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ABSTRACT

This paper is concerned with the numerical solution for singular perturbation system of two coupled second ordinary
differential equations with initial and boundary conditions, respectively. Fitted finite difference scheme on a uniform
mesh, whose solution converges pointwise independently of the singular perturbation parameter is constructed and ana-

lyzed.
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1. Introduction

We consider the following singularly perturbed initial/
boundary value problem for the linear system of ordinary
differential equations in the interval [0,1]:

Lu:=eu"(x)+a (x)u'(x)+b (x)u(x)

=c, (x)v(x)+ f,(x), )
Lu:=—&v"(x)+a, (x)v(x)
=&"c, (x)u(x)+ f,(x), @
u(0)=A,u'(0)==, 3)
v(0)=A,.v(1)=B,, “)

where € >0 is a small parameter> x>0, A, A, By,
B,, are given constants. The functions & (x)>e; >0,
¢ (x), fi(x) (i=12), b(x) are given functions sat-
isfying certain regularity conditions which are specified
whenever necessary.

The above type initial/boundary value problems arise
in many areas of mechanics and physics [1,2].

Differential equations with a small parameter & mul-
tiplying the highest order derivative terms are said to be
singularly perturbed and normally boundary layers occur
in their solutions. The numerical analysis of singular
perturbation cases has always been far from trivial be-
cause of the boundary layer behavior of the solution.
Such problems undergo rapid changes within very thin
layers near the boundary or inside the problem domain. It
is well known that standard numerical methods for solv-
ing such problems are unstable and fail to give accurate
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results when the perturbation parameter & is small.
Therefore, it is important to develop suitable numerical
methods to these problems, whose accuracy does not
depend on the parameter value ¢, i.e. methods that are
€ -uniformly convergent. These include fitted finite dif-
ference methods, finite element methods using special
elements such as exponential elements, and methods
which use a priori refined or special non-uniform grids
which condense in the boundary layers in a special man-
ner. The various approaches to the design and analysis of
appropriate numerical methods for singularly perturbed
differential equations can be found in [3-8] (see also ref-
erences cited in them).

In this present paper, we analyze the numerical solu-
tion of the initial/boundary problems (1)-(4). The nu-
merical method presented here comprises a fitted differ-
ence scheme on an uniform mesh. Fitted operator method
is widly used to construct and analyse uniform difference
methods, especially for a linear differential problems (see,
e.g., [4-7]). In the Section 2, we state some important
properties of the exact solution. The derivation of the
difference scheme and uniform convergence analysis
have been given in Section 3. Uniform convergence is
proved in the discrete maximum norm. The approach to
the construction of the discrete problem and the error
analysis for the approximate solution are similar to those
in [8,9].

Difference schemes for singularly perturbed systems
with another type of initial/boundary conditions was in-
vestigated in [9-14].

Throughout the paper, C will denote a generic positive
constant independent of & and of the mesh parameter.
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2. Analytical Results

Here we give useful asymptotic estimates of the exact
solution of (1.1)-(1.4), that are needed in later sections.
Lemma 2.1 Under the

p=e (@) el el exp(lpl. &)<t )

the problem (1.1)-(1.4) has a unique solution, which
satisfies

Jull, <c. ©)

|u'(x)|£C[1+lexp(—alx/8)),03XSI, @)
&

IV, <C, (8)

1

|V'(X)| <C {1+ g? exp(—xﬂ/a2 (0)/5)
1 X)y/a, (1)/«9)i|,

+5_5exp(—(l—
)| for any continuous function

®

where |g], =max]|g(x

[o.1]
9(x).

Proof. Consider the iterative process
Lu™ = £, (x)+¢, (x)v",
Ly = £, (x)+&”c, (x)u',
7 (0)= A (0)=2, "
v (0)= A (1) =B,

where v (X) eC [O,l] is an arbitrary function.
First we prove that for the solution of initial-value
problem of the type

eu”(x)+a(x)u'(x)+
u(0)=A.u'(0)=

the following estimates hold

Jlu()]. <exp(|b"w )(|A|+a“|B|+a“||F||w), (11)

b(x)u(x)=F(x),

B
£

o' () < exp(fbl, )bl |A
+a b, exp(|b], @) B

+lexp(—ax/£)|B|
&

+a*[a' o], exp(Jo],

(12)

a’1)+1J||F||OO.

To prove (2.7), after some manipulations we have
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Ju () <[A-+[Bla +a b, { ju()|dn+a”[F],

[ (Bl FL )+ o, flarfan.
hence
u(x)| <A+ B*ﬂu (n)|dn.
with 0
-[4f+ B+ [F]. )
=

From here by virtue of integral inequality it follows
that

|u(x)| <A%e¥,

which leads to (2.7). Now we prove (2.8). Clearly
o < Blesp-co) . bl + FlL )
Then by using (2.7) we get
| | | | exp (—ax/e)+a'|p|, (|A| exp("b"w )

+||F|Lo a exp(|bl. @) +[Blexp(Jbl. «™))
+a [b, [Alexp(Jb], ')

+(exp(-ax/e) e+ ], exp(fo], =) B
+(e ol exp (ol )+ 1)[F o

which arrive at (2.8).
Further, note that, by virtue of maximum principle the
problem of the form

Lv=F(x),F(x)eC[0,1]
v(0)=Av(1)=B
admits the estimate
IV <|Al+[B|+a"||F|, - (13)
Denoting
" (x)=u" (x)-u" (),
0" (x)=v'" (x) =" (x)
from (1.1)-(1.4) and (2.6) we have
L™ =co",
Lo" = g4c,s" Y,
s"(0)=6'(0)=0,

0" (0)=0" (10
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Next, applying here (2.7), (2.8), (2.9) we arrive at

Jo] < exo(pl. e Jo .
o) <ai'[a' ol exo(ll ") 1 ]fe. o],
o <&” (n-)
o], =5 lel. Jo ],
Therefore
‘5(n) Spl‘g(n’l)‘ S
H5,(n) <p, o , (14)
‘H(n) <p, s
with
— ! -1
pr=a; exp(fb], a”')e .
—az "C " (15)
pi=ai'[a" ol exp(lol, @)+ 1]le.
From (2.10) we have
‘Q(H) Splpz e(n—l)‘ S(pl,OQ)n—l 9(1) , (]6)
‘g(n) ] g(plpz )n—2 2, ”0(1) K (17)
H s <oy (prp) 60 (18)

From (2.12), (2.13), (2.14) follows that the sequences
{u(“)},{u’(")},{v(n)} uniformly converges on xe[0,1]

for n— . Replacing (2.6) by appropriate system of
integral equations we conclude that for n— oo the limit
functions are the solution of (1.1)-(1.4).

Now the using (2.7) and (2.8) with the function
F(x)=c (x)v(x)+ f,(x) yield the following stability
bounds

ol <exp(Jol, o)A |+ a" exp(Jo], o8|
v o expbl, ). 19
1 _
wox(bl, o),

ju< ol exp(|b], @) A
+ay" b, exp([b], ") B

1
+—exp(-ax/¢) [ (20)
v [ o], exp(Jbl, ")+ 1],
v [l o exp(Jbl, @) 1], M. .

Next from (2.9), with F(x)=e&"c,(x)u(x)+ f,(x)
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it follows that
M. <|Al+[B|+ &% e eo|. ul, +e'[E:].. - @D
From (2.13) and (2.15) obviously
Jul <(1=p) " {exp (o], i) A
+ai exp([bll, o) B[+ " exp([bl, &Il
va' o], exp(lbl, @) (Al +[By]+ e ], )}
M. <(=p) " {Al+ B[+ & [ L], + 2 e ei],
x(exp(fol, " )|+ expJbl, ;")
v exp(Jb], &

L)

Using the last relation in (2.14) we obtain

Ju< ol exe(lbl. ") A
+aq" b, exp(Jol,
+a; ' ol, exp(fol, )+ 1],
+a"[[ol, " exp(fo], ") +1]
e, (1=p) {Al+[B)|+ a5 1]
+e'a' ], exp(fbl o) Al

+a exp("b"w o) )|B1 |+ exp (||b||00 a )" f ||Oo}
The last three inequalities show the validity of (2.2)-
(2.4). Now we prove (2.5). Since

[(Lv)]= & Jes () fu(x)
+&" [c, ()||u ()| +|f, (x)| < C.
which leads to (2.5), which completes the proof.

X

_ 1 ==
04 1)|Bl|+;e ¢

B

3. The Difference Scheme and Convergence

Now we construct the difference scheme and investigate
it. In what follows, we denote by @ the uniform mesh
in [0,1]:

w={x =ihi=1,2,--,N-1,h=1/N}

and @=wU{x=0,l}. Before describing our numerical
method, we introduce some notation for the mesh func-
tions. For any mesh function g(x), we use

g-=9( )

=(gi-9i1)/h,
(gl+1 |)/ °
(gm g|l)/( )

gm (91 —29i+9i1) /hzv
lal. =lll. , =max|g-
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On @ we propose the following difference scheme
for approximating (1.1)-(1.4):

04U, =200y +a,U. +bU; =c,Vi+ 1, (22)
’C’zhvi = 2>V><><| + a2|V| 8ﬂC2|U| + fzw (23)

U, =A,

-1
Ux,o = |:1 +a,, DO-l(,%)):| (ngl -b, Eal(f)) +DO'1(,%)) fl,oj’
& & &
(24)
V():AstN :Bza (25)
and

h —a coth( h),
T2 2¢

O__(z) |’12a2i

i ey e —
4€sinh2(h aZij
2&

For solving of the (3.1)-(3.4) we give the following
iterative procedure:

U =c v 4 f

i 1i>

['zhvi(n) = gﬂcziui(n) +1,,

U =A,
o=t | (a2 ot 1, 2ok
£ £
n) _ AZ,V;SH) _
where V. is arbitrary.
Lemma 3.1
n-1
“U (m) < PP ”V M) _y () , (26)
oo,d 1—,0 oo,d
VO -v] < R I )
oo,d 1_,0 o0,d

where || implies the discrete maximum norm on @, ;
,d

p and p, are defined by (2.1) and (2.11) appro-
priately.

Proof. Denoting é' " =
we will have

um g gy () _y (o)

| i-1 i i i-1
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£s" =60, (28)
20 = g#c, 50, (29)
5" =6l =0, (30
6" =6 =0. 31)

From (3.7)-(3.10), it is not difficult to get

o)< yhihi”@(n—u ’
where N
y=4a exp(40f1 [l )
and thereby
o <7l Jo ]
<tlelojo"],, =ole".,

In similar manner we also obtain

oL, =Sl o, = 2o
Hence,
Consequently,
o] <o),

(1)

L. < e

ooy

From this follows that the 6™, 8" >0 to n— o,
hence the sequences {U,}, {V,} are the Cauchy se-
N 1 (n) = .
quences and convergent: lim,_ U;"” =U; and
lim, V" =V,. The limit functions U,, V, will be

solution of scheme (3.1)-(3.4).
Now we prove (3.5), (3.6). We have

”U (nm) _y ()

o,d

< “U (nem) _y (mem-1) y i

HU (n+m-1) Y (n+m-2)

o0,d

+...+”U () _y ™

o0,d

S’Dl(pnérm—z_'_pmm—S_{_m_i_pn—l)”\/(l) _V(O)

=" (P " +...+1)”v(1) -

=pp" %”\/“) v

oo,d

o,d

o0,d
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The limit case for m—> o leads to (3.5). The ine-
quality (3.6) is being proved analoguosly.

Lemma 3.2 The solution of the difference problem
(3.1)-(3.4) satisfies

L 01-) r{eo

N
+hY |1,
i=1

X,0
|1 >
oL [Ial+fal+L21)
VLo =0-p) AL 8 e,
(33)

N
aterlel sl n .
i=1

where o, = % coth (%

, p=12,---,N-1.
2¢ 28) P

Proof. Using the estimates for the difference equations
‘Cthi =k
and

ﬁgviZGi

with conditions (3.3) and (3.4) appropriately, which is
being obtained analoguosly as in differential case, after
setting F =f;+c,;v, and G, =T, +&"c,u; we will
get

X,0

oL, = a0

el VL +h2|f1.|j (34)
VI, <IA]+B + a1,

A
+a, |, o UOO,d

The using each of these into another immediately leads
to (3.11) and (3.12).
Lemma 3.3 For the truncation errors

(33)

Ry = f,—Lu(x)+cv(x),
R, = f, —Lv(x)+cyu(x),
h -1
-(1+a )20 |
[ _]B bl( )A_O'lo) +— h O'l(o)f (0)j_ux,0

the following estimates hold

IRy| < Ch[1+ h Xijtl Ju’(x)|dx+h XTI v'(

X1 X1

x)|dx], (36)
|R2i|£Ch(l+g”||u’(x)|| . ) (37)
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< Ch - [1+T|u'(x)|dx} (38)
g(l+a1(0)0'10 ) %
&
Proof. We may write
Ri=f; —ﬁfu(xi)ﬂnv(xi)
- [ [Lu(x)-g Jo
—ht [ Ta (%) - (%) U (X) s (X)dx
X (39)

Ry =1, [SV( ) +elcuu(x)

-Ah™ J [/_‘zv—g“cz(x)u(x)—f2(x)]y/i(x)dx

Xi-1

h‘l/?,,XTl[az(x)—az(xi)}v(x)y/ (x)dx

Xi-1

+/1,h"XT[f2(xi)— f, (%) ]w; (x)dx

Xi-1

+ h-%,g”j] [, (% )u(x)=c, (x)u(x)Jw; (x)dx
) (40)

‘o 1
g(1+a1(o)zgl<§>j
JTo00u()-b(0)u(0)]ef? (x)a
+T[an(x)—al (0)]u'(x) @ (x)dx (1)
‘TCI(X)V(X)(ﬂSZ)(X)dxx
N ]] [£,(3)=1,(0)] o™ (x)dx,

where
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al(xi)(xix_ )
e s -1
¢§1)(X):LT, Xi—l<X<xi’
e ¢ -1
1_e’al(xi)(xi+l’x)/£
0. (x)=10" ( )‘W» X <X <Xy
0, X (%15 %0),
v (X)
(%) sinh az(xi)/g(x—xl_,), . oy
s1nh\/a2(xi)/gh
Ly sinh/a, (X)/& (X, —X) X <x<x
' sinh\/aQ(xi)/gh ’ e
0, X2 (%12 %)

hya, (x)/e

2 tanh \/az /gh

A= (h" XIIWi (x)de =

We note that (p-(l) , goi(z) and y; ), l//i( ) are the so-

lutions of following problems respectively:

—ep"(X)+a, (X)y (X)=0, X, <X <X
v(x.)=0w(x)=1
o (%)+2, (X)w (X) = 0% <x<x,,

‘//( ’)_1 ‘//( l+1) 0.

The relations (3.18)-(3.20), by using also the above
properties of ¢(x) and w(x) leads immediately to
(3.15)-(3.17).

Theorem 3.1 Let a,(x), b (x), ¢ (x),
f,(x)eC[0,1], f,(x)eC'[0,1], =1, (k=1,2). Then
the solution of the difference problem (3.1)-(3.4) con-
verges uniformly in & to the solution of (1.1)-(1.4) with
rate O(h).

Proof. Let z,=U;,-u;, 2z,=V,-V,.
errors of the approximate solution
z4(k=1,2i=0,1,2,---,N) we have

fqhzu =CiZy tR;,1=12,---,N -1,

Then for the

h -
Lz, =e“Cyz; +R,, 1=12,--- N -1,
2, =0, Zixo =Tos
Zyy = Iy =0,

where R;,R,,r, are approximating errors from Lemma
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3.3. Using Lemma 3.2, we obtain:

el <€ ol o)

By virtue that of (3.15)-(3.17) all terms in right-hand
side of this inequality have the rate O(h) and hence the
proof follows immediately.

1i

4. Numerical Example
Consider the particular problem with

a, =x+2,b=e7/2,¢ =sinnx, f, =x’,

a,=e""c,=x/2, f, =v/x+1, u=1,

A=B=LA=-1,B,=0.
The initial guess is chosen as
v =x -1

and stopping criterion is

‘u " —U(”’l)‘ <107

’v<”) —v(”‘”‘ <10~

We calculate an experimental rates of convergence
P (k=1,2) using double mesh method as follows [4,5]:

e o) /1n2
where

h h h/2
e’ :m_ax|Uf‘ —Uf’/ s
|

e;,h = max I\/is,h _Vig,h/2|.
i

The convergence is uniform, i.e., rate of convergence
independenty of perturbation parameter. Some obtained
values for

py =max p;"(£=0.5,10",10",10°)

are listed in the table

h 0.1 0.05 0.025

P> P, 1.61,1.58 1.32,1.26 1.01, 0.99

5. Conclusion

The singularly perturbed initial-boundary value problem
for a linear second order differential system is considered.
To solve this problem, an exponentially fitted difference
scheme on a uniform mesh is presented. First order con-
vergence in the discrete maximum norm, independently
of the perturbation parameter is obtained. Obtained in
numerical example experimental rates of convergence in

AM



I. G. AMIRALIYEVA

agreement with theoretical values.

6. Acknowledgements

The author is grateful to the anonymous referees for his
comments and suggestions which helped improve the
quality of manuscript.

(1]

REFERENCES

R. E. O’Malley, “Singular Perturbations Methods for
Ordinary Differential Equations,” Springer Verlag, New
York, 1991. doi:10.1007/978-1-4612-0977-5

A. H. Nayfeh, “Introduction to Perturbation Techniques,”
Wiley, New York, 1993.

A. M. Ilin, “A Difference Scheme for a Differential Equa-
tion with a Small Parameter Affecting the Highest De-
rivative,” Matematicheskie Zametki, Vol. 6, 1969, pp.
237-248 (Russian).

E. R. Doolan, J. J. H. Miller and W. H. A. Schilders,
“Uniform Numerical Methods for Problems with Initial
and Boundary Layers,” Boole Press, Dublin, 1980.

P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan
and G. I. Shishkin, “Robust Computational Techniques
for Boundary Layers,” Chapman-Hall/CRC, New York,
2000.

H. G. Roos, M. Stynes and L. Tobiska, “Robust Numeri-
cal Methods for Singularly Perturbed Differential Equa-
tions, Convection Diffusion and Flow Problems,” Spr-
inger-Verlag, Berlin, Heidelberg, 2008.

T. Linss, “Layer-Adapted Meshes for Reaction-Convec-
tion-Diffusion Problems, Lecture Notes in Mathematics,”
Springer, Heidelberg, 1985.

Copyright © 2012 SciRes.

(8]

[11]

[12]

[13]

[14]

1035

G. M. Amiraliyev and H. Duru, “A Uniformly Conver-
gent Finite Difference Method for an Initial Value Prob-
lem,” Applied Mathematics and Mechanics, Vol. 20, No.
4, 1999, pp. 363-370. doi:10.1007/BF02458564

G. M. Amiraliyev, “The Convergence of a Finite Differ-
ence Method on Layer-Adapted Mesh for a Singularly
Perturbed System,” Applied Mathematics and Computa-
tion, Vol. 162, No. 3, 2005, pp. 1023-1034.
doi:10.1016/j.amc.2004.01.015

S. Natesan and B. S. Deb, “A Robust Computational
Method for Singularly Perturbed Coupled System of Re-
action—Diffusion Boundary-Value Problems,” Applied
Mathematics and Computation, Vol. 188, No. 1, 2007, pp.
353-364. doi:10.1016/j.amc.2006.09.120

S. Hemavathi, T. Bhuvaneswari, S. Valarmathi and J. J. H.
Miller, “A Parameter Uniform Numerical Method for a
System of Singularly Perturbed Ordinary Differential
Equations,” Applied Mathematics and Computation, Vol.
191, No. 1, 2007, pp. 1-11.
doi:10.1016/j.amc.2006.05.218

T. Linss and M. Stynes, “Numerical Solution of Systems
of Singularly Perturbed Differential Equations,” Compu-
tational Methods in Applied Mathematics, Vol. 9, No. 2,
2009, pp. 165-191.

T. Linss, “Analysis of a System of Singularly Perturbed
Convection-Diffusion Equations with Strong Coupling,”
SIAM Journal on Numerical Analysis, Vol. 47, No. 3,
2009, pp. 1847-1862. doi:10.1137/070683970

Z.D. Cen, A. M. Xu and A. Le, “A Second-Order Hybrid
Finite Difference Scheme for a System of Singularly Per-
turbed Initial Value Problems,” Journal of Computational
and Applied Mathematics, Vol. 234, No. 12, 2010, pp.
3445-3457. doi:10.1016/j.cam.2010.05.006

AM


http://dx.doi.org/10.1007/BF02458564
http://dx.doi.org/10.1016/j.amc.2006.09.120
http://dx.doi.org/10.1016/j.amc.2006.09.120
http://dx.doi.org/10.1016/j.amc.2006.09.120
http://dx.doi.org/10.1016/j.amc.2006.09.120
http://dx.doi.org/10.1016/j.amc.2006.09.120
http://dx.doi.org/10.1016/j.amc.2006.05.218
http://dx.doi.org/10.1016/j.amc.2006.05.218
http://dx.doi.org/10.1016/j.amc.2006.05.218

