
Applied Mathematics, 2012, 3, 1079-1088 
http://dx.doi.org/10.4236/am.2012.39159 Published Online September 2012 (http://www.SciRP.org/journal/am) 

A Single Species Model with Symmetric Bidirectional  
Impulsive Diffusion and Dispersal Delay 

Haiyun Wan, Long Zhang*, Hongli Li 
College of Mathematics and System Sciences, Xinjiang University, Urumqi, China 
Email: ywansd@163.com, *longzhang_xj@sohu.com, lihongli3800087@163.com 

 
Received August 3, 2012; revised September 3, 2012; accepted September 10, 2012 

ABSTRACT 

In the natural ecosystem, impulsive diffusion provides a more natural description for population dynamics. In addition, 
dispersal processes often involve with time delay. In view of these facts, a single species model with impulsive diffu-
sion and dispersal delay is formulated. By the stroboscopic map of the discrete dynamical system and other analysis 
methods, the permanence of the system is investigated. Moreover, sufficient conditions on the existence and uniqueness 
of a positive periodic solution for the system are derived from the intermediate value theorem. We also demonstrate the 
global stability of the positive periodic solution by the theory of discrete dynamical system. Finally, numerical simula-
tions and discussion are presented to validate our theoretical results. 
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1. Introduction 

Species dispersal in patchy environment is one of the 
most prevalent phenomena of nature, and many empirical 
works and monographs on population dynamics in a spa-
tial heterogeneous environment have been done. The 
persistence and extinction for ordinary differential equa-
tion and delayed differential equation models were inves- 
tigated in [1-6]. Global stability of equilibrium and peri-
odic solution for diffusing model were studied in [7-12]. 
Particularly, the predator-prey system with the prey dis-
persal also were studied in [13-15]. Regretfully, in all of 
above population dispersing systems, they always as-
sumed that the dispersal occurs at every time. For exam-
ple, in [16], Mahbuba and Chen proposed the following 
two patches single species diffusion system: 
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where  presents the dispersal rate from patch j to 
patch i at time t. The form of the dispersal established in 
this model is continuous, that is, the dispersal is always 
happening at any time.  

 ijD t

Actually, real dispersal behavior is very complicated 
and is always influenced by environmental change and 
human activities. It usually occurs stochastically or dis-
continuously [17], and it is often the case that species 
dispersal occurs at some transitory time slots when indi-

viduals move among patches to search for mates, food, 
refuge, etc.  

Animal movements between regions or patches of 
habitat are rarely continuous in time. They may occur 
during short time slots within seasons or within the life-
times of animals. This short-time scale dispersal is more 
appropriately assumed to be in the form of impulses in 
the modeling process, in order to be in much better 
agreement with the real ecological situation. For example, 
when winter comes, birds will migrate between patches 
in search for a better environment, whereas they do not 
diffuse in other season, and the excursion of foliage 
seeds occurs during a fixed period of time every year. 
Thus impulsive dispersal provides a more natural de-
scription. With the developments and applications of 
impulsive differential equations, theories of impulsive 
differential equations have been introduced into popula-
tion dynamics, and many important studies have been 
performed [18-24].  

In [19], Wang and Chen studied the following 
autonomous single-species model with impulsively bidi-
rectional diffusion:  
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where   presents the population density 
or size at time t,  is the intrinsic growth rate 
of the population d  is the dispersal rate in the 
ith patch. i

 iN t  1, 2i 
ir i 
iN , an

i iN N






1,2

id
 n N n     , where  iN n   

represents the density of population in the ith patch im-
mediately after the nth diffusion pulse at time t n , 
while i N n    represents the density of population in 
the ith patch before the nth diffusion pulse at time 
t n  (   the period of dispersal between any two 
pulse events is a positive constant, ). It is as-
sumed here that the net exchange from the jth patch to ith 
patch is proportional to the difference 

1,2, n

j iN N  of 
population densities. The dispersal behavior of popula-
tions between two patches occurs only at the impulsive 
instants n . Obviously, in this model, species N inhabits 
respectively two patches before the pulse appears, when 
the time at the pulse comes, species N both in two 
patches disperse from one patch to the other. Sufficient 
criteria were obtained for the permanence, existence, 
uniqueness and global stability of positive periodic solu-
tions by using discrete dynamical system theory.  

It is well known that the time delay is quite common 
for a natural population. In order to reflect the dynamical 
behaviors of models that depend on the past history of 
system, it is often necessary to take the effect of time 
delay into account in forming a biologically meaningful 
mathematica model. Delay differential equations have 
attracted a significant interest in recent years due to their 
frequent appearance in a wide range of applications. 
They serve as mathematical models describing various 
phenomena in physics, biology, physiology, and engi-
neering, see, e.g., [25,26] and references therein. There 
has been an extensive theoretical works on delay differ-
ential equations in the past three decades. The research 
topics include global asymptotic stability of equilibria, 
existence of periodic solutions, complicated behavior and 
chaos, see, e.g., [8,14,27,28].  

Zhang and Teng in [14] introduced the following two 
species time-delayed predator-prey Lotka-Volterra type 
dispersal system with periodic coefficients (1.3):  
where ,  0,t R    1, 2, ,i

conditions on the boundedness, permanence and exis-
tence of positive periodic solution for system (1.3) are 
established.  

Recently, the application of impulsive delay differen-
tial equations to population dynamics is also an interest-
ing topic since it is reasonable and correct in modelling the 
evolution of population, such as pest management [29].  

However, in all of the impulsive dispersal models 
studied up to now, there are few papers considering the 
dispersal delay, which is really a pity. Actually, in the 
real world, the migration between patches is usually not 
immediate, that is, dispersal processes often involve with 
time delay. For example, elks move from higher to lower 
elevations to escape cold in winter, and ungulates mi-
grate annually among grazing areas to following spa-
tio-temporal changes in rainfall. In these cases, move-
ment is unidirectional during each migration period and 
takes place over fairly short time periods. Obviously, this 
kind of dispersal delay between patches extensively ex-
ists in the real world. Therefore, it is a very basilic prob-
lem to research this kind of population dynamic systems.  

Motivated by the calculation hereinbefore, in this pa-
per, we consider the following impulsive dispersal sys-
tem with dispersal delay:  
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   (1.4) 

where we suppose that the system is composed of two 
patches connected by diffusion. The pulse diffusion oc-
curs every   period, the system evolves from its initial 
state without being further affected by diffusion until the 
next pulse appears;   stands for the time delay, that is, 
a period of species N disperse between patch i and j. 
0    ,  and ,ir ik  1,2id i   are positive constants.  

x i I n    denote the 
population density of prey species in ith patch and y is 
the population density of predator species. In this paper, 
the authors took dispersal delay into account, however, 
they assumed that the dispersal is continuous. Sufficient  

The organization of this paper is as follows. In section 
2, as preliminaries, the definition of permanence and 
some useful lemmas are introduced. From discrete dy-
namic system theory, we establish the stroboscopic map 
of system (1.4), by which we can obtain the dynamical  

 

                     

                    

           

01
1 1 1 1 12 1 1 1 1 1

1

1

0

21 1

d
( ) ( )d ( ) ,

d

d
,

d

d
d , 2,3, , ,

d

n

j j j j j
j

n
i

i i i i ij ij j ij ji i
j

x t
x t a t b t x t c t k s y t s s t d t x t t d t x t

t

x t
x t a t b t x t t d t x t t d t x t

t

y t
y t e t f t k s x t s s i n

t

 

 








              
           



        





 

  (1.3)

Copyright © 2012 SciRes.                                                                                  AM 



H. Y. WAN  ET  AL. 1081

 
behaviors of it. The theorem on the permanence for sys-

, let 

tem (1.4) is stated and proved in Section 3. In section 4, 
the existence and uniqueness of positive periodic solution 
for the system are obtained by the intermediate value 
theorem. In Section 5, the global stability of the positive 
periodic solution for system is established by the discrete 
dynamic system theory in [30]. Finally, we give a brief 
discussion and our theoretical results are conformed by 
numerical simulations.   

2. Preliminaries 
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By integrating and solving the first two equations of 
system (2.2) between pulse, we have 
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Similarly, considering the last two equations of system 
(2.2), we obtain the following stroboscopic map of sys-
tem (2.2):  
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Remark 2.1. System (2.4) is a difference system. It 
describes the densities of population in two patches at a 
pulse in terms of values at the previous puls
other words, stroboscopically sampling
period. The dynamical behavior of system (2.4), coupled 

), determine the dynamical behavior of system 
the following sections, we will focus our atten-

tion on system (2.4), and investigate various aspects of 
its dynamical behavior. 
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From the above discussion, we can see that the first 
part of Case (1) is true. Similarly, we can prove that the 
second part of Case (1) and the Case (2) are also true, so 
we omit the proof. This completes the proof.  

By the same method, we have the following Lemma 
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Lemma 2.3 (  Let : nF R R  be continuous,  
1  in int C  nR  and xists ith  , suppo  DF  wse 0  e

   
0x

D DF
lim 0z addition  F  . In , assume

(a)   0, if 0;DF x x   
    , ifDF y DF x 0 ;x y(b)     

If  0 0F  ,  let  0 . If DF  1  , r 
0 , 

then fo
every x    0x  anF  s n  ; if 1   , then
either      for x r nF x

xists a uni
 as n 
 nonzero fixed p

ev
oi

ery 
nt q of 

0
F

; o
there e  the 
la

que . In
tter case, 0q   and for every 0x  ,  nF x q  as 

n  .  
If   00F  , then either  as  for 

ev
In 

 nF x 
a unique fix

every 

n 
ery 0x   or there exists ed point q of F. 
the latter , 0q   and for 0x  ,   case
 nF x q  as n  .  

3. Permanence 

anence plays an im a
y since the cr n rm ecol

erma nce of sys
(1

The perm portant role in m thematical 
ecolog iterio  of pe anence for ogical 
systems is a condition ensuring the long-term survival of 
all species. In this section, we prove system (2.4) is per-
manent which will imply the p ne tem 

.4). 
Theorem 3.1 For 0 0x  , 0 0y  , system (2.4) is 

permanence if 20 1d d1   .  
Proof. Since 0 1a , 2 1a  , 0 0x  , y , we obtain  0 0

1 2 1 2
0 0 0lim 1, lim 1, lim 1, lim 1.

n n n na a a a

n n
x x y y

  0
n n 

    

By Lemmas 2.1 and Lemmas 2.2, we can get that for 
n N , large enough, there exists constants im ,  

 0 , 1,2i i iM m M i    such that 1 1nm x M   and 

2 2nm y M  , that is,  

1 1liminf limsupt n t nm x x M     and  

2 liminf limsupm y y Mt n t n 2    This means sys- 
tem (2.4) is permanen pr  Theorem 3.1 is 
completed. 

t. The oof of

4. Existence and Uniqueness of Positive 
Periodic Solution 

In
of t
system e  so

Theorem 4 ositive fixed 

 this part, we will prove the existence and uniqueness 
he fixed points of system (2.4), which means that 

 (1.4) has a uniqu ly positive periodic lution.  
.1 There exists a unique p point 

 ,x y   of sy  provided that  stem (2.4)

Copyright © 2012 SciRes.                                                                                  AM 



H. Y. WAN  ET  AL. 

Copyright © 2012 SciRes.                                                                                  AM 

1083

   1 2 ,r re1
1 2 1 10 1,1 1 rd d b b e          

   1 22
1 1,1 1 .r rrb b d b b e e2 1 2 2

         

Proof. Corresponding to (2.4), let us consider th
lowing system (4.1):  

e fol-

 

 

2
1 2

1
2 1

1 1

2
2

1 ,

1 .
r

b b e

b b e

x d x d ky

d
y d y x

k

r 



   


  


        (4.1) 



From

,

,
          (4.2) 

hence  

 (4.1), we have  

 
 

1

2

1

2

1 0

1 0

b

b

x d x

y d y

  

  
 

 

 

1

2

1

11 ,bx d1

1

1
21 .by d






   


   

            (4.3) 

From (4.1), we obtain  

  

   

2
2

1

2

1

1
1

2

1 ,

, 1

rb eb

b

d x
kd

G x y d y y
k



1
12 .

rb ed
x

1
y x






 
 


  





   (4.4) 

Since  

    

 

2 2
2

2
2

2
2

1 1

2
2

1

2
2

1

1 1
1, 1 1

1 1
1

1 1
0,

r r

r

r

e b e

b e

b e

d
G y d

k k k

d
d

k k k

k k

 





         
   

     
 

    
 

 





 

   1
12, 0

rb ed
G y

k


   , 


 

by the intermediate value theorem, we can see that there 
exists  ,x y   such that  

   
2

2

1

1
1, 0 1 ,

rb e
x y y y

k



           
 



 

    
2

1

1
0,

rb eb
G y

21

1
1

, 1 .x y x d x
kd


      

 
 

It follows from (4.3) that we obtain  

  
 



 

 

1

2
2 2

1
1

2 1

1
1 1

1
1 2

1 12 1

  




2 21
d d d

d b y
x x x k

      

1 1d
,

d

d d d
,

r

r

b

r b e

r
b b e

d b xy

x d kb e y

d b eG y y
x













 

  













 ( 5) 

 

4.

      1 21 21 2 1
2

2

1 1 1
1 1 2 2 1 2 1 212

1 2

d 1
1 1 1 1 ,

d

r r

r

r rb b b e b

b er

G
d b x d b y d d b b e x y

x d kb e y

 






  


           

 





 2 1e 

2 1b e 

       

       

1 21 21 2 1 2

1 21 21 2 1 2 1

1 1 1 1
1 1 2 2 1 2 1 2

1 1 1 1 1
1 1 2 2 2 1 2 1 2 1 2

, 1 1 1 1

1 1 1 ,

r r

r r

r rb b b e b e

r rb b b b b e

x y d b x d b y d d b b e x y

d b x d b y d d b b x y d d b b e x y

 

 





    

    

           

     

 

 




 

1 1    1

         

      

     

   

1 2

1 2 1 2

1 2 1 21 2 1 1 2 2 1 2

1

2 2
1 1 1 2 2 2

2 1 1 2
1 2 1 2 1 2

2 1 1 2
1 2 1 2 1 2

2
1 1 1

2

d d
1 1 1 1

d d
d

1 1 1 1
d

d
1 1

d

1
1 1

1

r r

b b

b b b b

rr r r b e b e r b e b e

b

x y
d b b x d b b y

x x
y

d d b b b x y b x y
x

y
d d b b e b e x y b e x y

r

x

b b x d
d

   

  

   

    



     

        
      

  


   

    

 



     

     

     

2

2 1

1 21 2 1 1 2 1 2

1 21 2 2 1 2

1
2 2 1 2 2

2 1
2 2 1 2 1 1 2 1

1

2 1 2 1
1 2 1 2 1 1

1 2
1 2 1 2 2 2

1 1 1

d 1
1 1 1 1 1

d 1

1 1

d
1 1

d

r r

r r

b

b b

r r r b e b e b b

r r r b e b e

d b d d d y

y
b b y d d b d d d x

x d

d d b b e b e x y b x y

y
d d b b e b e x y b x

x

 

 

 

 



 

    

  

      

         

     

   

 

 

 

  1 21 2 .b by  
 
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By (4.2) and assumption, we have   1 1

11 1bd x   , 
   2 1

21 1bd y    ,   1 21
1 11 1 r rrb b e e     

 1 2r r

 ,  

 2
2 21 1b b e er      . So, we obtain 

 d x
0

dx


 , 

which implies that  x

interval  ,  .  

 is a decreasing function on the 

Since  

   

   

 

2
2

2

2
2

21 2 2

1 1

1

2 2 1 1

1

1 2 1 2

1 2 1

1 1 1

1 1 1

1 0,

r

r

r

b

b e

b e

r r b e

d b

d b k d b

d d b b e k

b b d













   

     


     







 

  0,y    

   
   

1

1

1 2 1 2

1
1 1

12
2 2 1 1

1 1
1 2 1 2

lim lim 1 1

1 1 1

,

b

x x

b

r r b e b e

x d b x

d b y d b x

d b b e x y

 


 



 



   

     

 

  1 2

1

r r

b

d
 



  
 

 

using the intermediate value theorem, there exists a 
unique point  1 ,1   such that . Besides,  



thus  

  1 0  

   
   

1

1

0, , ,

0, , ,

x x

x x

 

 

  

   
 

   

   

1

1

d
0, , ,

d
d

0, , ,
d

G x
x

x
G x

x
x

 



  

   

 

which, together with , leads to  0G      0G x  , 
 1, .x   

there exists a 
 By ,  we  
uniqu

 1 0 , G
int x

G 
e po

 1 0
 ,1

 have that 
 

of is comp
 su

leted.  
ch 

. Th

prove tha ed po

that  
 , 0G x y    e pro

5. Global Stability 

Now, we will t the positive fix int  ,x y   
ma 2.3, of system (4.1) is globally stable by using Lem

which means that the positive periodic s tion of system 
(1.4) is globally stable.  

rem 5.1 For every 0 ,  

olu

Theo   , 0,x y 
   ,nF x x y 

 Proof. For an
 as
y sm

 n
all 
 .  

1 0  , 2 0  , we make the 
change of variable  

1 2, ,x u y v      

and get the map       1 2, , ,

    

     

2
1 2

1
2 1

1 1 1 2 1 1

2
2 2 1 2 2

1 (

1 ,

r

r

b b e

b b e

u d u d k v f u v

d
v d v u f u v

k





  

  

       


      








, ),

.
  

 (5.1) 
Now, we show that  ,F u v

 easy to
 satisfies the hypotheses 

of Lemma 2.3. It is  see that  ,F u v  is 
continuous  in1C   2Rint  , and  0,0F  0 .  

Since  

 

     

     

2
1 22

1 1
1 2

1 1

1 1 1 1 2 2

1 12 1
1 2 2 2

,

1
,

1

r

r r

b br

b e b

DF u v

d b u d b ke v

d b e
u d b v

k



 

 

 

 

 

    
  

   
 



 


 

e

 
 

 
1

2 1
2 2

0,0 r
b

DF d b e
b

k
 

 
 
 



2
1 2 2

1
1 2

1 1
1 1 1 1 2 2

1 1
1 2

1
,

1

r

r

b r b e

b e

d b d b ke

d









 

 

  
 










  

so 

,F u v f u v f u v , that is,  

      
0

, 0,0DF u v DF  . If 
, 0 ,

lim
u v 

 , 0u v  , then  

 , 0DF u v  ; if      1 1 2 2, ,u v u v 0,0 , then  
   , ,DF u v DF u v2 2 1 1

fies all the conditions of Lemma 2.3, then for every 
0 , we have    1 2, ,nF u v x y

. Obviously, Theorem 5.1 satis-

0,u v        as 
n  . Corresponding to x y  coordinate, this means 
for ,x y1 2   , the system (4.1) trends to unique fixed 

Besides, we h
point.  

ave 1 2,n nx y    for initial value 
   0 0, 0,0y   as n 

From the above an
x .  

lysis, we can know ta hat for every 
 0 0, 0x y  , the trajectory of system .4) will trend to  (2

 ,x y  . This completes the proof. 

6. Numerical Simulation and Discussion  

In this paper, we have investigated a single species 
model with symmetric bidirectional impulsive diffusion 
an criteria for the 

 Table 1 we sho effect of tim lay on 
th ions. By simple calculating, we can get  

d dispersal delay, the permanenc
istence, uniqueness and stability of positive periodic so-
lution are established. 

Firstly, in w the e de

e, ex-

e populat

   

 

1 21

1 22

1 1

2 2

1 1

1 (1 )

r rr

r rr

b b e e

b b e e

 ,

,





  

  




 

provided 00 1  . And  

1 2 1 2 10.9 1 , 0.3001 1.d d b b d        

So, all conditions of Theorem 3.1 and Theorem 4.1 
hold, which means system (2.2) is permanent and has an 
unique globally stable periodic solution. From Figure 1, 
we can see that in this four different cases the species x     
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Figure 1. Dynamical behavior of system (2.2). Here, we take three sets of initial values (0.8, 1.5), (1.2, 0.9), (1.05, 0.95). 
 
Table 1. Parameter values used in the simulations of model 
(2.2). 

Parameter Interpretation Value 

k1 Carrying capacity of populations in Patch 1 1000 

k2 Carrying capacity of populations in Patch 2 800 

r1 Intrinsic growth rate of populations in Patch 1 1.2 

r2 Intrinsic growth rate of populations in Patch 2 0.8 

d1 
Emigrant rate of populations from  

Patch 1 to Patch 2 
0.3 

d2 
Emigrant rate of populations from  

Patch 2 to Patch 1 
0.6 

  The period of dispersal between two pulse 
events 

10 

 
nd y are both permanent. Moreover, the longer the dura-a

tion of the time delay ( 0    ), the larger the limit 
inferior of x and the lower the limit superior of y (see 
F a) and (b)).  the case with r-
sal d eficial to sp ing and harm

species y.  
Next, in Table 2, if 

igures 1(
elay is ben

This implies
ecies x liv

 dispe
ful to 

 
gure 1(c

, species x and y are both 
permanent, too (see Fi )). If we take 1 0.6d  , 

2 0.8d  , 12 
, then 

, an her parameters unc  d keep ot

1 2 1.4
hanged

in Table 1 1d d  
dition

 are 

 
e con  of Th

 and y both pe
0

which purp
eorem 3.

rmanent (see  

orts that it 
1, but we 

 Figure
does no
also get s
1(d)). Th

t satisfy th
pecies x
erefore,     and 

 perm


for the an
1 20 1d d  

ence of system
 are suf-

 (1.4), butficient con  
not a necessary ones.  

Furthermore, in Table 3, by numerical simulations 
(see Figures 2(a) and (b)), we find that all of the 
solutions of system (2.2) which through these initial 
points will converge to the positive periodic solution. 
Therefore, we can conclude that under the assumptions 
of Theorem (4.1) system (2.2) has a unique po tive pe- 

 In 
addition, the periodic solution is lager in Case II than in 
Case I whic tim y 
is beneficial to species m g 
Figu s 2(  
time delay is more complicated than without.   

ditions 

si
riodic solution which is globally asymptotically stable.

h indicates that the duration of the e dela
x living again. Co

c) and (d), we realize that system (1.4) with
parin

re

Copyright © 2012 SciRes.                                                                                  AM 



H. Y. WAN  ET  AL. 1086 

  

 

Figure 2. Dynamical behavior of system (2.2). we take a series initial points, such as (0.9, 0.88), (0.92, 0.9), (1, 1.03). 
 

Table 2. Simulations of model (2.2). 

Case   1x  2x  Figure 

1 0 Permanent Permanent Figure 1(a) 

2 9.9 Permanent Permanent Figure 1(b) 

3 20 Permanent Permanent Figure 1(c) 

4 12 Permanent Permanent Figure 1(d) 

 
Table 3. Simulations of model (2.2). 

Case     1r  2r  Figure 

I 10 0 
1

1 sin π
5

t
   
 

 
1 1

sin π
2 5

t
   
 

 Figures 2(a) and 
(b) 

II 10 9.9 
1

1 sin π
5

t
   
 

 
1 1

sin π
2 5

t
   
 

 Figures 2(a) and 
(b) 

III 1.915 0 
1

1 sin πt
     

1 1
sin πt

     Figure 2(c) 
5  2 5 

IV 1.915 1.03 
1 

1 sin π
5

t    
 

1 1
sin π

2 5
t

 


 Figure 2(d)  


   

Copyright © 2012 SciRes.                                                                                  AM 



H. Y. WAN  ET  AL. 1087

 
7. Acknowledgements  

This work was supported by the Nation atural S
ence Foundation of P.R. China (109011  10961022
Natural Science Founda f Xinjiang Province 
China (2012211B07), the China Scholarsh Council.  

REFERENCES 
[1] Z. Teng and Z. L he Effect of Dispersal on Single- 

Species Nonautonomous Dispersal Models with Delays,” 
Journal of Mathematical Biolo ol. 42, N 5, 2001, 
pp. 439-454. doi:10.1007/s002850000076

al N ci-
30, ), 

of tion o
ip 

u, “T

gy, V o. 
 

[2] Z. Teng and L. Chen, “Perma ce and E ction of 
Periodic Predator-P y Systems in a Patchy Environment 
with Delay,” Nonlinear Analysis: Real World Applica-
tions, Vol. 4, No. 2 03, pp. 4.  
doi:10.1016/S1468-1218(02)00026-3

nen xtin
re

, 20 335-36
 

[3] L. Buttel, R. Durre d S. Le ompeti nd Spe-
cies Packing in P y Envir ts,” Th cal Po- 

o. 3, 2002, pp. 265-276. 

tt an
atch

vin, “C
onmen

tion a
eoreti

pulation Biology, Vol. 61, N
doi:10.1006/tpbi.2001.1569 

[4] J. Cui, Y. Takeuchi and Z. Lin, “Permanence and Extinc-
tion for Dispersal Population Systems,” Journal of Mathe-
matical Analysis and Applications, Vol. 298, No. 1, 2004, 
pp. 73-93. doi:10.1016/j.jmaa.2004.02.059 

[5] Y. Takeuchi, “Diffusion Effect on Stability of Lotka- 
. Volterra Models,” Bulletin of Mathematical Biology, Vol

48, No. 5-6, 1986, pp. 585-601.  

[6] Y. Takeuchi, J. Cui, R. Miyazak and Y. Saito, “Perma-
nence of Delayed Population Model with Dispersal Loss,” 
Mathematical Biosciences, Vol. 201, No. 1-2, 2006, pp. 
143-156. doi:10.1016/j.mbs.2005.12.012 

[7] E. Beretta and Y. Takeuchi, “Global Stability of Single- 
Species Diffusion Volterra Models with Continuous Time 
Delays,” Bulletin of Mathematical Biology, Vol. 49, 1987, 
pp. 431-448.  

[8] E. Beretta and Y. Takeuchi, “Global Asymptotic Stability 
of Lotka-Volterra Diffusion Models with Continuous 
Time Delays,” SIAM Journal on Applied Mathematics, 
Vol. 48, No. 3, 1998, pp. 627-651. doi:10.1137/0148035 

 

[9] E. Beterra, P. Fergola and C. Tenneriello, “Ultimate Bou- 
ndedness of Nonautonomous Diffusive Lotka-Volterra 
Patches,” Mathematical Biosciences, Vol. 92, No. 1, 1988,
pp. 29-53. doi:10.1016/0025-5564(88)90004-1 

[10] H. I. Freedman, J. Shukla and Y. Takeuchi, “Popu

2

lation 
Diffusion in a Two-Patch Environment,” Mathematical 
Biosciences, Vol. 95, No. 1, 1989, pp. 111-123. 
doi:10.1016/0025-5564(89)90055-  

275160

[11] A. Hastings, “Dynamics of a Single Species in a Spatially 
Varying Environment: The Stability Role of High Dis-
persal Rates,” Journal of Mathematical Biology, Vol. 16, 
No. 1, 1982, pp. 49-55. doi:10.1007/BF00  

 Teng, “Permanence for a Class of Peri-

odic ndent ystem with Delays 
and Dispersal in a Patch Applied Mathe- 
matic putatio  No. 1, 2007, pp. 855- 
864. /j.amc

[12] W. Wang and L. Chen, “Global Stability of a Population 
Dispersal in a Two-Patch Environment,” Dynamic Sys-
tems & Applications, Vol. 6, 1997, pp. 207-216.  

[13] L. Zhang and Z.

Time-Depe Competitive S
y-Environment,” 

s and Com n, Vol. 188,
doi:10.1016 .2006.10.037 

 L. Zhang . Teng, “  for a Delayed Peri-
odic rey Mo y Dispersal in Multi- 
Patches and Predator Density-Independent,” Journal of 

al Analysis and Applications, Vol. 338, No. 1, 
93. doi:10.1016/j.jmaa.2007.05.016

[14]  and Z
Predator-P

Permanence
del with Pre

Mathematic
2008, pp. 175-1  

5] E. Beretta, F. Solimano a akeuchi, “Global Stabil-
ity and Periodic Orbits for Two Patch Predator-Prey Dif-

 Mo el l Biosciences, Vol. 
85, No. 2, 1987, pp. 153-18
doi:10.1016/0025 55

[1 nd Y. T

fusion-Delay d s,” Mathematica
3.  

- 64(87)90051-4 

“On [16] R. Mahbuba and L. Chen, the Nonautonomous Lot- 
ka-Volterra Competion System with Diffusion,” Differen-

n Dyn ms, Vol. 2, 1994, pp. 
243-253.  

[17] ndom n Theoretical Popula-
tion,” Biometrika, Vol. 38  

tial Equations a d amical Syste

J. G. Skellam, “Ra  Dispersal i
, 1951, pp. 196-218. 

[18] J. Hui and L. Chen, “A Single Species Model with Im-
pulsive Diffusion,” Acta Mathematicae Applicatae Sinica. 
English Series, Vol. 21, No. 1, 2005, pp. 43-48.  
doi:10.1007/s10255-005-0213-3 

[19] L. Wang and L. Chen, “Impulsive Diffusion in Single 
Species Model,” Chaos Solitons, Fractals, Vol. 33, No. 4, 
2007, pp. 1213-1219. doi:10.1016/j.chaos.2006.01.102 

[20] A. Lakmeche and O. Arino, “Bifurcation of Nontrivial 
Periodic Solution of Impulsive Differential Equations 
Arising Chemotherapeutic Treatment,” Dynamics of Con-
tinuous, Discrete and Impulsive Systems, Vol. 7, 2000, pp. 
265-287.  

[21] L. Zhang and Z. Teng, “N-Species Non-Autonomous Lo- 
tka-Volterra Competitive Systems with Delays and Im-
pulsive Perturbations,” Nonlinear Analysis: Real World 
Applications, Vol. 12, No. 6, 2011, pp. 3152-3169.  
doi:10.1016/j.nonrwa.2011.05.015 

[22] J. Vandermeer, L. Stone and B. Blasius, “Categories of 
Chaos and Fractal Basin Boundaries in Forced Preda-
tor-Preymodels,” Chaos Solitons, Fractals, Vol. 12, No. 2,
2001, pp. 265-276. 

 
doi:10.1016/S0960-0779(00)00111-9 

[23] L. Dong, L. Chen and L. Sun, “Optimal Harvesting Pol-
icy for Inshore-Offshore Fishery Model with Impulsive 
Diffusion,” Acta Mathematica Scientia, Vol. 27, No. 2, 
2007, pp. 405-412. doi:10.1016/S0252-9602(07)60040-X 

[24] Z. Zhao, X. Zhang and L. Chen, “The Effect of Pulsed 
Harvesting Policy on the Inshore-Offshore Fishery Model 
with the Impusive Diffusion,” Nonlinear Dynamic, Vol. 
63, No. 4, 2011, pp. 537-545.  
doi:10.1007/s11071-009-9527-7 

[25] Y. Kuang, “Delay Differential Equations with Applica-
tions in Population Dynamics,” Academic Press, New 
York, 1993.  

[26] X. Zhao, “Dynamical Systems in Population Biology,” 
Springer-Verlag, New York, 2003.  

[27] H. L. Smith, “Monotone Dynamical Systems: An Intro-
duction to the Theory of Competitive and Cooperative 

Copyright © 2012 SciRes.                                                                                  AM 

http://dx.doi.org/10.1007/s002850000076
http://dx.doi.org/10.1006/tpbi.2001.1569
http://dx.doi.org/10.1006/tpbi.2001.1569
http://dx.doi.org/10.1016/j.jmaa.2004.02.059
http://dx.doi.org/10.1016/j.jmaa.2004.02.059
http://dx.doi.org/10.1016/j.mbs.2005.12.012
http://dx.doi.org/10.1137/0148035
http://dx.doi.org/10.1016/0025-5564(88)90004-1
http://dx.doi.org/10.1016/0025-5564(88)90004-1
http://dx.doi.org/10.1016/j.amc.2006.10.037
http://dx.doi.org/10.1016/j.amc.2006.10.037
http://dx.doi.org/10.1016/j.amc.2006.10.037
http://dx.doi.org/10.1016/j.amc.2006.10.037
http://dx.doi.org/10.1016/j.amc.2006.10.037
http://dx.doi.org/10.1016/j.jmaa.2007.05.016
http://dx.doi.org/10.1016/j.jmaa.2007.05.016
http://dx.doi.org/10.1016/j.jmaa.2007.05.016
http://dx.doi.org/10.1016/j.jmaa.2007.05.016
http://dx.doi.org/10.1016/j.jmaa.2007.05.016
http://dx.doi.org/10.1016/j.jmaa.2007.05.016
http://dx.doi.org/10.1016/0025-5564(87)90051-4


H. Y. WAN  ET  AL. 1088 

Systems,” Mathematical Surveys and Monographs, Vol. 

n-M

nce and Global Stability 

1
41, 1995.  

[28] X. Zhao, “Global Attractivity in a Class of No ono- 
tone Reaction? Diffusion Equations with Time Delay,” 
Canadian Applied Mathematics Quarterly, Vol. 17, 2009, 
pp. 271-281.  

[29] X. Meng and L. Chen, “Permane
in an Impulsive Lotka-Volterra N-Species Competitive 
System with Both Discrete Delays and Continuous De-
lays,” International Journal of Biomathematics, Vol. 1, 
No. 2, 2008, pp. 179-196. 

doi:10.1142/S179352450800015  

s of Differential Equa-

ations,” World 

d, 2003.  

[30] H. L. Smith, “Cooperative System
tions with Concave Nonlinearities,” Nonlinear Analysis: 
Theory, Methods & Applications, Vol. 10, 1986, pp. 
1037-1052. 

[31] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, 
“Theory of Impulsive Differential Equ
Scientific, Singapore, 1989.  

[32] D. Bainov and P. Simeonov, “Impulsive Differential 
Equations: Periodic Solutions and Applications,” Long-
man, Englan

 

Copyright © 2012 SciRes.                                                                                  AM 

http://dx.doi.org/10.1007/s11071-009-9527-7

