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ABSTRACT 

In this paper we demonstrate, that shearing is changing only one parameter of the static loop. By using the shearing 
factor Ns, linked to the widely used, demagnetization coefficient ND, we show the one parameter link between the static 
un-sheared and that of the sheared saturation loop, obtained by a non-toroidal, open circuit hysteresis measurement. The 
paper illustrates the simple relation between open circuit loop data and measured real static saturation data. The pro-
posed theory is illustrated by using the hyperbolic model. For experimental illustration, tests results are used, which 
were carried out on two closed and open toroidal samples, made of NO Fe-Si electrical steel sheet, mimicking the de-
magnetization effect of the open circuit VSM measurement. These are both theoretical and experimental demonstrations, 
that shearing only changes the inclination of the static hysteresis loop. These test results, presented here, agree very well 
with the calculated results, based on the proposed method. 
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1. Introduction 

A practical way of characterising a magnetic material is 
to measure its static hysteresis loop in a closed magnetic 
circuit. This usually takes form in a toroid or an Epstein 
square [1], which minimises most of the stray and side 
effects of other measuring methods. This however is dif-
ficult in practice, considering the shapes and sizes of the 
samples of the magnetic materials in industrial applica-
tions. Since the shape of the sample changes its measured 
magnetic properties, it is desirable to use samples from 
the final product, which normally come in the shape of a 
rod or a sheet, for industrial purposes. This however cre-
ates some difficulties, with making them into a toroid or 
Epstein square sample. Most test results therefore are 
obtained by using VSM (Vibrating-sample Magnetome-
ter) [1-3] method. This method, with excellent repeat-
ability, is now a widely accepted for industrial tests.  
The data however suffers from the effect of demagneti-
zation, due to the open circuit geometry of the measuring 
arrangement. The need, to obtain the real, static parame-
ters from measured data of the tested materials, has mo-
tivated people to work out various methods to reduce the 
effects, influencing the measured data [4-7].  

At the beginning we have assumed that, only one of 

the calculated parameters is affected by the external de-
magnetization. Test results showed, that this assumption 
was right. It is possible to work out the un-sheared pa-
rameters (equivalent to closed circuit toroidal measure-
ments) from the open circuit results of a VSM results. It 
will be shown, that this procedure requires only change 
in the effective slope of the loop with no change in the 
other major parameters of the modelled sample [8]. 

It was initially assumed that, the error coming from the 
ever present internal demagnetisation and from other 
sources is smaller than the [9] (usually at least an order 
of magnitude smaller) effect of shearing. This is however 
only conditionally true and all major models (like the 
Moving Preisach and Dinamic Jiles-Atherton etc.) [10,11] 
are modified to include, the ever present, internal de-
magnetization. We also assumed that the effect of shear-
ing depends only on the magnitude of the demagnetiza-
tion factor and the mechanical treatment not introducing 
changes in the magnetic properties of the materials. Also 
assumed, that it is independent of the method of meas-
urement. 

Cullity, who studied the effect of shearing on the in-
ternal demagnetization in detail, published the relation 
specifically to the shape and size of the specimen in 
graphical form [11-15]. In spite of all the assumptions 
made, the agreement between the theoretical and ex-*Corresponding author. 
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perimental results is remarkable. Further experiments are 
in progress for further verification this simplified method. 
Work is also extended to include the so far neglected 
effects to improve on the accuracy. 

2. Measuring Arrangements 

Preceding the test, the toroidal sample was carefully de-
magnetized by applying an alternating field of f = 10 Hz 
with logarithmically decreasing amplitude in 5000 steps 
from saturation to zero [1,2]. The hysteresis loop was 
measured with a triangular excitation at a frequency of 
f = 0.001 Hz and integrated with a Walker integrator (see 
Figure 1). The rate of change of the field here is de-
pendent on both the frequency f and field amplitude Hm 
therefore at Hm = 20 A/m, the rate of change, comes to 
dH/dt = 4f·Hm = 0.08 A/m·s. 

The static hystersis loop can only be obtained at low 
rate of change, particularly when the extremely soft sam-
ple has a characteristic square-like hysteresis loop [1,2]. 

To avoid phase shift between H and B, the current 
measuring resistance R (see Figure 1) has always satis-
fied the 2πfL << R criterion. 

Although the same test was repeated on ultrasoft, Fi-
nemet, from nanocrystalline to Mn-Zn ferrite, NO Fe-Si 
and low and high carbon steel cores, due to the limited 
length of the paper, here only the data of one illustrative 
experiment are included. 

3. Description of the Model 

The analytical approach is based on the assumption, that 
in general, particularly in case of soft irons, there are 
three parallel processes, dominating the overall magneti-
zation process i.e. the reversible and irreversible domain 
wall movement (DWM), the reversible and irreversible 
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Figure 1. Schematic block diagram of an experimental ar-
rangement for measuring the toroid sample. 

domain rotation (DR) and the domain wall annihilation 
and nucleation (DWAN) processes. Although these proc- 
esses are interlinked, they can be mathematically formu-
lated separately and combined, by using Maxwell’s su-
perposition principle. They individually dominate the 
low, middle and near saturated region of magnetization 
and all are supposed to have sigmoid shapes. This model 
is already used in number of applications [15-18] and it 
is well documented in the literature therefore, here only a 
brief summary of the relevant formulation will be given 
in, canonic form [19,20]. 

The contribution of the individual processes to the 
combined hysteresis loop can be described by the fol-
lowing normalized mathematical equations. 
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Here fuk and fdk are the normalized ascending and de-
scending magnetization functions respectively, h is the 
field excitation and hck is the coercivity of the kth process. 
ak is the amplitude of the component processes present, 
αk is the slope, nS is the shearing factor (nS is unity for 
un-sheared loops, see later) and f0k is the integration con-
stant [7,21], while hm represents the maximum field ex-
citation. The index k refers to the individual component 
processes and n is the total number of processes involved. 
For most of the magnetic materials used in practice, n 
equals 3 (see beginning of this section). 

4. Experimental Results 

We proposed at the beginning, that the changes in the 
shape of the hystetesis loop measured on a closed toroid 
can be described by an appropriate change in the αknS 
product (see Equation (2)). Here αk represents the slope 
of the major loop, measured on a toroid sample (for nS = 
1, nD = 0) in the model. For demonstration, we used the 
measurements on a toroidal sample made of NO Fe-Si 
soft magnetic material. The geometrical details of the 
toroids used, in the experiment, were: Dex = 25 mm, Din = 
15 mm and thickness d = 0.5 mm [1]. 

In the first part of the experiment, the toroid was 
magnetised to Bm = 1.68 T by applying a linearly variable 
field of Hm = 2750 A/m maximum amplitude for meas-
uring the hysteresis curve. Then, two 0.5 mm air gaps 
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were cut in the magnetic circuit at a slow rate and the 
measurement was repeated. Great care was taken not to 
introduce additional side effects at cutting. This was for 
the simulation of an open-loop VSM measurement with 
the same ND and NS. The two hystetesis loops (before and 
after cutting) are shown in Figure 2. The measured loop, 
without the gap, was modelled by using Equations (1)-(3). 
When the iteration (manual or computerised) produced 
the best fit to the measured curve, the normalized and the 
equivalent physical values can be easily be read from the 
two coordinate systems (normalized and measured), as 
shown in Figure 3. 

The iteration yielded the following normalised (lower 
case letters) and corresponding physical parameters (cap-
ital letters) for the best fit:  

a1 = 1.17, a2 = 0.14, a3 = 0.35, 
α1 = 4.5, α2 = 1.2, α3 = 0.143, 
hc1 = 0.115, hc2 = 0.45, hc3 = 0.575,  
hm = 7.5. 
Corresponding to:  

A1 =1.17 T, A2 = 0.14 T, A3 = 0.35 T, 
Hc1 = 44 A/m, Hc2 = 164.9 A/m, Hc3 = 210.75 A/m. 
Hm = 2750 A/m. 
The normalization: 1b = 1T, 1h = 382.6 A/m. 
By altering the shearing coefficient ns, in the iteration 

and using the new values of α1·nS = 0.28, α2·nS = 0.073, 
and α3·nS = 0.0087, we obtained the closest fit to the 
sheared hystetesis loop. The best fit appeared to be, when 
nS was around 0.061. 

From the geometry of the magnetic circuit, by using 
the magnetic Ohm’s law, ND (see Equation 7 for the rela-
tion between ND and NS) the demagnetization factor, can 
be calculated by using Equations (4) and (5). We as-
sumed here, that the amplitude of the magnetization vec-
tor is the same in the iron as in the air gap. So: 
 

 

Figure 2. The major hysteresis loops of a NO Fe-Si sample 
measured on a toroid with and without 1 mm gap. 

 

Figure 3. The measured and calculated hysteresis loops of 
NO Fe-Si material with and without external demagnetiza-
tion. 
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Here li and la are the mean paths of iron and air respec-
tively, μi and μa represent the permeability of iron and air 
(free space) and A is the cross section area of the iron 
core. It shows that, when NS the shearing coefficient is 
unity (no shearing), then the ND demagnetization factor is 
zero. The expression in (9) represents the effective per-
meability. 
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We must remind the reader of the following: ND is 
given traditionally in a value with unity dimension, (i.e. 
when both the H and B measured in A/m). When differ-
ent unitary system is used then ND has a different physi-
cal dimension and must be normalised (see nD as nor-
malised ND). 
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By using the geometrical details of the toroid, given 
above with 1 mm effective gap, the physical shearing 
coefficient numerical value will come to 

1

1 16.5S
D ir

N
N 

 


1
           (10) 

here the initial permeability, calculated from the meas-
ured static hysteresis loop data of the soft iron sample, 
was around μi = 1000. 

Figure 4 depicts the calculated major loops. 
In the second experiment the closed toroidal sample 

was magnetized into deeper saturation by applying a high 
Hm = 4125 A/m maximum excitation. Following that, 
two 1.5 mm cut (effective 3 mm gap) were made in the 
toroid and the measurement was repeated. 

This time however the maximum excitation was in-
creased to approach Bm = 1.68 T, achieved without the 
gap. 

The loops were modelled by using the same numerical 
parameters at a larger hm maximum field excitation. The 
resulted loops (measured and calculated) are depicted in 
Figure 3. The agreement between the experimental result 
and the modelled one is extremely close. 

Other additional factors like the internal, shape de-
magnetization factors and/or stresses were taken as neg-
ligibly small. 

The separation and calculation of αk and nS from the 
experimentally obtained αk·nS product, requires the pres-
ence of two invariants in the transformation. 

It is imperative to look at the two loops (un-sheared 
and sheared) at the same maximum magnetization (or as 
near as possible). Under this condition we can claim to 
have the necessary two invariants i.e. the coercivity and 
the maximum magnetisation. 

It can be shown, that the two smaller processes (DR, 
DWAM) have often a negligible effect on the overall 
coercivity and experience shows that in most applications, 
 

 

Figure 4. The modelled major loops before and after shear-
ing. 

particularly for soft irons, it is accurate enough in most 
cases to use the equations describing the dominant proc-
ess. The proposal is valid, however, when the DR and 
DWAM processes are not negligible. All resultant pa-
rameters, required for the transformation can be calcu-
lated (see Appendix) from the parameters of the proc-
esses involved. It is enough therefore to demonstrate the 
process by using one major component [22]. On this 
ground the present example is given entirely for illustra-
tive purposes. 

By using (2a), we can write for the sheared and the 
un-sheared dominant loop: 

  1 1 m1 1 1 1 1tan h tan hc S m sa h h a n h    1ch   (11) 

(nS being unity in the first case) 
From this, the shearing coefficient nS may be calcu-

lated as: 
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where hm1 and hm1s are the amplitudes of field excitations 
necessary to achieve the same maximum magnetization 
in the un-sheared and the sheared sample respectively. 

In soft steel, when the coercivity hc is small relative to 
the peak excitation, it is often good enough to use the 
ratio of the maximum field, from the saturation loop, 
measured by VSM. In the knowledge of nS the value of 
ακ could be calculated from the measured 1 Sn  product. 

The external shearing coefficients, calculated from the 
measured data was ns = 0.065 for the first experiment (1 
mm gap) and ns = 0.02 for the second one (3 mm gap). 
Some allowances should be made to the inherent internal 
demagnetization present in all type of measurement [2]. 
The estimated value of the internal demagnetization field 
was max 0.2 T [9]. 

From the second invariant, the ratio between the arc-
tanh values of the remanences (sheared and un-sheared) 
(see Equation 2(b)) is also equal to nS. 

The measured remanence of the 1 mm gap sample was 
0.032 T at Bm = 1.41 T, while the corresponding mod-
elled figure was 0.035 T. In the case of the 3 mm gap 
sample, the measured and the modelled remanence fig-
ures were 0.0085 T and 0.0066 T respectively, taken at 
Bm = 1.5 T. Based on these figures, Br the projected re-
manence of the loop, transformed back onto the un- 
sheared (nS = 1 and nD = 0 ) plane came to 0.636 T. 

It can be shown also, that the transformation does not 
change the area enclosed by the hysteresis loop, therefore 
sheared or un-seared, it has the same hyteretic losses. 

5. Conclusion 

It was proven, that shearing and/or un-shearing will not 
affect most of the static characteristic, material parame-
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ters of the soft sample. It is also shown, that the external 
demagnetization affects one parameter only, namely the 
effective slope (i.e. nSα) of the hysteresis loop. From the 
sample’s geometry the shearing coefficient can often be 
calculated. With the proposed method and the knowledge 
of ND [2] one can exploit the advantage of the open ge-
ometry measuring methods for unusual samples (i.e. balls, 
sheets or rods with known ND) and calculate the equiva-
lent closed circuit static parameters. 

The transformation is based on the two invariants, the 
coercivity and the maximum excitation. 

This model independent transformation can be an use-
ful tool in practice, in experimental work as well as in 
theoretical applications. The very close agreement be-
tween the theoretical and experimental results, the rela-
tive simplicity of the procedure and accuracy demon-
strates the applicability of the proposed method in prac-
tical cases. 
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Appendix 

The single equivalent tanh function can be calculated 
from (14), (15), (16), and (17) as shown in (18), (19), (20) 
and (21).  
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where the new integration constant is: 

0 01 0f f f                  (14) 

The remanence of the resultant hysteresis of the two 
process magnetization is described from (1b) and (2b) 
(for h = 0) as: 
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The maximum magnetization amplitude a0 is: 

0 1a a a                   (16) 

From (15) α0hc0 can be calculated. From the firs de-
rivative of (2b) by h comes: 
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In the knowledge a0 and α0 the hc0 can also be calculated. 
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and 
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From (15), (16), (17), (18) and (19) all parameters can 

be calculated for 

  0 0 0 0tanhu u cy a h h f   0
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      (20)  

and 

  0 0 0 0tanhd u cy a h h f            (21) 

as functions of the field excitation h. 
This calculation can be repeated n – 1 times, for the 

equivalent set of parameters, where n is the number of 
processes in magnetization. 
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