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ABSTRACT 

The unified generalized non-local theory is applied for mathematical modeling of cosmic objects. For the case of 
galaxies the theory leads to the flat rotation curves known from observations. The transformation of Kepler’s regime 
into the flat rotation curves for different solitons is shown. The Hubble expansion with acceleration is explained as 
result of mathematical modeling based on the principles of non-local physics. Peculiar features of the rotational speeds 
of galaxies and effects of the Hubble expansion need not in the introduction of new essence like dark matter and dark 
energy. The origin of difficulties consists in the total Oversimplification following from the principles of local physics. 
 
Keywords: Dark Matter; Dark Energy; Galaxy: Halo; Galaxy: Kinematics and Dynamics; Hubble Expansion; 

Hydrodynamics 

1. Introduction 

More than ten years ago, the accelerated cosmological 
expansion was discovered in direct astronomical obser- 
vations at distances of a few billion light years, almost at 
the edge of the observable Universe. This acceleration 
should be explained because mutual attraction of cosmic 
bodies is only capable of decelerating their scattering. It 
means that we reach the revolutionary situation not only in 
physics but also in the natural philosophy on the whole. 
Practically we are in front of the new challenge since 
Newton’s Mathematical Principles of Natural Philosophy 
was published. As result, new idea was introduced in 
physics about existing of a force with the opposite sign, 
which is called universal antigravitation. Its physical 
source is called as dark energy that manifests itself only 
because of postulated property of providing antigravita- 
tion. 

It was postulated that the source of antigravitation is 
“dark matter” which inferred to exist from gravitational 
effects on visible matter. However, from the other side 
dark matter is undetectable by emitted or scattered elec- 
tromagnetic radiation. It means that new essences—dark 
matter, dark energy—were introduced in physics only 
with the aim to account for discrepancies between meas- 
urements of the mass of galaxies, clusters of galaxies and 
the entire universe made through dynamical and general 
relativistic means, measurements based on the mass of the 
visible “luminous” matter. It could be reasonable if we are 
speaking about small corrections to the system of know- 

ledge achieved by mankind to the time we are living. But 
mentioned above discrepancies lead to affirmation, that 
dark matter constitutes 80% of the matter in the Universe, 
while ordinary matter makes up only 20%. 

Dark matter was postulated by Swiss astrophysicist 
Fritz Zwicky of the California Institute of Technology in 
1933. He applied the virial theorem to the Coma cluster of 
galaxies and obtained evidence of unseen mass. Zwicky 
estimated the cluster’s total mass based on the motions of 
galaxies near its edge and compared that estimate to one 
based on the number of galaxies and total brightness of the 
cluster. He found that there was about 400 times more 
estimated mass than was visually observable. The gravity 
of the visible galaxies in the cluster would be far too small 
for such fast orbits, so something extra was required. This 
is known as the “missing mass problem”. Based on these 
conclusions, Zwicky inferred that there must be some 
non-visible form of matter, which would provide enough 
of the mass, and gravity to hold the cluster together. 

The work by Vera Rubin (see for example [1,2]) re- 
vealed distant galaxies rotating so fast that they should fly 
apart. Outer stars rotated at essentially the same rate as 
inner ones (~254 km/s). This is in marked contrast to the 
solar system where planets orbit the sun with velocities 
that decrease as their distance from the centre increases. 
By the early 1970s, flat rotation curves were routinely 
detected. It was not until the late 1970s, however, that the 
community was convinced of the need for dark matter 
halos around spiral galaxies. The mathematical modeling 
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(based on Newtonian mechanics and local physics) of the 
rotation curves of spiral galaxies was realized for the 
various visible components of a galaxy (the bulge, thin 
disk, and thick disk). These models were unable to predict 
the flatness of the observed rotation curve beyond the 
stellar disk. The inescapable conclusion, assuming that 
Newton’s law of gravity (and the local physics description) 
holds on cosmological scales, that the visible galaxy was 
embedded in a much larger dark matter (DM) halo, which 
contributes roughly 50% - 90% of the total mass of a 
galaxy. As result another models of gravitation were in- 
volved in consideration—from “improved” Newtonian 
laws (such as modified Newtonian dynamics and tensor- 
vector-scalar gravity [3]) to the Einstein’s theory based on 
the cosmological constant [4]. Einstein introduced this 
term as a mechanism to obtain a stable solution of the 
gravitational field equation that would lead to a static 
Universe, effectively using dark energy to balance grav- 
ity. 

Computer simulations with taking into account the 
hypothetical DM in the local hydrodynamic description 
include usual moment equations plus Poisson equation 
with different approximations for the density of DM 

DM  containing several free parameters. Computer 
simulations of cold dark matter (CDM) predict that CDM 
particles ought to coalesce to peak densities in galactic 
cores. However, the observational evidence of star dy- 
namics at inner galactic radii of many galaxies, including 
our own Milky Way, indicates that these galactic cores are 
entirely devoid of CDM. No valid mechanism has been 
demonstrated to account for how galactic cores are swept 
clean of CDM. This is known as the “cuspy halo problem”. 
As result, the restricted area of CDM influence introduced 
in the theory. As we see the concept of DM leads to many 
additional problems. 

 

I do not intend to review the different speculations 
based on the principles of local physics. I see another 
problem. It is the problem of Oversimplification—but not 
“trivial” simplification of the important problem. The 
situation is more serious—total Oversimplification based 
on principles of local physics, and obvious crisis, we see 
in astrophysics, simply reflects the general shortcomings 
of the local kinetic transport theory. It is important to 
underline that we should have expected this crisis of local 
statistical physics after the discovery of Bell’s funda- 
mental inequalities [5]. The antigravitation problem in ap- 
plication to the theory of galaxies rotation and the Hubble 
expansion is solved further in the frame of non-local sta- 
tistical physics and the Newtonian law of gravitation. 

I deliver here some main ideas and deductions of the 
generalized Boltzmann physical kinetics and non-local 
physics. For simplicity, the fundamental methodic aspects 
are considered from the qualitative standpoint of view 
avoiding excessively cumbersome formulas. A rigorous 

description can be found, for example, in the monograph 
[6]. 

In 1872 L. Boltzmann [7,8] published his kinetic equa- 
tion for the one-particle distribution function (DF) 
 , , tr v . He expressed the equation in the form f

 BDf Dt J f ,              (1) 
BJ  is the local collision integral, and where 

D

Dt t

  
    
  

v F
r v

v

n T

0BJ  0

 is the substantial (particle) de- 

rivative,  and r  being the velocity and radius vector 
of the particle, respectively. Boltzmann Equation (1) 
governs the transport processes in a one-component gas, 
which is sufficiently rarefied that only binary collisions 
between particles are of importance and valid only for 
two character scales, connected with the hydrodynamic 
time-scale and the time-scale between particle collisions. 
While we are not concerned here with the explicit form 
of the collision integral, note that it should satisfy con- 
servation laws of point-like particles in binary collisions. 
Integrals of the distribution function (i.e. its moments) 
determine the macroscopic hydrodynamic characteristics 
of the system, in particular the number density of parti- 
cles  and the temperature . The Boltzmann equa- 
tion (BE) is not of course as simple as its symbolic form 
above might suggest, and it is in only a few special cases 
that it is amenable to a solution. One example is that of a 
maxwellian distribution in a locally, thermodynamically 
equilibrium gas in the event when no external forces are 
present. In this case the equality  and f f  is 
met, giving the maxwellian distribution function 0f . A 
weak point of the classical Boltzmann kinetic theory is the 
way it treats the dynamic properties of interacting parti- 
cles. On the one hand, as the so-called “physical” deriva- 
tion of the BE suggests, Boltzmann particles are treated as 
material points; on the other hand, the collision integral in 
the BE brings into existence the cross sections for colli- 
sions between particles. A rigorous approach to the deri- 
vation of the kinetic equation for f  (noted in following 
as fKE ) is based on the hierarchy of the Bogolyubov- 
Born-Green-Kirkwood-Yvon (BBGKY) [6,9-13] equa- 
tions.  

A fKE  obtained by the multi-scale method turns into 
the BE if one ignores the change of the distribution func- 
tion (DF) over a time of the order of the collision time 
(or, equivalently, over a length of the order of the particle 
interaction radius). It is important to note [6,14] that ac- 
counting for the third of the scales mentioned above 
leads (prior to introducing any approximation destined to 
break the Bogolyubov chain) to additional terms, gener- 
ally of the same order of magnitude, appear in the BE. If 
the correlation functions is used to derive fKE  from the 
BBGKY equations, then the passage to the BE means the 
neglect of non-local effects. 
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Given the above difficulties of the Boltzmann kinetic 
theory, the following clearly inter related questions arise. 
First, what is a physically infinitesimal volume and how 
does its introduction (and, as the consequence, the un- 
avoidable smoothing out of the DF) affect the kinetic 
equation? This question can be formulated in (from the 
first glance) the paradox form—what is the size of the 
point in the physical system? Second, how does a sys- 
tematic account for the proper diameter of the particle in 
the derivation of the fKE  affect the Boltzmann equa- 
tion? In the theory developed here, I shall refer to the 
corresponding fKE

r v
t

 as Generalized Boltzmann Equa- 
tion (GBE). The derivation of the GBE and the applica- 
tions of GBE are presented, in particular, in [6]. Accord- 
ingly, our purpose is first to explain the essence of the 
physical generalization of the BE. 

Let a particle of finite radius be characterized, as be- 
fore, by the position vector  and velocity  of its 
center of mass at some instant of time . Let us intro- 
duce physically small volume (PhSV) as element of 
measurement of macroscopic characteristics of physical 
system for a point containing in this PhSV. We should 
hope that PhSV contains sufficient particles ph  for 
statistical description of the system. In other words, a net 
of physically small volumes covers the whole investi- 
gated physical system. 

N

Every PhSV contains entire quantity of point-like 
Boltzmann particles, and the same DF f  is prescribed 
for whole PhSV in Boltzmann physical kinetics. There- 
fore, Boltzmann particles are fully “packed” in the refer- 
ence volume. Let us consider two adjoining physically 
small volumes 1  and 2PhSV . We have in prin- 
ciple another situation for the particles of finite size 
moving in physical small volumes, which are open ther- 
modynamic systems. 

PhSV

Then, the situation is possible where, at some instant 
of time t, the particle is located on the interface between 
two volumes. In so doing, the lead effect is possible (say, 
for 2 ), when the center of mass of particle moving 
to the neighboring volume 2  is still in 1 . 
However, the delay effect takes place as well, when the 
center of mass of particle moving to the neighboring 
volume (say, 2 ) is already located in  but 
a part of the particle still belongs to .  

PhSV
PhSV PhSV

2PhSVPhSV

1

Moreover, even the point-like particles (starting after 
the last collision near the boundary between two men- 
tioned volumes) can change the distribution functions in 
the neighboring volume. The adjusting of the particles 
dynamic characteristics for translational degrees of free- 
dom takes several collisions. As result, we have in the 
definite sense “the Knudsen layer” between these vol- 
umes. This fact unavoidably leads to fluctuations in mass 
and hence in other hydrodynamic quantities. Existence of 
such “Knudsen layers” is not connected with the choice 

of space nets and fully defined by the reduced description 
for ensemble of particles of finite diameters in the con- 
ceptual frame of open physically small volumes, there- 
fore—with the chosen method of measurement. 

PhSV

This entire complex of effects defines non-local effects 
in space and time. The corresponding situation is typical 
for the theoretical physics—we could remind about the 
role of probe charge in electrostatics or probe circuit in 
the physics of magnetic effects. 

f  corresponds to 1  and DF PhSVSuppose that DF 
f f PhSV is connected with 2  for Boltzmann parti- 

cles. In the boundary area in the first approximation, 
fluctuations will be proportional to the mean free path (or, 
equivalently, to the mean time between the collisions). 
Then for PhSV the correction for DF should be intro- 
duced as 

af f Df Dt                (2) 

in the left hand side of classical BE describing the trans- 
lation of DF in phase space. As the result  

a BDf Dt J ,                 (3) 
BJ  is the Boltzmann local collision integral. where 

Important to notice that it is only qualitative explana- 
tion of GBE derivation obtained earlier (see for example 
[6]) by different strict methods from the BBGKY—chain 
of kinetic equations. The structure of the K fE  is gener- 
ally as follows 

B nonlocalDf
J J

Dt
 

nonlocalJ

,              (4) 

where  is the non-local integral term incorpo- 
rating the non-local time and space effects. The general- 
ized Boltzmann physical kinetics, in essence, involves a 
local approximation 

nonlocal D Df
J

Dt Dt
   
 

            (5) 

for the second collision integral, here in the simplest case 
  being the mean time between the particle collisions. 
We can draw here an analogy with the Bhatnagar- 
Gross-Krook (BGK) approximation for BJ , 

0B f f
J




 ,                 (6) 

which popularity as a means to represent the Boltzmann 
collision integral is due to the huge simplifications it of- 
fers. In other words—the local Boltzmann collision inte- 
gral admits approximation via the BGK algebraic ex- 
pression, but more complicated non-local integral can be 
expressed as differential form (5). The ratio of the second 
to the first term on the right-hand side of Equation (4) is 
given to an order of magnitude as   
and at large Knudsen numbers (Kn defining as ratio of 

2Knnonlocal BJ J O
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mean free path of particles to the character hydrody- 
namic length) these terms become of the same order of 
magnitude. It would seem that at small Knudsen numbers 
answering to hydrodynamic description the contribution 
from the second term on the right-hand side of Equation 
(4) is negligible. 

This is not the case, however. When one goes over to 
the hydrodynamic approximation (by multiplying the 
kinetic equation by collision invariants and then inte- 
grating over velocities), the Boltzmann integral part van- 
ishes, and the second term on the right-hand side of 
Equation (4) gives a single-order contribution in the gen- 
eralized Navier-Stokes description. Mathematically, we 
cannot neglect a term with a small parameter in front of 
the higher derivative. Physically, the appearing addi- 
tional terms are due to viscosity and they correspond to 
the small-scale Kolmogorov turbulence [6,15]. The inte- 
gral term  turns out to be important both at 
small and large Knudsen numbers in the theory of trans- 
port processes. Thus, 

nonlocalJ

Df Dt  is the distribution func- 
tion fluctuation, and writing Equation (3) without taking 
into account Equation (2) makes the BE non-closed. 
From viewpoint of the fluctuation theory, Boltzmann 
employed the simplest possible closure procedure 

af f . 
Then, the additional GBE terms (as compared to the 

BE) are significant for any Kn, and the order of magni- 
tude of the difference between the BE and GBE solutions 
is impossible to tell beforehand. For GBE the generalized 
H-theorem is proven [6,16]. 

It means that the local Boltzmann equation does not 
belong even to the class of minimal physical models and 
corresponds so to speak to “the likelihood models”. This 
remark refers also to all consequences of the Boltzmann 
kinetic theory including “classical” hydrodynamics. 

Obviously the generalized hydrodynamic equations 
(GHE) will explicitly involve fluctuations proportional to 
 . In the hydrodynamic approximation, the mean time 
  between the collisions is related to the dynamic vis- 
cosity   by 

p   ,                (7) 

[17,18]. For example, the continuity equation changes its 
form and will contain terms proportional to viscosity. On 
the other hand, if the reference volume extends over the 
whole cavity with the hard walls, then the classical con-
servation laws should be obeyed, and this is exactly what 
the monograph [6] proves. Now several remarks of prin-
cipal significance: 

1) All fluctuations are found from the strict kinetic 
considerations and tabulated [6]. The appearing additional 
terms in GHE are due to viscosity and they correspond to 
the small-scale Kolmogorov turbulence. The neglect of 
formally small terms is equivalent, in particular, to drop- 

ping the (small-scale) Kolmogorov turbulence from con- 
sideration and is the origin of all principal difficulties in 
usual turbulent theory. Fluctuations on the wall are equal 
to zero, from the physical point of view this fact corre- 
sponds to the laminar sub-layer. Mathematically it leads to 
additional boundary conditions for GHE. Major difficul- 
ties arose when the question of existence and uniqueness 
of solutions of the Navier-Stokes equations was ad- 
dressed. 

O. A. Ladyzhenskaya has shown for three-dimensional 
flows that under smooth initial conditions a unique solu- 
tion is only possible over a finite time interval. Ladyz- 
henskaya even introduced a “correction” into the Navier- 
Stokes equations in order that its unique solvability could 
be proved (see discussion in [19]). GHE do not lead to 
these difficulties.  

2) It would appear that in continuum mechanics the 
idea of discreteness can be abandoned altogether and the 
medium under study be considered as a continuum in the 
literal sense of the word. Such an approach is of course 
possible and indeed leads to the Euler equations in hy- 
drodynamics. However, when the viscosity and thermal 
conductivity effects are to be included, a totally different 
situation arises. As is well known, the dynamical viscos- 
ity is proportional to the mean time   between the par- 
ticle collisions, and a continuum medium in the Euler 
model with 0   implies that neither viscosity nor 
thermal conductivity is possible. 

3) The non-local kinetic effects listed above will al- 
ways be relevant to a kinetic theory using one particle 
description—including, in particular, applications to liq- 
uids or plasmas, where self-consistent forces with appro- 
priately cut-off radius of their action are introduced to 
expand the capability of GBE [20-25]. Fluctuation ef- 
fects occur in any open thermodynamic system bounded 
by a control surface transparent to particles. GBE (3) 
leads to generalized hydrodynamic equations [6] as the 
local approximation of non local effects, for example, to 
the continuity equation 

 0 0
a

a

t

  
  

 
v

r
a

,             (8) 

where  , 0 , 0  are calculated in view of non- 
locality effect in terms of gas density 

av  av
 , hydrody- 

namic velocity of flow 0 , and density of momentum 
flux 0

v
v a; for locally Maxwellian distribution,  , 

 are defined by the relations  0

av

   

    

0

0 0 0

0 0

,

I

a

a

t

t
p

   

   

 

 
   

 


 


 
    
 



v
r

v v v

v v а
r r

,        (9) 
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where  is a unit tensor, and  is the acceleration due 
to the effect of mass forces.  

I


a

In the general case, the parameter   is the non-lo- 
cality parameter; in quantum hydrodynamics, the “time- 
energy” uncertainty relation defines its magnitude. The 
violation of Bell’s inequalities [5] is found for local sta- 
tistical theories, and the transition to non-local descrip- 
tion is inevitable. The following conclusion of principal 
significance can be done from the generalized quantum 
consideration [22,23]: 

1) Madelung’s quantum hydrodynamics is equivalent 
to the Schrödinger equation (SE) and leads to description 
of the quantum particle evolution in the form of Euler 
equation and continuity equation. 

2) SE is consequence of the Liouville equation as re-
sult of the local approximation of non-local equations. 

3) Generalized Boltzmann physical kinetics defines 
the strict approximation of non-local effects in space and 
time and after transmission to the local approximation 
leads to parameter  , which on the quantum level cor- 
responds to the uncertainty principle “time-energy”. 

4) GHE lead to SE as a deep particular case of the 
generalized Boltzmann physical kinetics and therefore of 
non-local hydrodynamics. 

In principal GHE needn’t in using of the “time-en- 
ergy” uncertainty relation for estimation of the value of 
the non-locality parameter  . Moreover, the “time-en- 
ergy” uncertainty relation does not lead to the exact rela- 
tions and from position of non-local physics is only the 
simplest estimation of the non-local effects. 

Really, let us consider two neighboring physically in- 
finitely small volumes 1  and 2  in a non- 
equilibrium system. Obviously the time 

PhSV PhSV
  should tend 

to diminish with increasing of the velocities  of parti- 
cles invading in the nearest neighboring physically infi- 
nitely small volume (  or ): 

u

2PhSV1hSVP
nH u  .                   (10) 

However, the value   cannot depend on the velocity 
direction and naturally to tie   with the particle kinetic 
energy, then  

2 ,H mu                    (11) 

where H  is a coefficient of proportionality, which re- 
flects the state of physical system. In the simplest case 
H  is equal to Plank constant  and relation (11) be- 
comes compatible with the Heisenberg relation. 



non-local effects can be discussed from viewpoint of 

 adjoin

ons I i nified 
ge

e dark matter is not signifi- 
ca

tion curves have the character 
fla

possible to obtain the continuous transition 
fr

he explo- 
si

her words—is it possible using only Newtonian 
gr

2. Disk Galaxy Rotation and the Problem of 

Ab after Zwicky’s initial observations 

of the type B corre- 
sp

Finally, we can state that introduction of open control 
volume by the reduced description for ensemble of parti- 
cles of finite diameters leads to fluctuations (proportional 
to Knudsen number) of velocity moments in the volume. 
This fact defines the significant reconstruction of the 
theory of transport processes. Obviously the mentioned 

breaking of the Bell’s inequalities [5] because in the 
non-local theory the measurement (realized in 1PhSV ) 
has influence on the measurement realized in the - 
ing space-time point in 2PhSV  and verse versa. 

In the following secti ntend to apply the u
neralized non-local theory for mathematical modeling 

of cosmic objects. For the case of galaxies the theory 
leads to the flat rotation curves known from observations. 
The transformation of Kepler’s regime into the flat rota- 
tion curves for different solitons is shown. The Hubble 
expansion with acceleration is explained as result of 
mathematical modeling based on the principals of non- 
local physics. Therefore the answers for the following 
questions are formulated: 

1) Why the concept of th
nt in the Solar system? 
2) Why the galaxy rota
t form? 
3) Is it 

om the Kepler regime to the flat halo curves? 
4) Why after Big Bang explosion (or after t

on in the Hubble boxes) the Hubble expansion exists 
with acceleration? ([26-28], Nobel Prize for the observ- 
ers S. Perlmutter, A. G. Riess, B. Schmidt of the year 
2011). 

In ot
avitation law and non-local statistical description to 

forecast the flat gravitational curve of a typical spiral 
galaxy (Section 2) and the Hubble expansion (including 
the Hubble expansion with acceleration, PRS-regime), 
(Section 3)? The last question has the positive answer. 

Dark Matter 

out forty years 
Vera Rubin, astronomer at the Department of Terrestrial 
Magnetism at the Carnegie Institution of Washington 
presented findings based on a new sensitive spectrograph 
that could measure the velocity curve of edge-on spiral 
galaxies to a greater degree of accuracy than had ever 
before been achieved. Together with Kent Ford, Rubin 
announced at a 1975 meeting of the American Astro- 
nomical Society the astonishing discovery that most stars 
in spiral galaxies orbit at roughly the same speed re- 
flected schematically on Figure 1. 

For example, the rotation curve 
onds to the galaxy NGC3198. The following extensive 

radio observations determined the detailed rotation curve 
of spiral disk galaxies to be flat (as the curve B), much 
beyond as seen in the optical band. Obviously the trivial 
balance between the gravitational and centrifugal forces 
leads to relation between orbital speed V  and galacto- 
centric distance r  as 2

NV M r  bey nd the physi- 
cal extent of the galaxy of m

o
ass M  (the curve A). The  
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obvious contradiction with the velocity curve B having a 
“flat” appearance out to a large radius, was explained by 
introduction of a new physical essence—dark matter be- 
cause for spherically symmetric case the hypothetical 
density distribution 

 

V
el

oc
it

y 

B

  2~ 1r r V const leads to  . 
The result of this activity is known—undetectable dark 
matter which does not emit radiation, inferred solely 
from its gravitational effects. But it means that upwards 
of 50% of the mass of galaxies was contained in the dark 
galactic halo. 

A

Strict consideration leads to the following system of 
the generalized hydrodynamic equations (GHE) [6,22-25, 
29-31] written in the generalized Euler form: 

Distance  

Figure 1. Rotation curve of a typical spiral galaxy: pre-  ) (Continuity equation for species dicted (A) and observed (B). 

 

     
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(Continuity equation for mixture) 

 

   

0

(1)
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t t

p q

t m


 


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 
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  

       
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        
             





v
r

v v v v F v B
r r r


             (13) 

.

(Momentum equation for species  ) 
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   
 

 

         
        

    

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t
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r r
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I
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
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 
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



     
 



0
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        

, ,d d .st el st inelm J m J

 

       




v

v v v v
r r

v F v v F v B v v v B
r







                   (14) 

  v v v v

(Momentum equation for mixture) 
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      
  

  
 

                  
 

      
           
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
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t
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 
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
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
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 



       (15) 

(Energ ation for y equ  species) 
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  (16) 

(Energy equation for mixture) 
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Here  1

F  are the forces of the non-magnetic origin, 
B —magnet nduction, I


t tensor, qic i —uni  —charge 

of the α-com  particleponent , p —static pressure for 
poneα-com nt,  —in

0 — hy
ternal en y for the particles of 

pone v drody c velocity for mixture, 
erg

namiα-com nt, 

 —non ter.  
GHE can  ap lied to the ysical systems from the 

Universe to atomic scales. All additional explanations 
will be done by delivering the results of modeling of 
corresponding physical systems with the special consid- 
eration of non-lo arameters 

-local pa
 be

rame
p ph

cal p  . Generally speaking 
to GHE should dded the system of generalized 
Maxwell equations (for example in the form of the gen- 
eralized Poisson equation for electric potential) and 
gravitational equations (for example in the form of the 
generalized Poisson equation for gravitational potential). 

In the following I intend to show that the character 
features reflected on Figure 1 can be explained in the 
fram
ki

consider the formation of the soliton’s type of solution of 
the generalized hydrodynamic equations for gravitational 
media like galaxy in the self consistent gravitational field. 
Our aim consists in calculation of the self-consistent hy- 
drodynamic moments of possible formation like gravita- 
tional soliton. 

Let us investigate of the gravitational soliton formation 
in the frame of the non-stationary 1D Cartesian formula- 
tion. Then the system of GHE consist from the g
ized Poisson equation reflecting the effects of the density 
and the density flux perturbations, continuity equation, 
motion and energy equations. The GHE derivation can be 
found in [6,15,29]. This system of four equations for 
non-stationary 1D case is written as the deep particular 
case of Equations (12)-(17) in the form: 

(Poisson equation) 

be a

eneral- 

e of Newtonian gravitation law and the non-local 
netic description created by me. With this aim let us  

 
2

2
4π N u

t xx

                
,     (18) 



(Continuity equation) 

     2 0,
p

u
x x x

  
 

     
                 (19) u u

t t x x t

        
    

           
u 

 

(Motion equation) 

     

   

2

2 2 3 3 u



2 0,

u
x t x

u
x

   
 



     
p

u u u
t t x x x

u p u p u p
x t x

       
   

     
  

            
   

                     (20) 
   

       

(Energy equation) 

   

 

2 23 3u p u p
t t x

    
  

 

     

 

     

3

3 3

2 2

5 2

5 5 8 5

3 5 2 0,

u pu u
x

u pu u pu u p u
x t x

u p u u u p
x x t x x

 

   
   

      
 

     
 

          
                      

        (21) 

(

2
4 2 p



where u  is translational velocity of the one species 
object,  —self consistent gravitational potential 

Taking into acco
wait that the group v

unt the De Broglie relation we should 
elocity gu  is equal 2 0u . In moving 

coordinate system all dependent hydrodynamic values 
are function of 

  g r  is acceleration in gravitational field),   
is density and p  is pressure,  , t is non-locality pa-   . W

n of the soliton type. For this solution 
xplicit dependence on time for coordinate 
g with the phase velocity 0u . Write down 

 of Equations (18)-(21) in the dimensionless 
imensionless symbols are marked by tildes.  

e investigate the possibility of 
the object formatio
there is no e
system movin
the system
form, where d

rameter, N  is Newtonian gravitation constant.  
Let us introduce the coordinate system moving along 

the positive direction of x-axis in ID space with velocity 
C u  equal to phase velocity of considering object 0

x Ct   .                 (22) 
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 For the scales 0 0 0, ,u x 2
0 0 0 0,u t u   , 2 2

0 0 0 0u xN  , 

0 0 0p u2  and conditions 0 1C C u  , the equations 
take the form

(Generalized Poisson equation) 


: 

 
2

2
4π N u

   
  

     
         

       ,    (23) 

(Continuity equation) 

2 2 0,p u u    


               


                                             (24) 

u   
   
 

 
       

(Mot quation) ion e

   

 

2 u

u

22u p u u
      32 3p u pu 

2u 0,

 



 



 




 

              (25

(Energy equation) 

 
     
 

          
     


     

    
   

                

       


 
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 
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


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2 3

2

3 5 2

3 5 2 2

u p u pu u

u p u

     
  

   

      
 

   
    

          

 
    

20 3pu u p       

0,


 
 

 

   (26) 

 the system of four ordinary non- 
linear Equations (23)-(26): 

1) Every equation from the system is of the second 
order and needs two conditions. The problem belongs to 
the class of Cauchy problems. 

2) In comparison for example, with the Schrödinger 
theory connected with behavior of the wave function, no 
special conditions are applied for dependent variables 
in  of the solution existing. This do- 
main is defined automatically in the process of the nu- 
merical solution of the concrete variant of calculations. 

3) From the introduced scales 2
0 0 0 0 0 0 0, , ,u x u t u    , 

 

Some comments to

cluding the domain

2 2
0 0 0 0N u x  , 2

0 0 0p u , only three parameters are 
independent, namely, 0 0 0, ,u x . 

4) Approximation for the dimensionless non-local pa- 
rameter   should be introduced (see (11)). In the defi- 
nite sense it is not ynamic level 

e calculation of 
drodynamics). 

 the problem of the hydrod
m description (like th
ts in the classical hy

of the 
the 
Int

physical syste
kinetic coefficien

eresting to notice that quantum GHE were applied 
with success for calculation of atom structure [22-25], 
which is considered as two species charged ,e i  mixture. 
The corresponding approximations for non-local pa- 
rameters i , e  and ei  are proposed in [22,23]. In 
the theory of the atom structure [23] after taking into 

account the Balmer’s relation, (11) transforms into 

 2
e en m u   ,                (27) 

where 1, 2,n    is principal qua
sult the length scale relation was written as  

ntum number. As re- 

   0 0 0e eH m u n m u   . But the value x qu
ev m    

has the dimension  2cm s   and can be titled as quan- 
tum viscosity, 21.1577cm s.quv   Then 

2qu
e nv u  .                 (28) 

Introduce now the quantum Reynolds number 

0 0Requ quu x v .              (29) 

As result from (27)-(29) follows the condition 
quantization for Requ . Namely 

Re , 1, 2,qu n n               (30) 

5) Taking into account the previous considerations I 
in

of 

troduce the following approximation for the dimen- 
sionless non-local parameter 

21 u   ,                     (31) 

2 2ku x u u   ,           (32) 0 0 0
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where the scale for the kinematical viscosity is intro- 

0 0 the physically transpar
ent result—non-l

d in i  proportion to the 
sq

duced 0
k u x  . Then we have - 

ocal parameter is proportional to the 
kinematical viscosity an nverse

uare of velocity. 
The system of generalized hydrodynamic Equations 

(23)-(26) (solved with the help of Maple) have the great 
possibilities of mathematical modeling as result of 
changing of eight Cauchy conditions describing the 
character features of initial perturbations which lead to 
the soliton formation. The following Maple notations on 
figures are used: r—density  , u—veloc  u , p— 
pressure p  and v—self consistent potential  . 

Explanations placed under all following figures, Maple 
program contains Maple’s notations—for example the 
expression   0 0D u   means in the usual nota

ity

tions 
  u    0 0 , indepe  ndent variable t  responds to 
 . 

gin with

 Cauchy condition avitationa
object of the soliton’s kind 

ith thi
ns ( I 1 , 

We be  investigation of the problem of princi- 
ple significance—is it possible after a perturbation (de- 
fined by

 

Figure. 3. p pressure p  (dashed line), u velocity u  in 
gravitational soliton. 

 

s) to obtain the gr l 
as result of the self-organiza- 

tion of the matter? W s aim let us consider the ini- 
tial perturbatio  u 0 = SYSTEM ): p 0 = 1 , 
 r 0 = 1 ,  D u 0 = 0 ,   p 0 = 0 ,   D r 0 = 0 , D
  D v 0 = 0 ,  v 0 = 1 . 
The Figures 2-4 reflect the result of solution of Equa-

tions (23)-(26) with the choice of scales leading t
1N

o 
  . Figures 2-5 correspond to
th

 the approximation of 
e non-local parameter   in the form (31). Figure 2  

 

 

Figure 4. u velocity u , v self consistent potential Ψ , 

  v Ψ D t = ξ   in soliton. 

 
displays the gravitational object placed in bounded re- 
gion of 1D Cartesian space, all parts of this object are 
moving with the same velocity. Important to underline 
that no special boundary conditions were used for this 
and all following cases. Then this soliton is product of 
the self-organization of gravitational matter. Figures 3 
and 4 contain the answer for formulated above question  

 

Figure 2. r density ρ  (dash dotted line), u velocit  u  in 
gravitational soliton. 

y
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Figure 5. u velocity u , density r ρ ,   v ΨD t = ξ   in 

soliton, ( γ = 0.01 ). N

 
about stability of the object. The derivative (see Figure 4)  

     0 0x g20
2
0

x
g u

u
 


 

  



     is proportional  

to the self-consistent gravitational force acting on the 
soliton and in its vicinity. Therefore the stability of the 
object is result of the self-consistent influence of the 
gravitational potential and pressure.  

Extremely important that the self-consistent gravita- 
tional force has the character of the flat area which exists 
in the vicinity of the object. This solution exists only in 
the restricted area of space; the corresponding character 
length is defined automatically as result of the numerical 
solution of the problem. The non-lo rameter cal pa  , in 
the definite sense plays the role an ous to kinetic co- 
efficients in the usual Boltzmann kinetic theory. The in- 
fluence on the results of calcula gnificant. 
The same situation exists in the generalized hydrody- 
namics. Really, let us use the anothe pproximation fo

alog

tions is not too si

r a r 
  in the simplest possible form, namely 

1  .                   (3 ) 

 Figures 6-10

3

The following  reflect the results of so- 
lution of Equations (23)-(26) with the choice of scales 
leading to 1N  , but with the approximation of the 
non-local parameter   in the form (33). 

Spiral galaxies have rather complicated geometrical 
forms and 3D calculations can be used. But reasonable to 
suppose that influence of halo on galaxy kernel is not too 
significant and to use for calculations the spherical coor- 
dinate system. The 1D calculations in the Cartesian 

 

Figure 6. r density ρ  (dashed n  in 
gravitatio on. 

li e), u velocity u
nal solit

 

 

Figure 7. u velocity u ,   v Ψ t = ξ   (dash-dotted D

lin

system
radii of curva- 

tu

e). 
 
coordinate  correspond to calculations in the 
spherecal coordinate system by the large 

re, but have also the independent significance in an- 
other character scales. Namely for explanations of the 
meteorological front motion (without taking into account 
the Earth rotation). In this theory cyclone or anticyclone 
corresponds to moving solitons. In the Earth scale the  
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Figu . r density re 8 ρ , u velocity u , w tal velocity w orbi . 

G = 0.01 . 

 

 

Figure 9. p pressure p , v self consistent potential in gravi- 

tational soliton, Ψ ,   v Ψ D t = ξ   in gravitational 

ales

soliton. 
 
sc  can be used: 3 31.29air 10 cmg  , 0

 

Figure 10. r density ρ , u velocity u  in gravitational soli-

bi

 

n, w or tal velocity w . G = 1 . 

the spherical coordinate system can be found in [29,30]. 
The following figures reflect the result of soliton calcula- 
tions for the case of spherical symmetry for galaxy kernel. 
The velocity u  corresponds to the direction of the soli- 
ton movement for spherical coordinate system on fol- 
lowing figures. Self-consistent gravitational force 

to
 

F  
acting on the unit of mass permits to define the orbital 
velocity w  of objects in halo, w Fr , or 

w r
r







 


,                 (34) 

where r  is the distance from the center of galaxy. All 
calculations are realized for the conditions (SYSTEM I) 
but for different parameter  

2 2
0 0 0 0N N N NG x u       .       (35) 

Parameter G  plays the role of similarity criteria in 
traditional hydrodynamics. Important conclusions: 

Fi

ik urve A on Figur
s 14 and 15; large G, like curve B on Figure 1) 

r typical spiral galaxies. 
planets (like Sun) corr

gravitation

l physics in principal and authors of many pa- 
pe

1) The following gures 8-15 demonstrate evolution 
of the rotation curves from the Kepler regime (Figures 8 
and 9; small G, l e c e 1) to observed 
(Figure
fo

2) The stars with espond to the 
al soliton with small G and therefore originate 

the Kepler rotation regime. 
3) Regime B cannot be obtained in the frame of local 

1u m s , 

0 10x km  and ~ 0.01N . Figure 5 reflects the results 
of the corresponding calculation and in particular reflects 
correctly the wind orientation in front and behind of the  
soliton. 

The full system of 3D non-local hydrodynamic equa- 
tions in moving (along x axis) Cartesian coordinate sys- 
tem and the corresponding expression for derivatives in  

statistica
rs introduce different approximations for additional 

“dark matter density” (as usual in Poisson equation) try- 
ing to find coincidence with data of observations. 
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Figure 13. p pressure 
 

p , v self consistent potential Ψ
Figure 11. p pressur  e p , v self c nsistent potential Ψ , 


o

 v Ψ D t = ξ   in g vi al soliton. ra tation

 

 

Figure 12. r density ρ , u velocity u  in gravitational soli-

ton, w orbital velocity w . G = 10 . 
 

4) From the wrong position of local theories Poisson 
Eq

udes “dark energy”, energy 
Eq

uation (18) contains “dark matter density”, continuity 
Equation (19) contains the “flux of dark matter density”, 
motion Equation (20) incl

uation (21) has “the flux of dark energy” and so on to 
the “senior dark velocity moments”. This entire situation 
is similar to the turbulent theories based on local statisti- 
cal physics and empirical corrections for velocity mo- 
ments. 

, 

  v Ψ D t = ξ  . 

 

 

Figure 14. r density ρ , u velocity u  in gravitational sol

 . 

features of the halo movement can 
e

lest interpretation of the local theories the dark  

i-

ton, w orbital velocity w . G = 100

 
As we see peculiar 

b  explained without new concepts like “dark matter”. 
Important to underline that the shown transformation of 
the Kepler’s regime into the flat rotation curves for dif- 
ferent solitons explains the “mysterious” fact of the dark 
matter absence in the Sun vicinity. 

3. Hubble Expansion and the Problem of 
Dark Energy 

In simp
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ssFigure. 15.  pre ure p p , v self consi nt potential Ψ , ste

  v Ψ= ξ  . 

 
energy is related usually to the Einstein cosmological 
constant. In review [4] the modified Newton force is 
written as 

D t

  2

M 8π

3
N NF r r

 
r

   v ,          (36) 

where v  is the Einstein-Gliner vacuum density [33]. 
In the limit of large distances the influence of central 
mass M  becomes negligibly small and the field of 
forces is determined only by the second term in the right 
side of (36). It follows from relation (36) that there is a 
distance rv  at which the sum of the gravitation and an- 
tigravitation forces is equal to zero. I r words rv  is 
“the zero-gravitational radius”. Fo o called Local 
Group of galaxies ation of rv  t 1Mpc. 

From the non-local statistical theo e physical pic- 
ture follows which leading to the Hubble flow witho  

rk  
36  

The main origin of Hubble effect (including the matter 
ex

 to obtain the corre- 
near 
eal- 

ize rect mathematical model supporting 

(USA) and B. Schmidt (Australia). These researchers 
studied Type 1a supernovae and determined that more 
distant galactic objects seem to move faster. Their ob- 
servations suggest that not only is the Universe expand- 
ing, its expansion is relentlessly speeding up. 

Effects of gravitational self-catching should be typical 
for Universe. The existence of “Hubble boxes” is dis- 
cussed in review [4] as typical blocks of the nearby Uni- 
verse. Gravitational self-catching takes place for Big 
Bang having given birth to the global expansion of Uni- 
verse, but also for Little Bang in so called Local Group 
(using the Hubble’s terminology) of galaxies. Then the 
evolution of the Local Group (the typical Hubble box) is 
really fruitful field for testing of different theoretical 
constructions (see Figure 16). The data were obtained by 
Karachentsev and his collaborators in 2002-2007 in ob-
servation with the Hubble Space Telescope [4,32]. Each 
point corresponds to a galaxy with measured values of 
distance and line-of-site velocity in the reference fram

 
shows two distinct structures, the Local Group and the 

cal flow of galaxies. The galaxies of the Local Group 

(positive velocities) and toward the center 
(negative velocities). These galaxies form
ally bound quasi-stationary system. Th
velocity is equal to zero. The galaxies of the local flow 

n othe
r s

is abou
ry th

estim

ut
new essence like da  energy and without modification 
of Newton force like ( ).

Namely: 

pansion with acceleration) is self—catching of ex- 
panding matter by the self—consistent gravitational field 
in conditions of weak influence of the central massive 
bodies. 

The formulated result is obtained in the frame of the 
linear theory [25,31]. Is it possible
sponding result on the level of the general non-li
description? Such an investigation was successfully r

d and leads to a di
the well known observations of S. Perlmutter, A. Riess 

e 
related to the center of the Local Group. The diagram 

lo
occupy a volume with the radius up to ~1.1 - 1.2 Mpc, 
but there are no galaxies in the volume whose radius is 
less than 0.25 Mpc. These galaxies move both away from 
the center 

 a gravitation- 
eir average radial 

are located outside the group and all of them are mov- 
ing from the center (positive velocities) beginning their 
motion near 1 MpcR   with the velocity ~ 50 km/sv . 
By the way the measured by Karachentsev the average 
Hubble parameter for the Local Group is 72 ± 6 

1 1km s Mpc  . 
Let us choose these values as scales: 

0 01 Mpc, 50 km/sx u  .         (37) 

Recession velocities increase as the distance increases 
in accordance with the Hubble law. The straight line 
correspond the dependence from observations 

 r r                  (38) 

fo

v H

r the region outside of the Local Group. In the non- 
dimensional form  

 v H r r                     (39) 

where 

 0

0

x
H H r

u
  .               (40) 

For the following calculations we should choose the 
corresponding scales (especially for estimating G ) for 
modeling of the Local Group evolution     
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tances of up to 3 Mpc for local group of galaxies. Figure 16. Velocity-distance diagram for galaxies at
 

 dis

2 2
0 0 0 0N N N NG x u       .        (41) 

Copyright © 2012 SciRes.                                                                                 

For the density scale estim
the local flow could be used.

ation the average density of 
 But the corresponding data 

are not accessible and I use the average density of the 
Local Group which can be taken from references [32,34] 
with 29 3

0 4.85 10 g cm   . Then from (41) we have 
G 

to the mathematical modeling. The non- 
drodynamic equations describing the 

explosion with the spherical symmetry is written as (see  

[30], Appendix 2) 

1. 
Let us go now 

local system of hy

rg
r


 


,                (42) 

(Poisson equation) 

 2

2
2 2

1 1
4π

r

N

r v
r

r r t rr r

   
                     

, (43) 

(Continuity equation) 

   
 

2 2 2

2 2
2 2 2 2

1 1 1 1
0

r r

r r r

r v r v p
r v v g r

t t r r t r r rr r r r

         
  

                                         
,   (44) 

(M ) otion equation

 
   

    

2 2 2

2 2

2 3 2

2 2 2

1 1

2 2

r r

r r

r r

r r r r

r v r vp
g g

r r t rr r

r v r pvp p
g v

r t r r r t r rr r r

      
 

  

                             
                                      

2 2 21 1

r rv v
t t

r v v

  
 

  

 

 
 






 21 rpv

r2 0r
r r


 
 



,        (45) 

  
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(Energy equation) 

2 2
2

2 2 2
2

1 3 1 3 1

2 2 2 2

1 1 5 1

2 2

r r

r r r

v p v p
t t rr

r v p v v
r r

   
 

  


          

             

2 2

2 2
2

1 5

2 2

5 7

2 2 2 2

1

r r r r

r r r

r v v p g v

p v p v
r t r

 




       
   

   
        

21 1
v r

     

2 2

2r r rg v v      


2

2 2 2

2

1 1 5 1

r r rp g g v

p
r pv r p

 

 

          
    

    

2 2
2

2 2

3 1

2 2

r r r r

r r

p
g v r v g

t r rr

g
r r rr r

  



                 

 0.      

           

The system of Equations (43)-(46) belongs to the class 
of the 1D non-stationary equations and can be solved by 
kn thods. But for the aims of the trans-
pa cal modeling of self-catching of the 
expanding matter by the self-consistent gravitational 
field I introduce the following assumption. Let us allot 
the quasi-stationary Hubble regime when only the im-
plicit dependence on time for the unknown values exists. 
It means that for the intermediate (Hubble) regime the 

substitution 

(46) 

own numerical me
rent vast mathemati

r

r
v

t r t r

   
 

   
              (47) 

can be introduced. As result we have the following sys- 
tem of the 1D dimensionless equations: 
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The system of generalized hydrodynamic equations 

(48)-(51) have the great possibilities of mathematical 
modeling as result of changing of eight Cauchy condi- 
tions describing the character features of the local flow 
evolution. The following Maple notations on figures are 
use —density d: r  velocity rv —pressure p  
and —self consistent 

, u— , p
v potential  , h — H  and inde- 

pend iable t nations placed under all 
fo igures, e prog m cont  Maple’s no- 

p 0 0D u   means 
in 

en
llowing

the us

t var
 f

tations—for exam

 is 
 Map
l

 

r
l
. Expla

ra ains
 e the expression 

ual notations   0 0   .  
n- meter 

u r 
 noAs mentioned before, the local para  , in 

the definite sense plays the role an ous to kinetic co- 
efficients in the usual Boltzmann kinetic theory. The in- 
fluence on the results of calcula gnificant, 
(see (31, 33)). The same situa general- 
ized hydrodynamics. As before I introduce the following 
approximation for the dimensionless n-local parameter 

ru v  ) 

alog

tions is not too si
tion exists in the 

 no
(see (31), here  21 u   define also the 

tion for the 
quasi-stationary regime 

. Let us 
celeration funcdimensionless acceleration-de

 

Figure 17. Dependence of the acceleration-deceleration 
function Q  (in Maple notation   D  u t = u r  ), deriva-

tion of the self-consistent potential rv u
Q

r r

 
 
 
 
 

,                 (52) 

as an analogue of the dimensionless deceleration function 
q  which was used in [28]. 

One obtains for the approximation (31) and SYSTEM 
2:  

 v Ψ D t = ξ   and 

velocity u = u  on the radial distance r . 

 

 v 1 = 1,  u 1 = 1,  r 1 = 1,  p 1 = 1 ,   D v 1 = 0 , 
. 

= 1. From these 
cal- culations follow: 

) As it was waiting the quasi-stationary regime exists 
on

sh F or-
ce ct al

 D u
Figures

 = 0 , 
 17 and

1   D r 1 = 0
 18 corresp

,   D p 1 = 0
ond to G 

1
ly in the restricted (on the left and on the right sides) 

area. Out of these boundaries the explicit time dependent 
regime should be considered. But it is not the Hubble 
regime. 

2) In the Hubble regime one obtains the negative area 
(low part of the da -dotted curve of igure 17). It c  
responds to the self-consistent for  a ing ong the ex- 
pansion of the local flow.  

3) The dependence of  H r   is not linear (see Figure 
18), more over the curvature cont m. The 
area of acceleration pl

ains maximu
aced between two areas of the de-  

y the 0

celeration. 
Let us show now the result of calculations for another 

  approximation in the simplest possible form, namely 
(see also (33)) 1  . One obtains for this  - approxi- 
mation and SYSTEM 2 for G = 1, see Figures 19-22. 

We can add to the previous conclusions: 
4) Approximation const   conserves all principal 

characters of the previous dependences, but the area of 
the Hubble regime becomes larger. 

5) Approximation 

Figure 18. Dependence of the dimensionless Hubble pa-
rameter on the radial distance. 
 
numerical transition to the “classical” gas dynamics of 
explosions. B    there are no Hubble regimes 
in

istent gravitational field. 

 principal. 
6) Diminishing of G leads to diminishing of the area of 

the Hubble regime with the positive acceleration of the 
matter catched by the self-cons

7) Dependence of  H r  do   es not contain the maxi- const   allows realizing the  
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Figure 19. r density ρ , u u ,   v Ψ D t = ξ  . 

 

 

Figure 20. Dependence of the acceleration-deceleration 

    D u t

 

Figure 21. Dependence of the dimensionless Hubble pa-
rameter on the radial distance for G = 1. 
 

 

Figure 22. Dependence of the dimensionless hubble pa- 
rameter on the radial distance for G = 10. 
 
the rotational speeds of galaxies and the Hubble expan- 
sion with acceleration need not in the introduction of new 
essence like dark matter and dark energy. 

4. Conclusion 

The  n o heory is applied for 
athematical modeling of cosmic objects with success. 

 case of galaxies the theory leads to the flat rota- 
tion curves known from observations. The transformation  

= u r   on r . 

 
mum on the curve for the small value of parameter G (A- 
regime). It is reasonable to find from the observation the 
Hubble boxes where A-regime is realizing. Considera- 
tion of the Local Group evolution of galaxies (see Figure 
16) leaves the impression that this burst responds to the 
PRS-regime. 

As we see the Hubble expansion with acceleration is 
explained as result of mathematical modeling based on 
the principles of non-local physics. Peculiar features of  

unified generalized on-l cal t
m
For the
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of Kepler’s regime into the flat rotation curves for dif- 
ferent solitons is shown. The origin of Hubble effect (in-
cluding the matter expansion with acceleration) is self- 
catching of the expanding matter by the self-consistent 
gravitational field in conditions of weak influence of the 
central massive bodies. The Hubble expansion with ac- 
celeration is obtained as result of mathematical modeling 
based on the principles of non-local physics. Peculiar 
features of the rotational speeds of galaxies and effects of 
the Hubble expansion need not in the introduction of new 
essence like dark matter and dark energy. The origin of 
difficulties consists in the total Oversimplification fol- 
lowing from the principles of local physics. 
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