computer systems. The angular
width and height of the stimuli at a viewing distance of
one meter are 0.92 deg and 1.26 deg.

Image invariant presentation is accomplished by using
the BitBlt method in conjunction with SetPrimDisplay
Dimensions SYM_WIDTH, SYM_HEIGHT, which ad-
justs the image to compensate for different aspect ratios.
We do not use standard vector drawing methods because
it takes considerably more time to generate and output
the images, particularly if compensation for screen aspect
ratio was to be included. There are only a few μsecs
available between scan line detection and stimulus pres-
entation in which to execute our minimal instruction se-
quence employed for image presentation. Moreover, our
method of image presentation enables us to plug in dif-
ferent stimulus sets for other tasks by simply substituting
bitmaps.

While we are aware that subsequent versions of Win-
dows allow programs to be executed under emulations of
earlier versions, and that these appear true to the earlier
versions, we cannot be sure if timing behavior is repli-
cated. This would need to be tested on new systems.
However, we have no problem maintaining suitable
Windows XP machines to implement our task and sug-
gest that, at this stage, neither should others. Some fast
CRT displays should be included for certain tasks, along
with TFT/LCD displays. That a program incorporate the
latest technology is unreasonable owing to rapid techno-
logical change, hence our considerable investment in a
system that provides an enduring platform for tasks
where presentation timing is critical. Coming from the
birthplace of IT we believe our interpretation to firmly
comply with Vickers’ [1,2] intent; especially since he
was a colleague of both authors.

3. Implementation

Proceeding in program sequence order, we begin with the
dialog box shown in Figure 4, which prompts partici-
pants to register entry details. The routine builds file-
names from information provided and allows either an
ID number-type entry, which can be reckoned against the
same ID number for other tests and details, or allows
entry of details where the overall test regime has, as yet,
no corresponding information. In Figure 4, the latter are
initials, birth date and sex. The supervisor has control
over which input alternative is disabled (greyed out).
The practice box remains ticked for participants, and
once their details are complete they click OK to begin a
mentored pre-trial routine, which does not let them begin
until the supervisor is satisfied that participants under

stand what to do. (Input and practice routines can be dis-
abled for maintenance purposes, in which case a standard
maintenance filename is created). Supervisors can cancel
the program at any time by entering the Ctrl-Alt-Esc se-
quence, which returns the system to its original configu-
ration. All keyboard input boxes are type-checked for
logical violations of character entry, and a participant is
prompted to correct an error if one occurs.

Upon clicking OK the program extinguishes the title
bar and mouse pointer so as not to cause distraction or
interference, and then switches to full-screen, black back-
ground mode. (The invisible mouse pointer is con-
strained to the trial computer screen in case more than
one screen is installed.) A mentored pre-trial routine then
proceeds. Figure 5 provides an example of instructions
presented interactively with the participant’s responses.

Each time a mouse button is pressed, a muted “click”
provides operative feedback to the participant. If a par-
ticipant responds before the mask disappears, they are
alerted by a precipitous sound, which is the cue to re-
enter their response.

3.1. Algorithm for Measuring IT

The algorithm for measuring IT is based upon Wetherill
and Levitt [10], and can be understood by reference to a
participant’s feedback graph, shown in Figure 6, which

Figure 4. Participant details can be entered in ID number
format or Initials, Birth-date, Sex format.

Figure 5. Example of screen format for mentoring instruc-
tions used to familiarize participants with task require
ments and to meet criterion performance before commenc-
ing IT estimation.

Copyright © 2012 SciRes. IJIS

A. K. PREISS, N. R. BURNS

Copyright © 2012 SciRes. IJIS

100

Figure 6. Feedback graph presented to a participant at the end of an IT estimation run. The x-axis indicates trial number and
the y-axis indicates msec.

is displayed by the program after measuring IT and sav-
ing results. The algorithm starts with a stimulus duration
(SD) long enough to be easily discriminated. It is calcu-
lated as:

100
Smallest SD 2 Integer

Smallest SD 2


   





If the smallest SD is 13 msec, then we have 13 × 2 = 26
msec. and the initial stimulus display time is 26 multi-
plied by the integer part of (100/26) = 26 × 3 = 78 msec.
If the smallest SD is relatively long, then it is not multi-
plied by as much as if it is relatively short. The initial
stimulus duration is related to the value 100 msec in such
a manner that it is readily discriminated. In this exam-
ple we continue to work with a smallest SD equal to 13
msec.

As shown in Figure 6, while our participant initially
responded correctly the decrement in SD was in intervals
of 26 msec. Directly the participant responded incur-
rectly the first increment of SD was 26 msec, but after
wards any change was in 13 msec intervals. The partici-
pant needed to get three in a row correct before a decree-
ment. When they got less than three—and as soon as they
responded incorrectly—then the interval was incre-
mented and the three-in-a-row rule instituted anew. Of
course, when our participant got down to SD = 0 msec
(on trial 4) they simply had to guess, and this time their
guess was “wrong” thanks to a contrary split from the
computer randomizer governing the supposed short leg
side.

The program has a special display for SD = 0 msec
which makes it appear as if the stimulus and mask are

presented simultaneously. Anyway Figure 6 indicates
algorithm termination upon eight SD reversals, which
was calculated by Wetherill and Levitt [10] to be suffi-
cient for such a task. A participant’s IT is calculated as
the mean time in milliseconds of the eight SDs at the
reversal points.

Occasionally a participant gets it very wrong with the
result that SD increases well above the initial SD, hence
the program places an upper limit on SD that cannot be
exceeded. If a participant reaches this limit and gets 10
consecutively wrong at the limit, then the estimation run
is terminated with a polite message. Maximum SD is
calculated as:

500
Smallest SD

Smallest SD

 
 
 

Staying with our example, we have 13 multiplied by
the integer part of (500/13) = 13 × 38 = 494 msec as the
maximum SD. This is also used as the initial SD for the
first sequence of practice trials, and is halved for the
second sequence of practice trials.

3.2. File Output

Two files types are saved. The first is a common file,
which accumulates information for participants. The se-
cond is an individual file for each participant, and re-
cords their trial history.

For the very first file, that is, if no file exists, the pro-
gram creates a Dat folder in the same folder as the IT
executable and writes the file header in addition to par-
ticipant information. After this, it simply appends new
participant’s information. Autility program can redisplay

A. K. PREISS, N. R. BURNS 101

each participant’s results in the graph format given above
upon reading the individual files.

3.3. Windup

The supervisor stays with the participant during the
mentoring stage to ensure that they are sufficiently fa-
miliar with the task, but departs before the participant
clicks the mouse to initiate the trial. Afterwards, the pro-
gram announces the participant feedback graph with a
“windup” refrain loud enough to alert the supervisor that
the task is complete, which is the cue to re-enter and
briefly explain the results. At this stage the mouse
pointer is re-enabled along with the title bar, the latter of
which flashes and directs the participant to close the
graph when done. After closing the graph a “thank you”
screen is displayed, along with a “farewell” riff.

The program embodies many features, such as large
message boxes with easy-to-decipher large font and sim-
ple messages, but these are not essential to the basics.

4. Validity and Reliability

Our program has been made available to a number of
research groups, free-of-charge, on the understanding
that we have access to demographic data and IT esti-
mates, and has also been used extensively in our own
research program. Most of these studies have yet to be
completed hence there are, as yet, no published data us
ing our program. However, two examples of validity are
the demonstration of differences in IT across individuals;
and principled changes of IT with age (specifically, IT
improves from childhood to adulthood and then declines
with age in later adulthood.

Figure 7 shows a histogram for IT for N = 673 adults
(326 females; age range 18 - 45 years, M = 29.2, SD =
9.77 years). Clearly, there is substantial inter-individual
variation in IT even in the relatively age-homogeneous
young adult sample (for IT, M = 49.0 (SD= 14.5) msec;
minimum IT = 14 msec; maximum IT = 156 msec).

Figure 8 shows the distributions for IT in N = 1504
males in ten age groups from under 10 to over 80 years
of age. Again, the expected pattern of IT over the life-
span is seen. Together, Figures 7 and 8 demonstrate the
validity of IT as measured by our program.

Concerning reliability, the nature of our estimation al-
gorithm, which is an adaptive staircase, precludes esti-
mating internal consistency reliability. However, we
have data on test-retest reliability for three samples. First,
N = 393, community-dwelling older adults (211 females;
age range 65 - 90 years, M = 72.3, SD = 5.55 years) com-
pleted two IT estimations separated by six months. The
correlation between estimates was r = 0.51. Second, a
sample of 30 older adults (17 stroke victims, 13 healthy
controls, age range 65 - 90 years, M = 70.7, SD = 9.12

Figure 7. Histogram of inspection time (IT) for N = 673
young adults.

Figure 8. Box-and-whisker plot for N = 1504 males in 10 age
groups showing the expected pattern of improvement of IT
from childhood into adolescence and adulthood followed by
a decline of IT performance in later adulthood.

years) completed two IT estimations separated by six
months. The correlation between estimates was r = 0.59.
Third, a sample of N = 23 adult males (age range 18 - 38
years, M = 25.3, SD = 6.02 years) completed three esti-
mations within a single experimental session; the average
correlation between the three estimates was r = 0.78. As
far as we are aware there are no published data on test-
retest reliability over extended periods for older adults;
for younger adults the test-retest reliability we see here is
consistent with our own experience using other programs

Copyright © 2012 SciRes. IJIS

A. K. PREISS, N. R. BURNS

Copyright © 2012 SciRes. IJIS

102

and with estimates in the literature (see, e.g., [5]).

5. Conclusions

In spite of its utility, some researchers [11-13] remark
that IT is not the unambiguous measure of time to make
one observation of sensory input originally proffered.
Upon presentation, the mask interacts with the stimulus
to give the illusion that the shorter leg increases length in
a flicker of apparent motion, thus suggesting on which
side it appeared. Furthermore, the mask interacts with the
stimulus to produce a sideways motion away from the
longer side towards the shorter side. Hence it may not be
minimum discrimination time that is measured, but abil-
ity to detect the apparent motion. This can hardly repre-
sent time required to inspect something, but rather time
required to register a flicker of movement; which is an
evolutionary adaptation of many visual systems not all of
which can inspect. Whatever the interpretation, such
abilities are taken to be related to mental speed, or IQ by
way of exploitation of subtle cues, and that is where
things stand.

Our program fulfils Jensen’s [14] call for standardiz-
ing chronometry insofar as it implements the classical IT
task along with the modified mask introduced by Evans
and Nettelbeck [15], as well as the Wetherill and Levitt
estimation algorithm [10] consistently used at University
of Adelaide by Nettelbeck and co-workers. Moreover, it
implements sophisticated timing and presentation of the
stimuli so that they are invariant and optimal across
computers and laboratories.

6. Acknowledgements

The research reported here was supported by Australian
Research Council Discovery Grant DP0211113. We are
grateful to those who have used our program and have
provided some of the data reported herein.

REFERENCES
[1] D. Vickers, “Evidence for an Accumulator Model of Psy-

chophysical Discrimination,” Ergonomics, Vol. 13, No. 1,
1970, pp. 37-58. doi:10.1080/00140137008931117

[2] D. Vickers, “Decision Processes in Visual Perception,”
Academic Press, London, 1979.

[3] D. Vickers, T. Nettelbeck and R. J. Willson, “Perceptual
Indices of Performance: The Measurement of ‘Inspection
Time’ and ‘Noise’ in the Visual System,” Perception, Vol.
1, No. 3, 1970, pp. 263-295. doi:10.1068/p010263

[4] D. Vickers and P. L. Smith, “The Rationale for the In-
spection Time Index,” Personality and Individual Differ-
ences, Vol. 7, No. 5, 1986, pp. 609-623.
doi:10.1016/0191-8869(86)90030-9

[5] J. L. Grudnik and J. H. Kranzler, “Meta-Analysis of the
Relationship between Intelligence and Inspection Time,”
Intelligence, Vol. 29, No. 6, 2001, pp. 523-535.
doi:10.1016/S0160-2896(01)00078-2

[6] T. Gregory, T. Nettelbeck, S. Howard and C. Wilson,
“Inspection Time: A Biomarker for Cognitive Decline,”
Intelligence, Vol. 36, No. 6, 2008, pp. 664-671.
doi:10.1016/j.intell.2008.03.005

[7] T. Gregory, A. Callaghan, T. Nettelbeck and C. Wilson,
“Inspection Time Predicts Individual Differences in Eve-
ryday Functioning among Elderly Adults: Testing Dis-
criminant Validity,” Australasian Journal on Ageing, Vol.
28, No. 2, 2009, pp. 87-92.
doi:10.1111/j.1741-6612.2009.00366.x

[8] I. J. Deary and C. Stough, “Intelligence and Inspection
Time: Achievements, Prospects and Problems,” American
Psychologist, Vol. 51, No. 6, 1996, pp. 599-608.
doi:10.1037/0003-066X.51.6.599

[9] S. Xie, Y. Yang, Z. Yang and J. He, “Millisecond-Accu-
rate Synchronization of Visual Stimulus Displays for
Cognitive Research,” Behavior Research Methods, Vol.
37, No. 2, 2005, pp. 373-378. doi:10.3758/BF03192706

[10] G. B. Wetherill and H. Levitt, “Sequential Estimation of
Points on a Psychometric Function,” British Journal of
Mathematical and Statistical Psychology, Vol. 18, No. 1,
1965, pp. 1-10. doi:10.1111/j.2044-8317.1965.tb00689.x

[11] M. White, “Inspection Time Rationale Fails to Demon-
strate That Inspection Time Is a Measure of the Speed of
Post-Sensory Processing,” Personality and Individual
Differences, Vol. 15, No. 2, 1993, pp. 185-198.
doi:10.1016/0191-8869(93)90025-X

[12] M. White, “Interpreting Inspection Time as a Measure of
the Speed of Sensory Processing,” Personality and Indi-
vidual Differences, Vol. 20, No. 3, 1996, pp. 351-363.
doi:10.1016/0191-8869(95)00171-9

[13] N. R. Burns, T. Nettelbeck and M. White, “Testing the
Interpretation of Inspection Time as a Measure of Speed
of Sensory Processing,” Personality and Individual Dif-
ferences, Vol. 24, No. 1, 1998, pp. 25-39.
doi:10.1016/S0191-8869(97)00142-6

[14] A. R. Jensen, “Clocking the Mind: Mental Chronometry
and Individual Differences,” Elsevier Ltd., Oxford, 2006.

[15] G. Evans and T. Nettelbeck, “Inspection Time: A Flash
Mask to Reduce Apparent Movement Effects,” Personal-
ity and Individual Differences, Vol. 15, No. 1, 1993, pp.
91-94. doi:10.1016/0191-8869(93)90045-5

http://dx.doi.org/10.1080/00140137008931117
http://dx.doi.org/10.1068/p010263
http://dx.doi.org/10.1016/0191-8869%2886%2990030-9
http://dx.doi.org/10.1016/S0160-2896%2801%2900078-2
http://dx.doi.org/10.1016/j.intell.2008.03.005
http://dx.doi.org/10.1111/j.1741-6612.2009.00366.x
http://dx.doi.org/10.1037/0003-066X.51.6.599
http://dx.doi.org/10.3758/BF03192706
http://dx.doi.org/10.1111/j.2044-8317.1965.tb00689.x
http://dx.doi.org/10.1016/0191-8869%2893%2990025-X
http://dx.doi.org/10.1016/0191-8869%2895%2900171-9
http://dx.doi.org/10.1016/S0191-8869%2897%2900142-6
http://dx.doi.org/10.1016/0191-8869%2893%2990045-5

