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ABSTRACT 

In this paper, we consider a class of Sine-Gordon equations which arise from the model of the thermoelastic coupled 
rod. Firstly, by virtue of the classical semigroup theory, we prove the existence and uniqueness of the mild solution un-
der certain initial-boundary value for above-mentioned equations. Secondly, we obtain the boundedness of solutions by 
the priori estimates. Lastly, we prove the existence of a global attractor. 
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1. Introduction 

In this paper, we consider the following nonlinear ther-
moelastic coupled rod system  
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(1) 

The above system describes the vibrations of an extensi-
ble thermoelastic rod model. Here u = u(x, t) and 
θ = θ(x, t) are all real-valued functions on Ω × [0, +∞], 
Ω = (0, 1) is an open bounded domain of R. The coeffi-
cient α, γ, ε, k are all positive constants, where α is called 
the strong damping coefficient of rod, ε is the small pa-
rameter. The sign Δ denotes 
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1 2 0,g x g x H  . 

“Global solutions” and “global attractor” are two basic 
concepts in the study of long-time behavior of nonlinear 
dissipative evolution equations with various dissipation. 
If the coupled terms are equivalent to 0, Equations (1) 
will decouple to the Sine-Gordon equation 

 1sintt t tu u u u u u g x               (2) 

and the heat equation. The structure of global attractors 

for weakly damped nonlinear wave Equation (2) as α, ε = 
0 is studied in Temam [1] and Zhu [2] and Wang [3] and 
the one for the strongly damped nonlinear wave equation 
is considered in Zhou [4]. Semion [5] shows the Frechet 
differentiability for a damped sine-Gordon equation with 
a variable diffusion coefficient. Han [6] proves the exis-
tence of Random attractors for stochastic Sine-Gordon 
lattice system. But have the global solution and the 
global attractor for the “thermoelastic coupled” rod sys-
tem (1)? To our knowledge, nothing was known until 
now. 

In this paper, we give the proof of the existence and 
uniqueness of the mild solution and the existence of a 
global attractor for system (1) in space 

 1
0H   × L2(Ω) × L2(Ω). 

2. Existence and Uniqueness of Global  
Solutions 

It is well known that operator 
A = –Δ:D(A) =  1

0H  H2(Ω) → L2(Ω) is self-adjoint, 
positive and linear and its eigenvalues 

i N
 satisfy 

0 < λ1 ≤ λ2 ≤ ··· ≤ λm ≤ ··· and λm → +∞ as m → +∞. Set 
L2(Ω), 

 i
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0H  ,   2 1

0H H    , 
     21 2

0E H L L       with the usual inner prod-
ucts and norms, respectively 
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It is convenient to reduce (1) to an evolution equation 

Copyright © 2012 SciRes.                                                                              IJMNTA 



D. X. WANG, J. W. ZHANG 103

of the first order in time, Let ut = v, then (1) are equiva-
lent to the following initial value problem in E, 
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where Y = (u, v, θ)T, 
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with D(C) = D(A) × D(A) × D(A), I is the identity opera-

0 0 0 0

0 0

0 0 0 0

I I

C A

k k

 
  
         
     

 

tor L2(Ω),  1
0H   and D(A). Set B = –C, then similar to 

[7], by ma e slight modification and reasoning, 
we can prove that for any α, k > 0, B is a sectorial opera-
tor on E and generates an analytic semigroup Cte  on E 
for t > 0. By the assumptions g1(x),  

king som

 2 0g x H  , it 
is easy to check that the function F(Y, lly 
Lipschitz continuous with respect to Y, By the classical 
semigroup theory concerning the existence and unique-
ness of the solution of evolution differential equations, 
we have  

Theorem

1

E is lot):E → ca

 2.1. Assume that the assumptions g (x), 

d

In this case, Y(t) is called a mild solution of the system 
(3

1

   1
2 0x H  hold, then consider the initial value 

Hilbert space E. For any initial value 
 0 0 1 0, ,

T
Y u u E  , there exists a unique continuous 

Y0) =     , , 0, );
T

u v C E    
such that Y(t) = (u(t), v(t), θ  
equation 

 

g
problem (3) in 

function Y(t) = Y(t, 
(t))T satisfies the integral

      0 0 0
, ,

t C t sCtY t Y t Y e Y e F Y s s s    . 

) and Y(t) = Y(t, Y0) is jointly continuous in t and Y0, 
that is, the solution (u, ut, θ) of the system (1) satisfies 
   

 t > 0, we may introduce the 
m

 , , 0, ),tu u C E   . 
yBy Theorem 2.1, for an

ap 
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It maps E =  × L2(Ω) × L2(Ω) into itself and it 
en

It is obviously that the map {S(t), t > 0},
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l procesjoys the usua s properties as follows 
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existence of the bounded absorbing set and the global 
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ntinuous in E. In the following, we will intr the 

attractor for map {S(t), t > 0} in E. 

3. The Existence of Bounded

In this section, we will show boundedness of the solu
tions for system (3). For this purpose, we define 
weighted inner product and norm in 
E =  1

0H   × L2(Ω) × L2(Ω) by  
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for any  , where wi = uit i

i  μ is chosen by 
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Obviously the norm 



E
  in (4) is equivalent to the usual 

norm in space E. 
 = Let φ = (u, w, θ)T, w ut + εu, where ε is chosen as  
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then the system (3) can be written as 
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Obviously, the mapping 
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has the relation with 
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where Rε{u, w, θ} →{u, w + εu, θ} is an omorphism of 
E. So we only need consider the equivale  map (6). 

-
po
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For the boundedness of the solution of (5) in E, we 
firstly present an important lemma which plays an im

rtant role in this artical. 
Lemma 3.1. For any 
   1

0, ,
T

u w H     × 2 2 L (Ω) × L (Ω). we have 

   1
2

2 2

2 3

2
2

1,
EE

H w A w         . 

where 

Copyright © 2012 SciRes.                                                                              IJMNTA 



D. X. WANG, J. W. ZHANG 104 

3 3

1 2 3

2
, 1 4 , 2

4 4
k

      
3

4


   

          

are all positive constants if 
1

2
k




  . 

Proof.  

  

   

       

     

 

 

1
2

2
2 2

2

2 2

21

2 2
1 3

2 2

1 1 2 1 31

2 2

2 2 1 2
1

2 21 3
1

2 11 2

1

2 2 , , ,

1 2

2

1

2

2

2

21
2

2

w A w

u w

k w u u w

u w k

w u u w

u u w w

k
u u

k
w w

  

  

      

       

    

  
   

 
     

  


 
 

     

     

        

   

  
   

 
   

  
  

2

1 3,
EE

H     
 

1 1  




23

2






 

with 

   4
1 1 22 1            

   2
1 1 32 2k          

  1 2 1 31 2k           4

the Lemma is easily obtained. 
Theorem 3.1. There exists a positive co t M > 0 

such that for any bounded set B of E, then there exists 
T0(B) ≥ 0 such that the solution φ = (u(t), w(t), θ(t))T of (5) 

nstan

with  0 B   satisfies 

        
0t T B

in which w = ut + εu. 
Proof. Let φ = (u, w, θ)T, w = u  + εu be the solution of 

(5) with initial value 
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By Gronwall’s inequality we have 
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thus we complete the proof of the Theorem. 
Corollary 3.1. Let B0 be a bounded closed ball of E 

at 0 of radius M. For any in alue centered itial v
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where from (15) we have 
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Similar to the proof of the Lemma 3.1, from (16) we 
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Thus, the proof of Theorem 4.1 is complete. 
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