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ABSTRACT 

Based on the Veneziano ghost theory of QCD, we estimate the cosmological constant Λ, which is related to the vacuum 
energy density,  , by = 8πG . In the recent Veneziano ghost theory   is given by the absolute value of the 

product of the local quark condensate and quark current mass: 
2 fN H

m




= < 0 : :| 0 >|qc m qq . By solving Dyson- 

Schwinger Equations for a dressed quark propagator, we found the local quark condensate  3
: 0 235 MeVqq 

qm 

0 : , 

the generally accepted value. The quark current mass is  4.0 Mev. This gives the same result for   as found 

by previous authors, which is somewhat larger than the observed value. However, when we make use of the nonlocal 

quark condensate,      0 : 0 : 0 = 0 : : 0q x q g x qq , with g(x) estimated from our previous work, we find Λ is in a 

good agreement with the observations. 
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1. The Cosmological Constant Λ and the 
QCD Veneziano Ghost Theory 



The starting point of most cosmological study is Albert 
Einstein’s Equations, which is a set of ten equations in 
Einstein’s theory of general relativity. The original Ein- 
stein field equations can be written as the form [1]  

1
= 8π

2
R Rg GT  

= = 1c
39 2= 6.7087(10) 10 GeVG

        (1) 

in units of , where G is the gravitational 
constant (  

 , = 0, ,3R   

 

, sometime called 
Newton’s constant),   is the Ricci 
tensor, R is the trace of Ricci tensor (it is like the radius 
of curvature of space-time), x

T   is the energy-momentum tensor, which describes 
the distribution of matter and energy. Equation (1) des- 
cribes a non-static universe. However, Einstein believed, 
at that time, that our universe should be static. In order to 
get a static universe, in 1917 Einstein introduced a new 
term, g , in Equation (1) to balance the attractive 
force of gravity, giving his modified equation  

g  represents the me- 
tric tensor, which is a function of position x in spacetime. 

1
= 8π .

2
R Rg g GT          (2) 

The   in Equation (2) is the so-called cosmological 
constant, which is a dimensional parameter with units of 
  2
length


. Indeed, Equation (2) allows a static universe 

[2], called Einstein’s universe, which is one of the so- 
lution [3] of Friedmann’s simplified form of Einstein’s 
equation with a   term. However, almost one hundred 
years ago the observations of redshifts of galaxies led to 
Hubbles Law [4] and the interpretation that the universe 
is expanding. This led Einstein to declare his static cos- 
mological model, and especially the introduction of the 
  term to his original field equation theory, his “biggest 
blunder”. 

Note that the term 
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nology, 11Z16, and in part by the Pittsburgh Foundation. g  in Equation (2) corresponds 
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Tto adding a vacuum term to 

  = .ac g

, 

T v 



         (3) 

Therefore, the cosmological constant  is related to 
the vacuum energy density,   by [3]  

= 8πG .







             (4) 

The vacuum energy density, called dark energy den- 
sity, and a model with  representing dark energy were 
reintroduced about three decades ago. See Ref. [5] for a 
review of the physics and cosmology of , with refe- 
rences to the many models that have been published. To 
explain our uniform and flat universe via inflation a cos- 
mological constant was added to the Friedmann equation 
[6]. From studies of radiation from the early universe, the 
Cosmic Microwave Background Radiation (CMBR), by 
a number of projects, including WMAP [7], the inflation 
scenerio was verified, and it was shown that about 73% 
of the total energy in the universe is dark energy. As 
clearly shown by Friedmann’s equation with a cosmolo- 
gical constant, dark energy corresponds to negative pre- 
ssure, or anti-gravity. This was confirmed by studies of 
distant type 1a supernovae [8,9], which showed an acce- 
leration of the expansion of the universe, and was con- 
sistent with dark energy being 73% of the energy in the 
universe. Also, dark energy causes distant galaxies to 
accelerate away from us, in contrast to the tendency of 
ordinary forms of energy to slow down the recession of 
distant objects. See Ref. [5] for other of the many refe- 
rences to CMBR, supernovae, galaxy and other studies of 
dark energy. 

The existence of a non-zero vacuum energy would, in 
principle, have an effect on gravitational physics on all 
scales. The value of  in our present universe is not 
well known, and it is an empirical issue which will ulti- 
mately be settled by observation. A precise determination 
of this number ( ) or   will be one of the primary 
goals of observational cosmology in the near future. Re- 
cently the possiblity of determining the cosmological 
constant by observations has been discussed [10]. 

A major outstanding problem is that most quantum 
field theories predict a huge cosmological constant   
from the energy of the quantum vacuum. This conclusion 
also follows from dimensional analysis and effective 
field theory down to the Planck scale, by which we 
would expect a cosmological constant of the order of 

4
plM  ( plM  is the Planck mass with 1 2= =M G

191.22 10 Ge
pl  

. The Planck energy is thought to be the 
energy where conventional physical theories break down 
and a new theory of quantum gravity is required ). We 
know that the measured value is on the order of 

,or , or 

V

471035 2s 10 4GeV 3cm

energy expected from zero -point fluctuations and scalar 
potential, 3110= 2 10 erg cm ,theory   and the observed 
value, 310= 2 10 erg cmobserve 

120.

observe

1110

 , a discrepancy of a 
factor of 10  This is the largest discrepancy—the 
worst theoretical prediction in the history of physics. At 
the same time, some supersymmetric theories require a 
cosmological constant that is exactly zero. Therefore, we 
face a big difficulty in understanding the observational 

 . This problem has been referred to as the long- 
standing cosmological constant problem. 

Vacuum energy is predicted to be created in cosmolo- 
gical phase transitions. In the standard model of particle 
physics with the temperature (T) of the universe as a 
function of time (t), there are two important phase tran- 
sitions. At t   seconds, with T  140 GeV the 
universe undergoes the electroweak phase transition 
(EWPT), with the vacuum expectation value of the Higgs  

0 : : 0Higgs

 510

field, , going from zero to a finite value  
corresponding to a Higgs mass  140 GeV. At t 


 

seconds, with T  150 MeV, the universe undergoes 
the QCD phase transition (QCDPT), when a universe 
consisting of a dense quark-gluon plasma becomes our 
current universe with hadrons. The latent heat for this 
phase transition is the quark condensate, 0 : : 0qq , 
also a vacuum energy, which is an essential part of the 
present work. 

First we review the work of F. R. Urban, A. R. Zhit- 
nitsky [11,12], which is based on the QCD Veneziano 
ghost theory [13-16] In this model the cosmological va- 
cuum energy density   can be expressed in terms of 
QCD parameters for  light flavors as follows 
[10,11]  

= 2fN

   

29 g10 , or about 
 in reduced planck units (12010 plM ). That is, there is a 

large difference between the magnitude of the vacuum  

2
= 0 : 0 0 : 0 ,f

q

HN
c m q q

m




=c c c

   (5) 

where mq is the current quark mass and .QCD grav . 
The first factor D  is a dimensionless coefficient with 
value of QCDc  [10,11], which is entirely of QCD 
origin and is related to the definition of QCD on a 
specific finite compact manifold such as a torus,  

QCc
1

2 f q

QCD

N m qq
c

Lm




 L

m

 with  being the size of the  

manifold and   the mass of   meson. A precise 
computation of QCDc  has been calculated in a 
conventional lattice QCD approach by studying corre- 
ctions of order s1  to the vacuum energy [10,11]. Note 
that QCD  depends on the manifold where the theory is 
defined. The second factor 

c

grav  has a purely gravita- 
tional origin and is defined as the relation between the 
size L of the manifold we live in, and the Hubble 
constant H, 

c

  1

. 0= gravL c H


. One can define this size of 
the manifold as 1

017L H 
42

0 = 2.1 10
 where  

h  GeV = 0.71h 0 and  ( H , Hubble H 
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constant today). Therefore, one can explicitly obtain an 
estimate for the linear length  of the torus, and then 
obtain the value of 

L

.grav .grav

In Section 2 we briefly review our previous calculation 
of the quark condensate [17] using Dyson-Schwinger 
equations (DSEs) [18,19], and discuss the quark current 
mass q , which are needed to calculate 

c c with . = 0.0588

m  , as shown 
in Equation (5). Since our values for the local quark 
condensate    0 : 0 0 : 0q q  and the current quark 
mass are approximately the same as in Ref. [10,11] we 
find the same value for 

no

 as in that work, with a 
factor 6 discrepancy when compared to the observed 
vacuum energy density. In Section 3 we use a nonlocal 
quark condensate, based on earlier research, and find 
good agreement between  and  . 
Finally, we give our Summary and concluding remarks in 
Section 4. 

nlocal theory observed

 

2. Local Quark Condensate, Current Quark 
Mass, ρΛ 

In this section we review our previous work on the quark 
condensate, the current quark mass, and the resulting va- 
lue for the cosmological constant/vacuum energy density. 

2.1. The Local Quark Condensate 

The quark propagator is defined by  

 ( ) = 0ab a
qS x T q 0 0 ,bx q  

 x  b x

   (6) 

where  ( q ) is a quark field with color a (b), 
and T is the time-ordering operator. The nonperturbative 
part of the quark propagator is given by  

aq

 

       1
= 0

12

S x

: 0 : 0 0 : 0 : 0 .

NP
q

q x q x q x q    
(7) 

For short distances, the Taylor expansion of the scalar  

part,    0 : q x  NP
qS x0 : 0q , of  can be written as  

( see, e.g., Refs.[17,20] ) 

       

     
2

0 : 0 : 0 = 0 :

0 : 0 0
4 s

q x q q

x
q ig G  

0 0 : 0

0 : 0 .

q

q 
   (8) 

In Equation (8) the vacuum expectation values in the 
expansion are the local quark condensate, the quark- 
gluon mixed condensate, and so forth. 

The Dyson-Schwinger Equations [18,19] were used to 
derive the local quark condensate in Ref. [17]. See this 
reference for details and a discussion of approximations. 
Note that as shown in Equation (8), the quark-gluon 
mixed condensate provides the small-x dependence of the 
nonlocal    0 : 0 : 0q x q  quark condensate. How- 

ever, for the present work this small-x expansion is not 
useful, and we shall use a known expression for the 
nonlocality, described below. Therefore we only give the 
results for the local quark condensate. Also note that the 
vacuum condensates can act as a medium [21,22], which 
influences the properties of particles propagating through 
it. 

Using the solutions of DSEs with three different sets 
of the quark-quark interaction parameters (see Ref.[17]) 
leads to our theoretical predictions for the local quark 
vacuum condensate listed in Table 1.  

Set 1 results are consistent with many other calcula- 
tions, such as QCD sum rules [23-25], Lattice QCD 
[26-28] and Instanton model predictions [29-31]. These 
numerical results will be used to calculate    in the 
Subsection 2.3 below. 

2.2. The Current Mass of Light Quarks 

As we have seen from Equation (5) to predict   we 
need to know the basic quark current mass q . Since 
one cannot produce a beam of quarks, it is difficult to 
determine the quark masses. Using various models the 
effective quark masses have been estimated, but we need 
the current quark masses of the light u and d quark. 
Estimates of these masses and references can be foud in 
the Particle Data Physics booklet [32]. They are 

m

1.7 < < 3.3 MeV

4.1 < < 5.8 MeVe .
u

d

m

m

4.0 MeVqm 

           (9) 

From this we estimate that the current quark mass is 

              (10) 

2.3. Cosmological Constant Λ with 
   : :0 0 0 0q q

= 8πG

 and mq 

From Equation (2),  , the vacuum energy 
density, while  , is given in Equation (5) as  

   
2

= 0 : 0 0 : 0f
q

HN
c m q q

m




 (11) 

   Since our values for mq and 0 : 0 0 : 0q q  are 
the standard ones, we find the same value for   as in 
 
Table 1. Predictions of local quark condensate in QCD 

vacuum, : :0 0
f

qq
μ

 with f standing for quark flavor and 

μ denotes renormalization point, μ2 = 10 GeV2. 

Set no. of quark 
interactions ,

0 : : 0
u d

qq  for u and d quarks 

Set 1    3 3
0.0130 GeV 235 MeV   

Set 2    3 3
0.0078 GeV 198 MeV 

   3 3
0.0027 GeV 139 MeV 

 

Set 3  
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Ref.[11] 

 4310 eV ,

 4310 eV

3.6theory           (12) 

while the value observed [33] is  

2.3observed  .        (13) 

Although the theoretical and observed values are 
similar, they still differ by 

6.0observed
  theory   

3. Cosmological Constant Λ with Nonlocal 
Quark Condensate 

As mentioned above, the expression 

       

     
2

0 : 0 : 0 = 0 :

0 : 0 0
4 s

q x q q

x
q ig G   

0 0 : 0

0 : 0

q

q 
 

does not work except for very small x. Therefore we shall 
use the nonlocal quark condensate derived from the 
quark distribution function (see Refs.[34,35]). Using the 
form in Ref.[35],  

         20 : 0 : 0 = 0 :q x q g x q 0 0 : 0 ,q   (14) 

with 

 
 22 2

1
=

1 8
g x

x

2

.         (15) 

The value of   estimated in Ref.[36] is 
. Using 2 2GeV0.8  1 QCD  as the length scale, or 

 2
.2 GeV02 = 1x , one obtains 

  2

1 1
1 = = .

6.252.25QCDg      (16) 

From this we obtain 

       1
0 : 0 : 0 = 0 :

6.25
q x q q 0 0 : 0 ,q  (17) 

and 

 

 

4

4

eV

V observed


quantity, wh  was introduced by A. Einstein who mo- 

3

3

1
3.6 10

6

= 2.3 10 e

nonlocal theory 









  (18) 

Therefore, using the modification of the quark conden- 
sate via the nonlocal condensate, one obtains excellent 
agreement between the theoretical and observed cosmo- 
logical constants. 

4. Summary and Concluding Remarks 

The cosmological constant  is an important physical 

dified the field equations of his general theory of rela- 
tivity to obtain a stationary universe. The constant has 
recently been used to explain the observed accelerated 
expansion of the universe, but its observational value is 
about 120 orders of magnitude smaller than the one 
theoretically computed in the framework of the currently 
accepted quantum field theories. Namely, quantum field 
theory predicted that vacuum energy density, 

ich

 , is of 
the order of 4

plM , with 19= 1.22 10 GeVplM  , hich is 
about 120 order  of mag  observed 

value of  43= 2.3 10 eVobserved  . This difference is  

 w
s nitude larger than the  



ed cosmological constan

eory of QCD, using a 
lo

the so call t problem, the worst 
problem of fine-tuning in physics. 

Based on the Veneziano ghost th
cal quark condensate, we obtained the same result for 

  as in Refs[11,12], about a factor of 6 larger than 
observed . However,     0 : 0 0 : 0q q  is just an appro-  

n to ximatio    0 : q x the nonlocal quark  0 : 0q . Using 

   condensate      0 : 0 : 0q x q

the theoretical and observed values of 

= 0 : 0 0 : 0g x q q   

we find that   
are approximately equal. 

The cosmological constant   is a potentially impor- 
ta

might doubt the correctness of the Veneziano 
Q

nt contributor to the dynamical history of the universe. 
Unlike ordinary matter, which can clump together or dis- 
perse as it evolves, the vacuum energy is a property of 
spacetime itself, and is expectd to be the same every- 
where. If the cosmological costant is the valid model of 
dark energy, a sufficiently large cosmological constant 
will cause galaxies and supernovae to accelerate away 
from us, as has been observed, in contrast to the tendency 
of ordinary forms of energy to slow down the recession 
of distant objects. The value of   in our present uni- 
verse is not well known. A precise determination of this 
constant will be one of the primary goals of both theore- 
tical cosmology and observational cosmology in the near 
future. 

One 
CD ghost theory that we used in this work, since it is an 

analogue of two-dimensional theory based on the Schw- 
inger model [18,19], replacing the vector gauge field by 
two scalar fields. These scalar fields have positive and 
negative norms and cancel with each other, leaving no 
trace in the physical subspace. They have small contribu- 
tion to the vacuum energy in the curved space. It is 
known that the QCD ghost must be an intrinsically vector 
field in order for the  1U  problem to be consistently 
resolved within the fra ork of QCD. It seems to be 
necessary to examine if the Veneziano mechanism works 
in terms of the vector ghost fields instead of the scalar 
fields used here. However, Ohta and others in Refs. 
[36-38] have discussed the same problem in more rea- 
listic four dimensional models, and show that the QCD  

mew
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ghost produces vacuum energy density   proportional 
to the Hubble parameter which has a oximately the  

right magnitude  433 10 eV . 

ppr

considerable ev ence that the universe
be

There is now id  
gan as fireball in the cosmological vacuum, the so- 

called “Big Bang”, with extremely high temperature and 
high energy density. One knows that the quark conden- 
sate is vastly changed by the QCD phase transition, and 
this implies that there is a tempreature (T) dependence of 

   0 : 0 : 0q x q  and  .   is probably dependent 
and mo ent m p  of virtual particles 

which produce vacuum condensate as mentioned above. 
We can predict the   dependence on temperature T 
and momentum p  by solving the temperature depen- 
dent Dyson-Schw ger Equations. In this case, 

on temperat  T m u
s, 

in

ure

 
  is a 

function of T and p . Such a new study could sh w the 
behavior of the  uring the evolution of the universe. 
This work is und  its way and should be complete soon. 

o
 

er
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