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ABSTRACT

We present explicit inverses of two Brownian-type matrices, which are defined as Hadamard products of certain already
known matrices. The matrices under consideration are defined by 3n — 1 parameters and their lower Hessenberg form
inverses are expressed analytically in terms of these parameters. Such matrices are useful in the theory of digital signal

processing and in testing matrix inversion algorithms.
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1. Introduction

Brownian matrices are frequently involved in problems
concerning “digital signal processing”. In particular,
Brownian motion is one of the most common linear mod-
els used for representing nonstationary signals. The co-
variance matrix of a discrete-time Brownian motion has,
in turn, a very characteristic structure, the so-called
“Brownian matrix”.

In [1] (Equation (2)) the explicit inverse of a class of
matrices G, = [ B | with elements

5 {bj, i<j, M
Yolag, 1>
is given. On the other hand, the analytic expressions of

the inverses of two symmetric matrices K :I:Kij:' and
N :[v”] , where

&y =k and vy =k, i< ], @

respectively, are presented in [2] (first equation in p. 113,
and Equation (1), respectively). The matrix K is a special
case of Brownian matrix and G, is a lower Brownian
matrix, as they have been defined in [3] (Equation (2.1)).
Earlier, in [4] (paragraph following Equation (3.3)) the
term “pure Brownian matrix” for the type of the matrix K
has introduced. Furthermore, in [5] (discussion concern-
ing Equations (28)-(30)) the so-called “diagonal innova-
tion matrices” (DIM) have been treated, special cases of
which are the matrices K and N.

In the present paper, we consider two matrices A; and
A, defined by
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A =KoG,and A, =N-G, (€)

where the symbol o denotes the Hadamard product.
Hence, the matrices have the forms

i k1b1 k1b2 kl b3 klbn—l kl bn
kl a kz bz k2 b3 e kz bn—l I(2 bn
A1 _ k.l.a.l kzaz k3b3 k3bn—1 ksbn ( 4)
klal kzaz k3a3 kn—lbn—l kn—lbn
_klal kzaz k3a3 kn—lan—l knbn i
and
I klbl k2b2 k3b3 kn—lbn—l I(nbn_
k2a1 kzbz k3b3 kn—lbn—l knbn
A2 — k'3.a“l k3a‘2 k3b3 kn—lbn—l I(nbn ) (5)
kn—lal kn—la'2 kn—laS kn—lbn—l I(nbn
L knal kna2 kna3 I(nan—l I(nbn_

Let us now define for a matrix B= [bij] the terms
“pure upper Brownian matrix” and “pure lower Brownian
matrix”, for the elements of which the following relations
are respectively valid

b..=b. i<]j,andb

i, j+1 ij >

41, :bij’iz J- (6)
The matrix A, (Equation (4)) is a lower Brownian ma-

trix. Furthermore, the matrix PNP, where P = [ pij] is
the permutation matrix with elements
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I, i+j=n+1 kb, —k_a L
S > 7 101 i-17i-1 , i=i# l,n,
Py {0, otherwise, M G J
is a pure Brownian matrix and PG P a pure lower ﬁ) i=j=1,
Brownian matrix. Hence, their Hadamard product k,c,
(PNP)o(PG,P) gives a pure lower Brownian matrix, b, o
that is, the matrix PA,P . c o’ 1=1=n,

In the following sections, we deduce in analytic form 3 e . 3
the inverses and determinants of the matrices A; and A; & = d g H k f ®)
and we study the numerical complexity on evaluating (_1)i+j T i—j>1
A" and A'. i ’ o

CV
; v:!:_jl—l
2. The Inverse and Determinant of A; |
- j—i= 1:
The inverse of A, is a lower Hessenberg matrix expressed C )
analytically by the 3n — 1 parameters defining A,. In par- 0, j—i>1,
ticular, the inverse A :[ad has elements given by
the relations where
¢ =k b —ka, i=12,---,n-1, ¢,=1, ¢,=h,
d, =k, a.b -kab,,, 1=12,--,n-2, d,=a, ©9)
f=a-b, i=2,3,,n-1,
g, =k, -k i=23,---,n-1, g,=1,

with

i1
[Tk f, =1ifi=j+1, (10)
v=j+l
and with the obvious assumptions
k,#0andc, #0,i=12,---,n. (11

To prove that the relations (8)-(10) give the inverse
matrix A", we reduce A; to the identity matrix | by
applying a number of elementary row transformations.

Then the product of the corresponding elementary matri-

ces gives the inverse matrix of A;. These transformations

are defined by the following sequence of row operations.
Operation 1 (applied on A; and on the identity matrix

1):
.k . .
row | ——— X TowW (|+1), 1=12,---,n—-1,
i+1

which transforms A; into the lower triangular matrix C,
given by

kl(kzbl_klal) 0 0 0 0
k2
k,a, (k; —k k, (k;b, —k
171 ( 3 2) 2 ( 3%2 2a2) 0 0 0
k3 k3
ka (k, —k;) ka, (k, —k;) ks (k,by —ksa,) 0 0
K, K, K, ’
kl aI (kn - kn—l) kZaZ (kn - I(n—l ) k3a3 (kn - I(n—l ) kn—l (knbn—l - I(n—lan—l )
n kn kn n
L I(lal kZ az k} a3 I(n—lan—l I(nbn i
and the identity matrix | into the upper bidiagonal matrix Kk -
F, with main diagonal T T )
2 3 n

(1,1,...’1)

and upper first diagonal
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Operation 2 (appliedon C, and F,):
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. kg, . . dl first di 1
rowl_l—glxrow (l_l)’lzn’n_l’...’3, an :1, and lower T1rst diagona
19i kag, kkgf, k_k.g f . k kf
which derives a lower bidiagonal matrix C, with main [ lkl -, 2k3g3 2, 2 I:_;J Lt "_]g nn-l s
diagonal 3 492 nn-2 n-1
ke ke, KiCoy ke while the matrix F, is transformed into the tridiagonal
k, "k, Tk, " matrix F, given by
1 _k 0 0 0
I(2
0 1 _k 0 0
k3
0 %8 g ks, 0 0
I(492 492
0 0 0 o 1o K28 Ky
kngn—z kn
0 0 0 _ K 1+h
L gn—l gn—l _
Operation 3 (appliedon C, and F,): which derives the diagonal matrix
k
rowz_&xrowland C}:rﬁ @ % knCnJ’
k,C, k, Kk K,
row i—k kigi fiy xrow (i—1), i=3,4,--,n, and, respectively, the lower Hessenberg matrix F; given
Ki19i-1Cioy by
1 _k 0 0
K
_kag, ky (kb —kiay ) 0 0
k3COCl k3Cl
k3alg3k2 f2 _k3dlg3 0 0
k4COCICZ k4CICZ H
Skn—lalgn—lkz fz kn—z fnfz Skn—ldlgn—l k3 f3 knfz fnfz er (knban — knfzanfz) _ kn—l
knCOCI Gy I(nclcz Gy I(ncn—z I(n
sk,a,9,k, f,--k,  f, sk.d, g,k 5k, T, _ kyd,, k.b,
L CoCi - Cyy CCy---Cpy Cn2Cny Cny B
with the symbol s standing for the quantity (—1)i+j . det(A ) =kpb, (k)b —ka, )(kb, —k,a,) (12)
Operation 4 (applied on C, and F,): (kb =Ky )-
ﬁxrowi =121 Evidently, A is singular if k =0 or, considering
k;C; ’ o the relation (9), if ¢, =0 forsome ie{l,2,---,n}.
Wthh transforms C;3 into thei 11dent1ty matrix | and the 3. The Inverse and Determinant of A,
matrix F; into the inverse A .
The determinant of A takes the form In the case of A, its inverse A’ =[aij} is a lower

Copyright © 2012 SciRes. AM
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Hessenberg matrix with elements given by the relations

ki—lbi—l _ki+1ai—1 , i=j=ln,
GG
L i=j=1
C]
kn—lbn—l , i= J — n,
kncn lcn
o = il (13)
' L dj—lgi Hkv fv
(-n)™ i,
[Ic
v=j-1
-1 j-i=1,
Ci
0, j-i>1,
where
¢, =kb -k ,a, i=12,---,n-1, ¢,=1, c,=b,
d; =k b —ky.ab,,, i=12,---,n-2d,=a,
f,=a,-0, i=2,3,---,n—1,
g, =k —Kki,, i=23,--,n-1 g,=1
(14)
with
i1
Hkvazlifi:j+1, (15)
v=j+1
and with the obvious assumptions
k,=0andc, #0,i=12,---,n. (16)

In order to prove that the relations (13)-(15) give the
inverse matrix A,', we follow a similar manner to that
of Section 2.

Operation 1 (applied on A, and on the identity matrix

1):

row i—row (i+1),i=12,---,n-1,

which transforms A, into the lower triangular matrix D,
equal to

" kb —k.a, 0 0 0

a(k,—ky) kb,—ka, - 0 0

al (kn—l - kn ) az (kn—l - kn) o I(n—lbn—l - I(nan—l 0
I(n q knaz I(n a I(nbn

and the identity matrix | into the bidiagonal matrix L,
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with main diagonal
(L,1,---,1,1)
and upper first diagonal
(-1,-1,---,—1,-1).
Operation 2 (appliedon D, and L,):

k
row n——"—xrow (n—1) and
Ont

row i =2 scrow (i—1), i=n—1,n-2,--,3,

gi—l

which derives the lower bidiagonal matrix D, with main
diagonal

(01’029""Cn—15kncn)

and lower first diagonal

(algza g3k2 f2 o gn—lkn—z 1:n—2 I(nkn—l fn—l j

B B l

gz gn—z gn—l

while the matrix L, is transformed into the tridiagonal
matrix L, with main diagonal

(1,1,1+&,~--,1+ Ot 1y Ko J

gz gn—z g n-1

upper first diagonal
(-1,-1,---,-1,-1)

and lower first diagonal

(0 _& e — gn—l _k_"j
gz gn—z gn—l
Operation 3 (appliedon D, and L,):
a192
Cl
ki fiy

8iiCiy

row 2 —

Xrow 1,

Tow i— xrow (i—1),-,

k k  f
row N——"-"Lxrow (n-1),
gn—lcn—l

with 1=3,4,---,n—1, which yields the diagonal matrix
D,,

D, = rcl GGy knCn—L

and the lower Hessenberg matrix L, equal to
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1 -1 0 0 |
&g, kb —ka, 0 0
COCI Cl
algzkz fz _ d193 0 0
COCICZ CICZ
Salgn—lk2 fz "'kn-z fn—2 Sdlgn—lk3 fs "'kn-2 fn—2 kn-zbn-z - knan—2 -1
CoCi -+ Cha Ci--Chy Cs
Sknalgnkz f2 n-1 fn—l Skndlgnk3 I:3“'kn—1 fn—1 _kndn—zgn kn—lbn—l
CoCiCy -+ Cy CC,--Cry CnaCny Coy |
where the symbol s stands for (—1)i+j . In terms of j, the above algorithm takes the form
Operation 4 (appliedon D, and L,): a., = _l/cj—l ,j=2,3,-.n,
i><r0w i,i=12,---,n—1,and XTOW N, o
Ci kncn a”_ JJ+1+ ! 13122533“'9n_15
.
which transforms D, into the identity matrix | and L, K : lbj
into the inverse A;'. o, =—=, a, =—-
The determinant of A, has the form 1€y CoiCo
det(A,) =k,b, (kb —k;a, )(k,b, —k;a,) a7 . :_—dj‘lgj“ j=12-,n-1
j+Lj ) 9 4y ) )
"'(kn—lbn—l - knan—l): Ci-iCiCjn
which shows in turn that the matrix A, is singular if o = 9jrssiKjus s o
k, =0, or, adopting the conventions (14), if ¢, =0 for Jrertd QisCiusn

some ie{l,2,---,n}.

4. Numerical Complexity

The relations (8) and (13) lead to recurrence formulae, by
which the inverses A" and A)', respectively, are
computed in O(nz) multiplications/divisions and

O(n) additions/substractions. In fact, the recursive al-
gorithm

ai,i+1:_l/ciﬂ i=l,2,~-,n—l, (18)
O ==t 9, , 1=2,3,--,n—1,
’ i—lci
19
k2 bn—l ( )
all =7 > ann = s
klcl CH—ICI‘I
d.,g .
ay, =—— =23, (20)
' Ci72ciflci
a _ di—s—Zki—s fi—s
He di—s—lci—s—z e (21)

i=3,4,,n, s=1,2,,i-2,

where ¢, d,, f,and @, are given by the relation (9),
computes A in 5n?/2+5n/2—6 mult/div (since the
coefficients of ¢;; ; depends only on the second sub-

script) and 5n—9 add/sub.

Copyright © 2012 SciRes.

j=12,---,n=2, s=1,2,---,n—j—1.

For the computation of A, ' the algorithms (18)-(21)
changes only in the estimation of the diagonal elements,
for which we have

19
oy =0, +——, 1 =2,3,---,n—1,
i—lcl
k b
Oy =—0p, Oy = e
k.c_.cC
n~n-1-n

where ¢;, d,, f,, and g, are given by the relation
(14). Therefore, considering the relations (9) and (14), it
is clear that the number of mult/div and add/sub in
computing A" is the same with that of A™.

5. Concluding Remarks

The matrices A; and A, represent generalizations of
known classes of test matrices. For instance, the test ma-
trices given in [6] (Equations (2.1) and (2.2)) and in [1]
(Eq. (2)) belong to the categories presented. Furthermore,
by restricting the a’s and b’s to unity, A; and A, reduce to
the matrices given in [2]. Also, the matrices in [7] (pp. 41,
42, 49) are special cases of A; and A;. On the other hand,
concerning the recursive algorithms given in Section 4,
we have performed numerical experiments by assigning
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random values to the parameters of A, and with a variety
of the order n from 256 to 1024. We have found that
computing A~ by the recursive algorithms (18)-(21) is
~100 times faster than using the LU decomposition when
n = 256 and increases gradually to ~1000 times faster
when n=1024.
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