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ABSTRACT 

The entanglement of a pure bipartite state is uniquely measured by the von-Neumann entropy of its reduced density 
matrices. Though it cannot specify all the non-local characteristics of pure entangled states. It was proven that for every 
possible value of entanglement of a bipartite system, there exists an infinite number of equally entangled pure states, not 
comparable (satisfies Nielsen’s criteria) to each other. In this work, we investigate other correlation measures of pure 
bipartite states that are able to differentiate the quantum correlations of the states with entropy of entanglement. In 
Schmidt rank 3, we consider the whole set of states having same entanglement and compare how minutely such states 
can be distinguished by other correlation measures. Then for different values of entanglement we compare the sets of 
states belonging to the same entanglement and also investigate the graphs of different correlation measures. We extend 
our search to Schmidt rank 4 and 5 also. 
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1. Introduction 

Non-local features of quantum mechanics distinguishes it 
from classical systems [1,2] and entanglement plays as a 
non-local resource to perform various computational 
tasks [3]. For this type of correlation between different 
subsystems of a composite system, we require a well 
defined process to quantify the amount of entanglement 
of a state. In asymptotic sense, both the quantities needed 
to prepare a pure bipartite state and distill pure entan-
glement from it [4,5], are equal with the von-Neumann 
entropy of the reduced density matrices of the pure bi-
partite state and is usually called as the entanglement of 
the state. Under stochastic local operations along with 
classical communications (in short, LOCC) this reversi-
bility character and corresponding uniqueness of the 
measure of entanglement of pure bipartite systems are 
established [6]. It is found that the measures, not equiva-
lent in asymptotic sense, with von-Neumann entropy of 
reduced density matrices for a pure system, are unable to 
impose consistent ordering on the set of all quantum sys-
tems [7,8]. However the nature of evolution of composite 
systems in case of pure bipartite states under determinis-
tic LOCC [9], are not very much clear to us. From the 
quantification procedures one may conclude that entan-
glement is monotonic under LOCC [5,10,11]. Though it 
does not help us to identify a unique measure of entan- 

glement of pure bipartite systems. In case of mixed bi-
partite systems the situation is more complex; e.g. the 
non-monotonicity of relative entropy of entanglement 
with negativity and concurrence [12]. We proceed here to 
find the existence of such ordering on different correla-
tion measures for lower rank pure bipartite states. For 
this reason we critically observed the behaviour of pure 
bipartite systems under deterministic LOCC. The possi-
bility of transforming one pure bipartite state to another 
is determined by the majorization relation between the 
Schmidt coefficients of the states specified by Nielsen’s 
criteria [13]. It immediately suggests us that it could not 
be always possible to transform a pure bipartite state to 
every other pure bipartite state having a lower amount of 
entanglement under deterministic LOCC. There are dif-
ferent measures of entanglement, that are not equivalent 
with the von-Neumann entropy of reduced density ma-
trices for pure bipartite states, depend directly on coeffi-
cients of Schmidt decomposition of the state. Those 
measures could generate some ordering on the systems 
regarding possibility of its evolution under LOCC [14]. It 
is established that considering only single copy of the 
state, there are infinitely many measures generating dif-
ferent ordering on the Schmidt form of the state [15]. 
This work is directed to characterize and compare the 
different correlation measures of entanglement under 
preservation of entanglement. We begin with the study 
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from 3 × 3 pure bipartite system, then 2 concentrating on 
4 × 4 system ended with an example of 5 × 5 system. For 
higher and higher Schmidt rank, the behavior of lower 
rank systems indicate chaotic behavior. 

The brief outline of our work is as follows: in Section 
2 we first recall the notion of entanglement of pure bipar-
tite states shared between two distant parties. Then we 
discuss (Section 3) about the transformation of a pure 
bipartite system under deterministic LOCC governed by 
the majorization rule [16]. This is a nice ordering be-
tween Schmidt vectors of the associated states. This pro-
vides us the existence of pair of states, for which a higher 
entangled state could not be always transformed to a 
lower entangled one with certainty. In other words, their 
entanglement are not comparable (precisely, comparabil-
ity means those states which would satisfy Nielsen’s cri-
teria). This concept of incomparability (i.e. violets Niel-
sen’s criteria, or in other words, the states are not con-
vertible under deterministic LOCC) indicate a non-local 
feature not incorporated in the unique quantification 
scheme of entanglement for pure bipartite systems. Con-
servation of entanglement under deterministic LOCC 
necessarily produced a class of states of same Schmidt 
rank, all mutually incomparable to each other (if not lo-
cally unitarily connected). We mention here this class of 
states as equi-entangled. This work is mainly intended to 
study different measures of correlations in equi-entan- 
gled class. In Section 4, we recall the notions of such 
correlations measures [17] of pure states and some of 
their properties; e.g. Concurrence, Logarithmic Negativ-
ity, Linear Entropy, Rényi Entropy, Concurrence Hier-
archy, Maximum Fidelity, Robustness and some Dis-
tance measures that depend only on the largest Schmidt 
coefficient of the state. In Section 5, we present all the 
graphs of the measures against the largest Schmidt coef-
ficient and numerical tables for the correlation measures. 
We concentrate on studying pure bipartite system where 
the features of incomparability will be reflected neglect-
ing the effect of entanglement via preservation of entan-
glement under LOCC. In our whole work as we are 
mainly concerned about pure bipartite states, we will use 
occasionally the terms entanglement and entanglement of 
formation, as they have the same value and later is more 
operationally meaningful. In the appendix, we discuss 
about some other effects of incomparability. We prepare 
equal mixture of states from one equi-entangled class 
with maximally mixed states of same rank. The resulting 
mixed states sometimes preserve positivity under partial 
transpose operation, i.e. the states are PPT [18,19]. 
Whereas in equal mixture with some other states from 
the same class will generate NPT (negative under partial 
transposition) states. Also, we show that the optimal tele-
portation fidelity, differ for different states of an equi- 
entangled class. 

2. Pure State Entanglement 

The amount of entanglement of any pure bipartite state is 
uniquely described by the von-Neumann entropy of the 
reduced density matrices of the state and usually it is 
known as entropy of entanglement or simply entangle-
ment of a pure bipartite state. It is established [20] that 
any measure of entanglement for a bipartite state (pure or 
mixed) is bounded by the limits defined by the two as-
ymptotic measures, entanglement of formation and dis-
tillable entanglement. For pure states both the measures 
coincide with the quantity entropy of entanglement. It is 
thus intuitive to conclude that the non-local correlation of 
any pure bipartite state is uniquely characterized by the 
entropy of entanglement. However, recent observations 
in bipartite pure states compel us to rethink about the 
structure of state space with respect to the other measures 
of correlations [21]. 

To understand the nature of pure state entanglement 
we concentrate here on preservation of entanglement 
under LOCC. It has been found that for every possible 
amount of entanglement of non-maximally-entangled 
bipartite state of Schmidt rank d, there exists infinite 
number of equi-entangled pure bipartite states of same 
Schmidt rank [21]. This is quite understandable from the 
functional form of von-Neumann entropy, but what is 
much more physically significant that all such states are 
incomparable with each other. This is the key feature of 
investigating further the pure state entanglement and its 
evolution under local physical operations. We first recall 
the concept of comparability and incomparability of pure 
bipartite states. 

3. Deterministic LOCC and Incomparability 

Any pure bipartite state   of the joint Hilbert space 
= A BH H H  have the Schmidt representation:  

1

=
d

i A B
i

i i 


            (1) 

where  Ai  and  Bi  are orthonormal bases of the 
local Hilbert spaces AH  and BH  respectively. The set 
of real numbers  i , for , known as 
Schmidt coefficients of the state, are just the square-root 
of the eigenvalues of the reduced density matrices of the 
state, satisfying i

= 1

1, i

, 2, ,i d

0     and 
1

d

i



1i  . The 

number of Schmidt coefficients  

    min dim ,dimA Bd H H  

known as the Schmidt rank of the pure bipartite state. 
The Schmidt coefficients remain invariant under any 
local unitary transformations on the pure bipartite state. 
Thus they are expected to serve well as ingredients of 
any good measure of entanglement. 

The notion of incomparability is a direct consequence 
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of non-interconvertibility of pure bipartite states under 
deterministic LOCC. Given a pure bipartite state   
shared between two distant parties, suppose we want to 
convert it into another pure bipartite state   under 
deterministic LOCC. The Schmidt vectors corresponding 
to the states ,   are  1 2, , n     and 

 1 2, , m     respectively(where 1i i 0  

0
   

for , = 1, 2, , 1i n  1j j   
n m

 for  

= 1, 2, , 1j m   and 
=1 =1

= 1 =ii jj
   ). Then from 

Nielsen’s criterion [13],   can be converted to   
with certainty under LOCC, denoted by   , if 
and only if   is majorized by   (denoted by 

   ) and describe as 

=1 =1
,   = 1, 2, ,

k k

i ii i
k d   

 
where we consider without loss of generality . 
Now, if the above criteria fails for at least one , then 
we usually denote it by 

= =d m n
k

  , i.e.   is not 
convertible to   under deterministic LOCC. Though 
it may happen that   . For some pair  ,   
whenever both    and    occur, then 
we denote it by    and call  ,    as a 
pair of incomparable states. For  system there 
exists no incomparable pair of pure entangled states. The 
explicit form of incomparability criteria for a pair of pure 
entangled states 

2 2

 ,   in , with Schmidt 
vectors 

3 3
 1 2 3= , ,      and  1 2= , 3 ,      is given 

by:    whenever either of the following pair of 
relations  

1 1 2 2 3

1 1 2 2 3

> > >

> > >
3

3

     
     

 
 

          (2) 

must hold. It is due to the fact that all incomparable pair 
of states in  are strongly incomparable. The 
incomparability of pair of pure bipartite states could be 
used as a detector of many unphysical operations [22]. 
This aspect motivates us to investigate the effect of 
incomparability on different measures of correlations. In 
[23] it has been established that there is pair of in- 
comparable pure bipartite states for which entanglement 
of formation is not in general monotone with 
concurrence. Now, keeping in mind the criteria of deter- 
ministic local transformation of pure bipartite systems, 
one may ask about the effect on amount entanglement of 
the states involved. The consequence of Nielsen’s result 
is that if 

3 3

of LOCC for this purpose. However, the mathematical 
form of von-Neumann entropy could not suggest us in 
either way. Interestingly it has been found that such 
states must be incomparable with each other [21]. Any 
pair of states, with different Schmidt vectors, from a 
class of equally entangled states cannot be deter- 
ministically converted to one another by LOCC. In other 
words, pure bipartite states with equal amount of en- 
tanglement, either they are locally unitarily connected or 
incomparable to each other. In the next section, we recall 
the notions of some correlation measures.  

4. Correlation Measures 

Firstly, we consider some well-known correlation mea- 
sures, like, concurrence, linear entropy, logarithmic 
negativity, etc. 

Concurrence is one of the most important measure to 
quantify entanglement, functionally related to entangle- 
ment of formation [24] in  systems (this is due to 
the wonderful invention of Wootters ). For any pure 
bipartite state 

2 2

=    in the Hilbert space  

A BH H  of two subsystems ,A B  it is in general  

defined by    2= 2 1 AC    , where A  is the 

reduced density matrix of  , after tracing out the 

subsystem . For mixed bipartite states, it is just the 
convex roof extension. The entanglement of formation 
for any state of the two-qubit system could be expressed 
as [25],  

B

 
 21 1

=
2F

C
E


 

  
 
 
 

 

where the function   is defined as  
     2 2= 1 1log logx x x x x    

d
. For higher dimen- 

sional pure bipartite state (say, ), concurrence is 
given by [26]  

d

 
d

2

< =

= 4 = 2 1i j i
i j i

C
1

    
 


        (3) 

which varies smoothly from  for product states to  0

 2 1d

d



 
for maximally entangled pure states of Schmidt rank . d

   under LOCC with certainty, then 
   E E   w h e r e   .E  e q u a l s  t o  t h e 

von-Neumann entropy of the reduced density matrices of 
the subsystems and usually known as the entropy of 
entanglement. Again, if someone search for what kind of 
deterministic LOCC, the amount of entanglement of the 
states could be preserved. All the local unitary operations 
preserve entanglement, so one must search for other kind  

Logarithmic Negativity is a computable measure of 
entanglement. It has functional relation with another 
important quantification scheme, known as negativity. 
Negativity is defined from the Peres-Horodecki criteria 
[18,19] by,  

  1
1

2

AT

N





            (4) 
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where 
1
 denote the trace norms of AT AT , partial 

transpose of the bipartite mixed state   with respect to 
the subsystem A, which corresponds to the absolute value 
of the sum of the negative eigenvalues of AT  and 
vanishes for separable states. For a pure state   
negativity is  

   21
1

2 ii
N     

  . 

Now, Logarithmic Negativity, is defined by  

    2 21
= 2log logATLN N   1  

It is an entanglement monotone[27], related to the PPT 
(positive under partial transposition) entanglement cost, 

    PPT 2= logE N  1  of the state  , known as 

the cost of exact preparing under PPT preserving 
operations. For pure bipartite states this measure is 
calculated by  

 
d

2
=1

= 2log i
i

LN  

 
 

            (5) 

An interesting observation is that Negativity is a 
convex function [28] of the state, though Logarithmic 
Negativity is not. 

A series of correlation measures known as Rényi 
Entropy [29] or Alpha-Entropy ( S ), are proposed by 

generalizing the concept of von-Neumann entropy;  

1

1
= ln

1

d

i
i

S 
 

 

 
   
  

All the Rényi entropy measures (naturally excluding 
the von-Neumann Entropy function itself) are suitable to 
discriminate between any class of incomparable states 
with same entanglement. Here we only consider the 
Linear Entropy  and for 2S = 3  i.e. . 3

Linear Entropy for the pure bipartite state in the form 
(1) is given by  

S

  2
2 2= log i

i

S   
 


              (6) 

 Giampaolo et al. [30] showed that  for all non-maxi- 
mally entangled states of 3 d  system, there exists a 
range of values of linear entropy with same entangle- 
ment. 

Rényi entropy for = 3  i.e.  of the state (1) is 

computed by the formula,  
3S

  3
3 2= log i

i

S   
 
 

              (7) 

Now, we will provide notions of some other measure 
of correlations. Concurrence Hierarchy [31] is a series of 
correlation measures generalized from the concept of 
concurrence, in finite dimensional bipartite pure states. 
For a general bipartite pure state of rank d  in the 

Schmidt form (1), the precise definition of the concur- 
rence hierarchy is given by:  

 
1 2

1 1 2

;    1, ,k i i ik
i i i dk

C k   
    

  d   (8) 

For 3 3  system, there is only one concurrence 
hierarchy for , i.e. = 3k  3 1=C 2 3    . 

The Maximum fidelity for a pure state of the form (1), 
is given by,  

  =1
max

exp 2ln

=
d

d

i
iF




 
 



           (9) 

The maximum fidelity is a convex function of the 
generalized entropy,   max 1 2= expF H  d  where  

1 2H  is the Renyi entropy for 
1

=
2

 . 

The correlation measure robustness of entanglement 
[32], denoted by  R   examines how much mixing can 
take place between an entangled state and any other state, 
so that the convex combination of these two states is 
separable. In the characterization of the state space in 
terms of entangled and separable states, we observe some 
interesting properties of this measure. Robustness  R  , 
is convex function of  , i.e. for any two states 1  and 

2  we have the following inequality  
        1 2 1 1t t R 21 tRR t      

  =

 . Robustness 
of entanglement remains unchanged under unitary 
transformation of state, i.e. L L  where R R U U

LU

L

 is a local unitary transformation of the form 

1 2=U U U . Now for the pure state (1), we could 
define Robustness of entanglement as follows,  

 
1

2

1

= exp 2ln 1
d

i
i

R 


 


 
            (10) 

Next we consider some of the distance measures of 
quantum correlationm [33], proposed from the view of 
measuring the distance of the state from its closest 
separable state [10]. For any two pure states   and  , 
the Fubini-Study distance is defined as,  

   , =FSd Tr   . 

It is bounded by,  0 ,
2FSd   

  . 

Fubini-Study distance is related to information theoretic 
measures of statistical distance between two probability 
distributions. From the concept of this distance between 
two states, a measure of correlation of a pure bipartite 
state is proposed as the minimum of Fubini-Study 
distance of the given state with all separable states and is 
obtained by the formula,  

    max 1= arccos = arccosmin FS
SEP

FS d       

  

(11) 
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The Hilbert-Schmidt distance is another distance 
measure [34]. For two states   and  , this distance is  

given by,    2
, =HSd Tr    . Taking minimum 

over all separable states, a correlation measure of 
entanglement of any pure state is proposed by,  

       max 1= 2 1 = 2 1min HS
SEP

HS d       (12) 

The trace distance  ,D    between two arbitrary 
statistical operators   and   represents a good 
measure to quantify the closeness of such states [33,35]. 
The relation  

   ,Tr P Tr P D        
holds for any projection operator P, where the ex- 
pressions  Tr P  and Tr P   represent the proba- 
bility for the occurrence of the measurement outcome 
associated with P when the system is in the state   and 
  Then the correlation measure is defined by the 
minimum distance between the given state and the separable 
state. For pure bipartite states it has the form,  

  max 1= 2 1 = 2 1min fs
SEP

d      
      (13) 

All the distance measures are found to be monotone in 
nature with 1lnH    , where 1  is the the largest 
Schmidt coefficient. 

5. Correlation Measures and 
Incomparability 

We now consider sets of pure bipartite states incompara-
ble to each other, with same amount of entanglement and 
study their behavior with other correlation measures. 
Under deterministic LOCC, we cannot conclude a single 
measure of entanglement for pure bipartite states is suffi-
cient to probe the correlated structure of the system. We 
show that the existence of different pure states with the 
same value of entanglement, is not only a mathematical 
property of the entropy operator. We start with the 3 3  
system, where the notion of genuine pair of incomparable 
states begin. As shown in a previous work [20], the 
structure of classes of incomparable states with same 
entanglement in higher Schmidt ranks (greater than three) 
follows the same pattern as of Schmidt rank 3 states. In 
higher Schmidt ranks, states with same entropy of entan-
glement, should differ in at least three Schmidt coeffi-
cients. Therefore, although we have restricted our study 
on lower Schmidt rank states only, however, the results 
could be extended for higher ranks also. 

5.1. Geometry of Equally Entangled States of  
Different System 

For every value of entanglement for a non-maximally 
entangled state in Schmidt rank 3, one may easily gener-
ate a curve representing the states having that fixed value 

of the entanglement of formation. In Figure 1, we con-
sider the class of states of rank 3 having entanglement of 
formation 1.521985 e-bit and to represent the curve we 
plot the three Schmidt coefficients along the X, Y, Z axes 
respectively. 

Similarly, for every value of non-maximal entangle-
ment in Schmidt rank 4 system, there is a surface in 
three-dimensional space generated by the states of that 
system. In Figure 2, we consider the surface generated 
by the states having entanglement of formation 1.846439 
e-bit, by plotting the first three Schmidt coefficients of 
those states along the three rectangular coordinate axes. 
The figure has some regular geometrical pattern. From a 
distant view it appears to be a continuous curve formed 
by semi-circular rings. 
 

 

Figure 1. States of Schmidt rank 3 with entanglement of 
formation = 1.521985 where three axes represent values of 
the three Schmidt coefficients. 
 

 

Figure 2. Surface generated by Schmidt rank 4 states hav-
ing entanglement of formation 1.846439 against three larg-
est coefficient where axes X, Y, Z represents three Largest 
Schmidt coefficients in decreasing order. 
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In Schmidt rank 5 system, there is a volume enclosing 
the states having equal amount of entanglement. In Fig-
ure 3, we plot the three largest Schmidt coefficients of 
all pure bipartite states of Schmidt rank 5 with a definite 
value of entanglement. Below the graph of states with 
entanglement  e-bit.  2.04126

 

In Schmidt rank 5, amongst the 5 Schmidt coefficients, 
with the normalization constraint and the constraint of 
conservation of entanglement, there are three completely 
random parameters, which may be, without any loss of 
generality can be taken as the three largest Schmidt coef-
ficients. The graph generated is apparently a dense vol-
ume, though with a closer view one found some specific 
features. In all the three cases above, we consider entan-
glement with values some figures after decimal point are 
due to the fact that with some small variations, we want 
to observe the changes in the behavior of different corre-
lation measures. It is also evident from the later tables 
and graphs. 

Figure 3. Volume generated by Schmidt rank 5 states hav-
ing entanglement of formation 2.04126 against three largest 
coefficient Where three axes X, Y, Z represents three Larg-
est Schmidt coefficients in decreasing order. 
 
Sen’s criteria) with same value of entanglement are re 
sponsible for such behavior. 5.2. Chart of Values of Correlation Measures for  

States with Given Entanglement In Figure 4, we observe that as the value of the entan-
glement decreases the curve going to be flat for Schmidt 
rank 3. Also corresponding to a very small change in 
entanglement we always obtain two completely disjoint 
curves. Though the curves of different entangled classes 
contained in a specific plane. The position and curvature 
of the curves will slowly and continuously changes with 
the change of amount of entanglement. The effect may 
visualize by observing the curves distinctly and then 
plotting them in the same graph. In Figure 5, we plot the 
fact for Schmidt rank 4 states. 

In both Tables 1 and 2 we have considered values of 
different correlation measures for fixed entanglement. It 
is quiet interesting to observe that the changes in Schmidt 
coefficients of different states (all are incomparable with 
each other). Further, if we observe the changes in differ-
ent correlation measures with the small changes in the 
values of Schmidt coefficients, we then find the effect in 
the values are quiet peculiar in the sense that we could 
not find a definite pattern for values of such correlation 
measures. The pattern shows if some measure has 
monotonic increasing behavior then other measure may 
be monotonic decreasing. However, this feature is not 
observable from their mathematical form. Existence of 
large number of incomparable states (i.e. violets Niel- 

Next we will investigate the correlation measures in dif-
ferent entangled classes in Schmidt rank 3 and 4 (Figures 6 
and 7). We will observe that the pattern of the curves are not 
always similar. 

 

 

Figure 4. Classes of equi-entangled states in Schmidt rank 3 for 3 different values of entanglement. 
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Table 1 . Entanglement of formation = 1.521928 e-bit. 

  C    CH    LN     2S 
 

 3S 
 

(0.4, 0.4, 0.2) 1.13137085 0.032 1.551575496 1.473931188 2.878321443

(0.402, 0.39798556, 0.20001444) 

(0.402, 0.39798547, 0.20001453) 

1.131368833

1.131368864

0.032000349

0.032000356

1.551576754

1.551576924

1.473922043 

1.473922185 

2.878274014

2.878274353

(0.41, 0.3896249, 0.2003751) 

(0.41, 0.38962482, 0.20037518) 

1.131319810

1.131319837

0.032009163

0.032009169

1.551609109

1.551609151

1.473699801 

1.473699922 

2.877111541

2.877111825

(0.415, 0.3841367, 0.2008633) 

(0.415, 0.3841362, 0.2008638) 

1.13125411 

1.131254272

0.032020971

0.032021009

1.551652439

1.551652699

1.473402018 

1.473402753 

2.875555225

2.875556928

(0.445, 0.345555, 0.209445) 

(0.445, 0.3455544,0.2094456) 

1.130220805

1.130220949

0.032206771

0.032206808

1.552332793

1.552333037

1.468728979 

1.468729631 

2.851302596

2.851304012

(0.465, 0.30945889, 0.22554111) 

(0.465, 0.3094591, 0.2255409) 

1.128841356

1.128841324

0.032455001

0.032454993

1.553237374

1.55323732 

1.462520644 

1.462520504 

2.819567967

2.819567679

(0.473, 0.2867654, 0.2402346) 

(0.473, 0.2867657, 0.2402343) 

1.128116964

1.128116939

0.032585429

0.032585423

1.553710668

1.553710624

1.459274145 

1.459274034 

2.803187775

2.803187552

  MF    R    FS    TR    HS    

(0.4, 0.4, 0.2) 0.977123617 1.931370851 0.886077124 1.54913338 1.095445115

(0.402, 0.39798556, 0.20001444) 

(0.402, 0.39798547,0.20001453) 

0.977124469

0.977124502

1.931373407

1.931373506
0.884036726 1.546609194 1.093617849

(0.41, 0.3896249, 0.2003751) 

(0.41, 0.38962482, 0.20037518) 

0.977146382

0.977146411

1.931439146

1.931439233
0.875891389 1.536229150 1.086278049

(0.415, 0.3841367, 0.2008633) 

(0.415, 0.3841362, 0.2008638) 

0.977175731

0.977175907

1.931527193

1.931527721
0.870812998 1.529705854 1.081665383

(0.445, 0.345555, 0.209445) 

(0.445, 0.3455544, 0.2094456) 

0.977636661

0.977636827

1.932909983

1.932910481
0.840509688 1.489966443 1.053565375

(0.465, 0.30945889, 0.22554111) 

(0.465, 0.3094591, 0.2255409) 

0.978249840

0.978249803

1.934749520

1.934749409
0.820426810 1.462873884 1.034408043

(0.473, 0.2867654, 0.2402346) 

(0.473, 0.2867657, 0.2402343) 

0.978570819

0.978570789

1.935712457

1.935712367
0.812411303 1451895313 1.026645021
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Table 2. Entanglement = 1.4712154 e-bit. 

  
C    CH    LN     2S    3S   

(0.45, 0.39, 0.16) 1.113373253 0.02808 1.523115558 1.395169563 2.693947792 

(0.46, 0.37804914,0.16195086) 

(0.46, 0.37804916, 0.16195084) 

1.112879838 

1.112879830 

0.028163676 

0.028163674 

1.523457634 

1.52345762 

1.393086963 

1.393086930 

2.683948086 

2.683948021 

(0.47, 0.36532505, 0.16467495) 

(0.47, 0.36532508, 0.16467492) 

1.112222791 

1.112222780 

0.028275146 

0.028275143 

1.523912199 

1.523912178 

1.390319798 

1.390319752 

2.670742795 

2.670742882 

(0.48, 0.35165453, 0.16834547) 

(0.48, 0.35165456, 0.16834544) 

1.111394524 

1.111394514 

0.028415735 

0.028415732 

1.524483684 

1.524483665 

1.386841400 

1.386841358 

2.654273336 

2.654273258 

(0.49, 0.33676025, 0.17323975) 

(0.49, 0.33676030, 0.17323970) 

1.110387791 

1.110387776 

0.028586728 

0.028586724 

1.525176047 

1.525176018 

1.382628248 

1.382628187 

2.634514394 

2.634514282 

|   MF    R    FS    TR    HS    

(0.45, 0.39, 0.16) 0.958036852 1.874110556 0.835481874 1.483239679 1.048808848 

(0.46, 0.37804914, 0.16195086) 

(0.46, 0.37804916, 0.16195084) 

0.958264038 

0.958264029 

1.874792114 

1.874792087 
0.825440953 1.469693846 1.039230485 

(0.47, 0.36532505, 0.16467495) 

(0.47, 0.36532508, 0.16467492) 

0.958566002 

0.958566016 

1.875698006 

1.875698048 
0.815416193 1.456021978 1.029563014 

(0.48, 0.35165453, 0.16834547) 

(0.48, 0.35165456, 0.16834544) 

0.958945801 

0.958945789 

1.876837403 

1.876837367 
0.805403501 1.442220510 1.019803903 

(0.49, 0.33676025, 0.17323975) 

(0.49, 0.33676030, 0.17323970) 

0.959406119 

0.959406100 

1.878218357 

1.8782183 
0.795398830 1.428285686 1.009950494 

 

0.65 

 

Figure 5. Surface generated by equi-entangled states for different values of entangled states of Schmidt rank 4 where axes X, 
Y represents largest two Schmidt coefficients. 
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Figure 6. Graphs of different correlation measures of equi-entangled states in Schmidt rank 3. 
 

 

Figure 7. Graphs of different correlation measures of equi-entangled state with entanglement of formation 2.04126 in 
Schmidt rank 4 considering three largest Schmidt coefficients. 
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6. Observations 

The behavior of different correlation measures observed 
by plotting curves and by providing numerical figures. 
The nature of the curves show non-monotonic behavior 
of the measures in general with respect to the entangle-
ment, e.g. concurrence [23]. This is observed due to only 
incomparability of a large number of states with same 
entanglement. For comparable states it would not be pos-
sible to observe such behavior. This feature of state 
spaces has some other consequences, e.g. the behavior 
under partial transposition of mixtures of incomparable 
states from equi-entangled class with the maximally 
mixed state. We discuss this feature as distinguishing 
factor of the states belonging to any equi-entangled class 
in appendix. 

In conclusion, the work is intended to find the differ-
ences by some known correlation measures of pure states 
through incomparability. As the Schmidt rank increases 
gradually only the measures depending on Schmidt coef-
ficients would be able to differentiate the states of equal 
entanglement but incomparable with each other. For 
Schmidt rank 4 system, the behavior of the measures like, 
Concurrence, Linear Entropy and Rényi Entropy are 
similar in nature irrespective of some phase differences. 
Whereas the behavior of the measures like, Logarithmic 
Negativity, Concurrence Hierarchy, Maximum Fidelity 
and Robustness are quite opposite to that of the previous 
measures. Distance measures depending only on the 
largest Schmidt coefficient generate a straight line only 
indicating the variation of the largest Schmidt coefficient 
for preservation of entanglement under LOCC. The 
measure showing the largest variation for a fixed value of 
entanglement, for all most all values of entanglement in 
rank 4 system, is Concurrence Hierarchy and the next 
largest variation of values for constant entanglement is 
seen in the Rényi entropy for = 3 . With the increase 
of entanglement, curvature of the surface as well as the 
area traced out by the states of an equi-entangled class 
will gradually shrinking down and tends to a line parallel 
to the X-axis, from a curved surface. 
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Appendix 

Behavior of Mixture with Maximally Mixed State: 
Our observation is the signature of partial transpose on 
the mixture of states from a class of equally entangled 
states with the maximally mixed state through the PPT 
(positive under partial transpose) criteria [17,24]. Sup-
pose  1 2, , , d     be the Schmidt vector in decreas-
ing order of the pure bipartite state   of d d  sys-
tem. We prepare the mixture  

 2

1
I p

d p   


 

for each state  . Taking partial transpose over the 
subsystem B of the state, we find eigenvalues of the 
transpose matrix as,  

2

1
 ;   = 1,2, ,dip

i
d p





 and 

2

1
 ;   = 1,2, , 1 ; = 1, 2, ,

i jp
i d j i i

d p

 
   


d . 

Therefore, all the eigenvalues are non-negative when-
ever,  

2
<

<

<

1 2

1
{ }min

{1 } 0min

{ }max

1

i j

i j

i j
i j

i j
i j

p

d p

p

p

p

 

 

 

 












Let   be any pure bipartite state of  system, 
having same entanglement but not local unitary equiva-
lent with 

d d

 , i.e. both the states ,    are incom-
parable with each other. Let the Schmidt vector in de-
creasing order of   be  1 2, , , d   . 

When 1 2 1 2    , choosing the value of  as  p

1 2 1 2

1 1
< p

  



 

we find   is a PPT state and the state   is NPT 
(negative under partial transpose). So for any pair of in-
comparable states with same amount of entanglement if 
the product of two largest Schmidt coefficients are not 
equal, then we could always prepare equi-mixture of the 
two pure states with maximally mixed state in the same  

dimension(
2

1
d dI

d  ), such that one is PPT and another is  

a NPT state. The above feature undoubtedly probe the 
differences exist in different states of equi-entangled 
states, but not reflected by the unique quantification 
scheme for pure bipartite states through the von-Neu- 
mann entropy of the reduced density matrices. 

0

1


           (14) 
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